Релаксационные процессы в стеклах системы Ge—As—S

© В.С. Биланич, И.И. Макауз, Т.Д. Мельниченко, И.М. Ризак, В.М. Ризак

Ужгородский национальный университет, 88000 Ужгород, Украина E-mail: bilanych@univ.uzhgorod.ua

(Поступила в Редакцию 2 марта 2006 г.)

Исследовано внутреннее трение стекол $Ge_x As_{40-x} S_{60}$ в интервале температур 100 К $-T_g$ на инфранизких частотах ($10^{-3}-10^{-1}$ Hz). Показано, что концентрационная трансформация спектров внутреннего трения данных материалов обусловлена изменением доминирующей кинетической единицы в диссипативных процессах релаксационного и нерелаксационного типов. Установлено, что изменение механизмов внутреннего трения стекол $Ge_x As_{40-x} S_{60}$ приводит к скачку энергии активации α -процесса релаксации и локальному минимуму частотного фактора τ_0 .

PACS: 64.40.+i, 61.82.Ms, 61.43.Fs

1. Введение

Использование халькогенидных стекол в инфракрасной технике и интегральной оптике [1] стимулирует научные исследования данных материалов. Особый интерес представляют халькогенидные стекла $Ge_x As_{40-x} S_{60}$, которые охватывают диапазон среднего координационного числа 2.40 < Z < 2.80. В [21] показано, что при возрастании концентрации Ge происходит структурный фазовый переход (СФП) от двухмерной структуры (подобной As_2S_3) к трехмерной (подобной Ge_2S_3). Учитывая то что термическая активация подвижности структурных элементов в стеклах является причиной релаксационных процессов, представляют интерес исследование и обнаружение закономерностей концентрационной трансформации релаксационного спектра данных материалов в области структурных фазовых переходов.

Цель настоящей работы — исследование спектров внутреннего трения стекол Ge_xAs_{40-x}S₆₀ в широком интервале концентраций и выявление особенностей их релаксационных свойств.

2. Методика эксперимента

Измерения внутреннего трения Q^{-1} и модуля сдвига *G* проводились в режиме квазистатических механических нагрузок методом крутильных колебаний при помощи автоматизированной измерительной системы на основе крутильного маятника [3,4].

Определение Q^{-1} и G на инфранизких $(f = 10^{-3} - 10^{-1} \text{ Hz})$ частотах в интервале температур 100 К $-T_g$ $(T_g$ — температура стеклования) проводилось из эллиптических петель механического гистерезиса по формулам $Q^{-1} = \text{tg } \delta = \frac{\sin \delta}{\sqrt{1 - \sin^2 \delta}}$, $\sin \delta = \frac{\Delta \varepsilon}{\varepsilon_{\text{max}}}$; $G = A \frac{M_{\text{t max}}}{\varepsilon_{\text{max}}}$, где $\Delta \varepsilon$ — остаточная деформация в момент времени, когда крутильный момент M_t равен O; ε_{max} — максимальное значение деформации; $M_{\text{t max}}$ — коэффициент, который определяется геометрическими

параметрами исследуемого образца. Величины $Q^{-1}(T)$ и G(T) измеряли в процессе нагрева стекол с постоянной скоростью $V_{\text{heat}} = 37.5 \text{ K/h}.$

Стекла $Ge_x As_{40-x}S_{60}$ получены из элементарных веществ — мышьяка марки ОСЧ, серы марки ОСЧ и германия марки *B*5. Синтез проводился в кварцевых ампулах с последующим охлаждением на воздухе. Стеклообразное состояние полученных образцов было подтверждено методом рентгеноструктурного анализа. Образцы для измерений Q^{-1} и *G* вырезались из массивных стеклообразных слитков, шлифовались и полировались до размера параллелепипеда 2 × 2 × 20 mm³.

