04;12 Приближенное подобие электрофизических и кинематических процессов при импульсном коронном разряде в сильных электролитах

© В.В. Шамко, Е.В. Кривицкий, В.В. Кучеренко

Институт импульсных процессов и технологий НАН Украины, 327018 Николаев, Украина

(Поступило в Редакцию 26 декабря 1997 г. В окончательной редакции 6 октября 1998 г.)

На основе теоретического метода анализа размерностей и подобия и имеющихся экспериментальных результатов, относящихся к динамике коронного разряда в сильных электролитах, установлены критерии приближенного подобия электрофизических и гидрогазодинамических явлений. Выполнен физический эксперимент и получены обобщенные временные зависимости тока, напряжения на межэлектродном промежутке и радиуса плазменной области от критериев подобия.

Импульсная корона в воде [1,2] представляет собой развитую систему лидеров кустообразной пространственной ориентации. Возникает она в разрядном промежутке с неоднородным и резко неоднородным полем и характеризуется тем, что ни один из прорастающих в глубь промежутка лидеров не достигает противоположного электрода. В этом существенное отличие импульсной короны от "линейного" подводного искрового разряда [3].

В случае разряда, незавершенного пробоем межэлектродного промежутка, весь разрядный ток протекает через границу плазма лидерной системы-жидкая среда. Из-за сравнительно малой поверхности соприкосновения плазма-среда и большого сопротивления слоя жидкости между кустообразной системой лидеров и противоэлектродом разрядный ток весьма мал, что, естественно приводит к слабому разогреву плазмы лидеров. Так как проводимость плазмы заведомо больше проводимости среды, значительная часть энергии выделяется не в короне, а в окружающей ее жидкости.

При изменении внешних условий, в частности удельной электропроводности σ_0 среды, число лидеров увеличивается, диаметр их у основания становится больше, а при некоторых электропроводностях среды и напряженностях поля [1,2] они покрывают всю оголенную поверхность электрода, превращаясь в сплошное плазменное образование. При достижении пороговых значений электропроводности среды лидеры сливаются друг с другом с самого начала разряда, а плазменный сгусток полностью повторяет форму острия электрода. В результате выделение джоулевой энергии происходит в четырех областях: в плазменном сгустке, переходном слое плазма-жидкость, объеме проводящей жидкости и эквивалентных активных элементах разрядной цепи. Накопленные к настоящему времени экспериментальные данные [1,2,4] о феноменологии явления показали существенную зависимость характеристик коронного разряда от внешних регулируемых параметров разрядного контура, проводящей среды и геометрии электрода.

Пристальное внимание, уделяемое коронному разряду в последние годы, связано с экспериментально установленным [2] фактом наличия у него при определенных условиях гидродинамических возмущений достаточно высоких интенсивностей, сравнимых по крайней мере с возмущениями, генерируемыми подводным искровым разрядом. Такая гидродинамическая особенность присуща коронным разрядам в сильных электролитах, для которых характерно наличие сплошного плазменного сгустка, формой которого можно управлять, а соответственно и формировать в жидкости поля давления заданной конфигурации. В данной работе речь будет идти именно о такой разновидности разряда.

Хотя уже имелись первые попытки разработки электродинамической модели коронного разряда в сильных электролитах [2,5] и ее гидродинамической интерпретации [6], в какой-то мере удовлетворительно моделировавших отдельные стороны явления, все же для создания корректной физико-математической модели явления фактического материала в этой области пока недостаточно. Поэтому для систематизации имеющихся экспериментальных данных и их сопоставления при существующих различиях в условиях проведения опытов представляется целесообразным выполнить их обобщение на основе теоретического метода анализа размерностей и подобия [7].

Основой для поиска структуры безразмерных комплексов является совокупность размерных физических величин, определяющих с достаточной точностью искомые динамические характеристики разряда. Для установления совокупности размерных параметров необходимо сформулировать объем исходных знаний об исследуемом явлении. Выполнение этой задачи осуществлялось путем тщательного анализа экспериментальных работ [1,2,4], содержащих наиболее систематические опытные данные по коронному разряду со сплошным плазменным сгустком.