3. Результаты исследований и их обсуждение

На рис. 1 приведены зависимости $Q^{-1}(T)$ и G(T)на частоте деформирования 10 mHz для различных стекол $Ge_r As_{40-r} S_{60}$. Из рис. 1, *а* видно, что в спектре внутреннего трения наблюдаются максимумы $Q^{-1}(T)$ различной ширины и амплитуды, а также интенсивное возрастание механических потерь в области Т_g. Эти особенности температурных изменений внутреннего трения сопровождаются соответствующими им эффектами на зависимостях G(T) (рис. 1, b). Как видно из рис. 1, a, в области низких температур на зависимостях $Q^{-1}(T)$ стекол Ge₂S₃, Ge₃₂As₈S₆₀ и Ge₂₄As₁₆S₆₀ проявляются максимумы внутреннего трения различной природы. В стеклах Ge₁₃As₂₇S₆₀, Ge₈As₃₂S₆₀ и As₂S₃ такие максимумы отсутствуют. В стекле Ge32As8S60 амплитуда максимума внутреннего трения в интервале 150-270 К составляет 0.008. В этом же интервале температур модуль сдвига данного стекла уменьшается на 0.5 GPa, а форма кривой G(T) подобна изменениям упругих модулей при релаксационных процессах [5]. Уменьшение частоты деформирования приводит к смещению температуры данного максимума Т_М в область более низких температур, что свидетельствует о его релаксационном механизме.

Puc. 1. Температурные зависимости внутреннего трения (*a*) и модуля сдвига (*b*) стекол $Ge_x As_{40-x} S_{60}$ на частоте 10 mHz: $Ge_{40}S_{60}$ (*1*), $Ge_{32}As_8S_{60}$ (*2*), $Ge_{24}As_{16}S_{60}$ (*3*), $Ge_{13}As_{27}S_{60}$ (*4*), $Ge_8As_{32}S_{60}$ (*5*), $As_{40}S_{60}$ (*6*).

Для определения параметров данного релаксационного процесса была проанализирована зависимость температуры T_M от частоты деформирования в координатах $\ln f - T_M^{-1}$, которая хорошо экстраполируется прямой линией. Исходя из условия максимума внутреннего трения при релаксационном процессе, $2\pi f \cdot \tau (T_M) = 1$, где $\tau (T_M)$ — значение времени релаксации при температуре T_M на частоте деформирования f, и учитывая зависимость времени релаксации от температуры при термической активации релаксационного процесса $\tau = \tau_0 \exp(U/kT)$, были найдены энергия активации U и частотный фактор τ_0 : U = 50 kJ/mol, $\lg \tau_0 = 10.5$. Эти значения слабо зависят от химического состава исследованных стекол.

Аналогичные низкотемпературные максимумы $Q^{-1}(T)$ релаксационного типа наблюдались ранее в стеклах систем As-S(Se) с высоким содержанием халькогенида [6], и было показано, что этот релаксационный

процесс обусловлен наличием структурных дефектов определенного типа — атомов халькогена с ненасыщенными связями.

Из рис. 1 видно также, что в интервале температур 200–300 К релаксационные максимумы наблюдаются только в стеклах $Ge_{32}As_8S_{60}$ и $Ge_{24}As_{16}S_{60}$. Можно предположить, что данный релаксационный процесс обусловлен наличием определенных структурных дефектов (аналогично [6]). Учитывая приоритетность образования связей Ge–S в сравнении с As–S для стекол $Ge_xAs_{40-x}S_{60}$, а также преимущественное образование соединения GeS₂ в сравнении с GeS [7], можно допустить, что в данном случае структурные дефекты (атомы с ненасыщенными связями) будут образовываться атомами As.

В интервале 330-360 К в стекле Ge₃₂As₈S₆₀ наблюдается еще один максимум на зависимости $Q^{-1}(T)$. Изменение частоты деформирования не приводит к смещению температуры данного максимума, поэтому он не является релаксационным. Аналогичный по форме частотно-независимый максимум внутреннего трения наблюдается и в стекле Ge₂S₃, однако его температурный интервал несколько сдвинут в область более низких температур и составляет 280-300 К. Поскольку соединение Ge₂S₃ является нестехиометрическим и вместе со стеклом Ge₃₂As₈S₆₀ содержит избыток атомов германия, можно предположить, что наличие этих избыточных атомов является причиной возникновения диссипативного процесса не релаксационного типа в $Ge_x As_{40-x} S_{60}$ вследствие термической активации подвижности данных атомов.

Полученные экспериментальные результаты указывают на то, что в области структурного фазового перехода (Z = 2.67 [2]) в стеклах Ge_xAs_{40-x}S₆₀ происходит изменение типа диссипативного процесса и, следовательно, механизма внутреннего трения в интервале температур 200-360 К при монотонной замене атомов мышьяка атомами германия. При этом в интервале Z < 2.67 диссипативный процесс в данных стеклах носит релаксационный характер и обусловлен размораживанием локальной подвижности структуры в областях атомов мышьяка с ненасыщенными связями. При Z > 2.67 в стеклах $Ge_x As_{40-x} S_{60}$ в интервале температур 280–360 К наблюдаются максимумы внутреннего трения нерелаксационного типа. Их интенсивность возрастает при увеличении содержания избыточных атомов германия. При этом интенсивность релаксационных максимумов уменьшается и при $x \to 40$ at.% Ge они полностью исчезают.

Как видно из рис. 1, наиболее интенсивный рост механических потерь наблюдается в области температуры стеклования. Наряду с возрастанием фоновых механических потерь при повышении температуры в области размягчения происходит резкое уменьшение G и Q^{-1} . При возрастании частоты деформирования указанные выше эффекты сдвигаются в область более высоких температур, что свидетельствует об релаксационном характере данных явлений.

Рис. 2. Зависимости температуры T_R от частоты деформирования для стекол $\text{Ge}_x \text{As}_{40-x} \text{S}_{60}$ в координатах $\ln f - T_R^{-1}$: $\text{Ge}_{40}\text{S}_{60}$ (1), $\text{Ge}_{32}\text{As}_8\text{S}_{60}$ (2), $\text{Ge}_{24}\text{As}_{16}\text{S}_{60}$ (3), $\text{Ge}_{13}\text{As}_{27}\text{S}_{60}$ (4), $\text{Ge}_8\text{As}_{32}\text{S}_{60}$ (5), $\text{As}_{40}\text{S}_{60}$ (6).

Известно, что такое поведение внутреннего трения и модуля сдвига в области размягчения является характерным для некристаллических материалов [6–11]. Поэтому можно утверждать, что возрастание механических потерь в области T_g в стеклах $\text{Ge}_x \text{As}_{40-x} \text{S}_{60}$ обусловлено полным размораживанием подвижности структурных элементов и вхождением в температурную область α -процесса релаксации (аналогично со стеклами As–S [11]).

Повышение температуры образцов исследованных стекол в области T_g приводит в резкому возрастанию механической податливости и интенсивности релаксационных процессов, вследствие чего точность измерения Q^{-1} уменьшается. Поэтому для оценки параметров α-процесса релаксации был использован частотный сдвиг зависимостей G(T). Определялся частотный сдвиг температуры T_R, при которой модуль сдвига вследствие α-релаксации уменьшался на треть (33%) от своего несрелаксированного значения. В данном случае такая методика определения параметров U и то является корректной, поскольку при изменении частоты деформирования в области α -релаксации зависимости G(T)уменьшаются с одинаковой скоростью, вследствие чего кривые G(T) при различных частотах деформирования "параллельны".

На рис. 2 представлен частотный сдвиг температуры T_R для различных составов стекол $\text{Ge}_c \text{As}_{40-x} \text{S}_{60}$ в координатах $\ln f - T_R^{-1}$. Из рисунка видно, что эти зависимости хорошо аппроксимируются прямыми линиями. Из наклонов этих линий были определены энергии активации $U \alpha$ -процесса релаксации и частотные факторы τ_0 . Концентрационные зависимости этих параметров приведены на рис. 3.

Как видно из рис. 1 и 2, область интенсивного возрастания Q^{-1} и уменьшения G, а также положение T_R для стекла Ge₃₂As₈S₆₀ находятся на 30 К выше, чем для стекла Ge₄₀S₆₀. Это значит, что среди исследованных нами стекол жесткость структурной сетки стекла Ge₃₂As₈S₆₀

Рис. 3. Концентрационные зависимости параметров α -процесса механической релаксации стекол Ge_xAs_{40-x}S₆₀: $I - U = f(x); 2 - \lg \tau_0 = f(x).$

максимальна и несколько уменьшается при возрастании координационного числа Z в интервале 2.7–2.8. Для этого же стекла значения параметра τ_0 минимальны и, следовательно, эффективный объем релаксатора α -процесса для Ge₃₂As₈S₆₀ также минимальный [9].

Из рис. З видно, что при монотонном возрастании концентрации атомов германия в стеклах Ge_xAs_{40-x}S₆₀ зависимости U = f(x) и $\tau_0 = f(x)$ не являются монотонными. В интервале концентраций x = 0-13 at.% Ge энергия активации изменяется очень слабо и в зависимости от состава равна 290-300 kJ/mol. В интервале x = 24-32 at.% Ge параметр U скачкообразно возрастает от 305 до 340 kJ/mol и принимает максимальное значение в стекле Ge₃₂As₈S₆₀. Интенсивное возрастание энергии активации U в интервале координационного числа Z = 2.64 - 2.72 (x = 24 - 32 at.% Ge) свидетельствует о перераспределении или существенном изменении механизмов внутреннего трения данных стекол в интервале α-процесса релаксации и может являться характерной особенностью некристаллических материалов в области структурного фазового перехода, одним из которых является система $Ge_x As_{40-x} S_{60}$ [2]. Учитывая особенности стеклообразования в системе Ge-As-S [7], а также закономерности высокотемпературной α-релаксации в некристаллических материалах [4,9,11], можно утверждать, что основными структурными единицами, размораживание подвижности которых обусловливает α-процесс релаксации в стеклах Ge_xAs_{40-x}S₆₀ с большим содержанием Ge, являются комплексы GeS_{2/2} и GeS_{4/2}. Поскольку температурная область размягчения GeS находится ниже, чем для GeS₂, можно допустить, что уменьшение температуры T_R для стекла Ge₂₄As₁₆S₆₀ по сравнению с Ge₃₂As₈S₆₀ связано с возрастанием концентрации структурных единиц GeS_{2/2} относительно концентрации GeS_{4/2}.

В стеклах $Ge_x As_{40-x} S_{60}$ с малым содержанием германия, как и в стехиометрическом соединении As_2S_3 [11], *α*-процесс релаксации обусловлен размораживанием подвижности структуры, образованной в основном структурными единицами $AsS_{3/2}$. При возрастании концентрации германия в стеклах $Ge_x As_{40-x}S_{60}$ происходит топологический фазовый переход от двухмерной структуры стекла, подобной As_2S_3 , до трехмерной, подобной GeS_2 [2]. С этими структурными преобразованиями коррелирует концентрационная зависимость энергии активации α -процессами релаксации (рис. 3). Поэтому за точку структурного фазового перехода можно принять значение концентрации x_p , при которой зависимость U = f(x) имеет точку перегиба. Для исследованных стекол данная точка попадает в область концентраций x = 0.25-0.27 at.% Ge, что хорошо согласуется с результатами работы [2] (Z = 2.67).

4. Выводы

Таким образом, на основании исследований температурно-частотных зависимостей внутреннего трения и модуля сдвига стекол $\text{Ge}_x \text{As}_{40-x} \text{S}_{60}$ выявлено, что в области низких температур наблюдается максимум внутреннего трения релаксационного типа, который обусловлен локальной релаксацией структуры стекол в областях дефектных атомов мышьяка. При удалении от СФП (в обе стороны) релаксационный максимум на зависимостях $Q^{-1}(T)$ уменьшается и исчезает. В области Z = 2.67 происходит скачок энергии активации α -процесса релаксации.

Возрастание координационного числа Z в стеклах $Ge_x As_{40-x}S_{60}$ в области выше СФП приводит к возникновению диссипативного процесса нерелаксационного типа при 300–360 K, обусловленного наличием в данных стеклах избыточных атомов германия.

Список литературы

- Д.Г. Семак, В.М. Ризак, И.М. Ризак. Фото- и термоструктурные преобразования халькогенидов. Закарпаття, Ужгород (1999). 392 с.
- [2] K. Tanaka. Phys. Rev. B 39, 1270 (1989).
- [3] В.С. Биланич. Автореф. канд. дисс. Изд-во Ужгород. ун-т, Ужгород (1993).
- [4] В.С. Биланич, Н.Д. Байса, В.М. Ризак, И.М. Ризак, В.М. Головей. ФТТ 45, 80 (2003).
- [5] Физическая акустика / Под ред. У. Мэзона. Мир, М. (1969).
 Т. З. Ч.А. 579 с.
- [6] В.С. Биланич, А.А. Горват, И.Д. Туряниця. УФЖ 39, 593 (1994).
- [7] З.У. Борисова. Халькогенидные полупроводниковые стекла. Изд-во ЛГУ, Л. (1983). 344 с.
- [8] Г.М. Бартенев, Ю.В. Зеленев. Физика и механика полимеров. Высш. шк., М. (1983). 391 с.
- [9] Г.М. Бартенев, Д.С. Сандитов. Релаксационные процессы в стеклообразных системах. Наука, Новосибирск (1986). 243 с.
- [10] В.С. Биланич, Н.Д. Байса, В.М. Ризак, И.М. Ризак, В.М. Головей, В.М. Соломон. УФЖ 24, 396 (2002).
- [11] В.С. Биланич, А.А. Горват. Физика и химия стекла. 24, 825 (1998).