При исследовании электрофизических явлений в качестве зависимых переменных выступают функции тока $i = i(t, \{\beta_i\})$ и напряжения $U = U(t, \{\beta_U\})$ в объеме,

31

а в качестве гиродинамических — радиуса плазменного сгустка и пузыря $a = a(t, \{\beta_a\})$, давления в них $P_a = P_a(t, \{\beta_P\})$, давления в первичной и вторичной волнах сжатия $P = P(t, r, \{\beta_r\})$. Входящие в аргумент независимые переменные t, r и $\{\beta_j\}$ представляют собой время, пространственную координату и совокупность $\{\ldots\}$ размерных и безразмерных параметров, существенных для проявления того или иного качества явления.

Анализируя имеющиеся на сегодня систематические экспериментальные исследования [1,2,4] по коронному разряду в сильных электролитах, можно констатировать, что на его электрофизические характеристики наиболее сильное влияние оказывает удельная электропроводность жидкого электролита. Причем для исследуемых начальных напряженностей поля $E_0 = U_0/r_0 = 10^6 \dots 10^8 \,\text{V/m}$ в интервале электропроводностей $\sigma_0 = 1.6...3.3$ S/m находится ее пороговое значение σ_* , переход через которое изменяет характер разряда из разветвленной короны в сплошное плазменное образование. Значение σ_* определяется напряженностью поля E_0 , снижаясь по мере роста последней [1]. При переходе через σ_* происходит изменение формы кривых напряжения U(t) от типичной для подводной искры [8] до куполообразной, близкой к форме тока, а их максимумы $U_{m1} \approx (0.6...0.9) \cdot U_0$ лежат ниже напряжения заряда U0 конденсаторной батареи. При переходе через $\sigma_0 \approx 6 \,\mathrm{S/m}$ разряд из апериодического превращается в колебательный. С ростом σ_0 возрастают амплитудные значения тока, мощности, и уменьшается длительность первой полуволны тока (напряжения). Так, при $3.3 \leqslant \sigma_0 \leqslant 20 \, \mathrm{S/m}$ амплитуда мощности N_{m1} на промежутке $0.4 \lesssim N_{m1}/(U_0^2 \sqrt{C/L}) \lesssim 1$ гораздо выше, чем для подводной искры [8]. Качественная картина изменения электрофизических характеристик в зависимости от Е₀ аналогична изложенной выше для электропроводности, а их реакция на изменение температуры электролита То полностью сводится к реакции на соответствующее изменение $\sigma_0(T_0)$. Электрофизические характеристики нечувствительны к гидростатическому давлению среды Ро, по крайней мере в диапазоне его изменений от 0.1 до 30 МРа [4].

Гидрогазодинамические характеристики коронного разряда имеют свои специфические особенности по сравнению с электрофизическими. В частности, они неадекватно реагируют на соответствующие изменения электропроводности и температуры среды. Так, с ростом σ_0 амплитуда вторичной волны сжатия возрастает, а с ростом T_0 падает. Амплитуда же первичной волны, хотя и возрастает с ростом температуры, но в зависимости от σ_0 имеет экстремум в области $\sigma_0 \approx 8 \dots 12$ S/m [4]. Максимальный радиус a_{max} парогазовой полости и период ее первой пульсации t_1 , начиная с $\sigma_0 > 1$ S/m, практически не реагируют на изменение σ_0 (хотя заметная зависимость $t_1(\sigma_0)$ наблюдалась при повышенных, по крайней мере при $P_0 = 30$ MPa [4], гидростатических давлениях), тогда как весьма весомо зависят от изменения T_0 даже

в области $\sigma_0(T_0) > 1$ S/m. Существенно влияют на амплитуду первичной волны радиус острия положительного электрода r_D и длина межэлектродного промежутка l (в области малых l [4]), увеличивая P_{m1} по мере их уменьшения. Наблюдается также заметная зависимость гидрогазодинамических параметров от гидростатического давления среды, причем довольно существенная для параметров полости. Экспериментальных данных о давлении в плазменном сгустке пока не имеется, а относительно его кинематики можно утверждать лишь, что с ростом σ_0 значения радиуса сгустка к окончанию выделения энергии уменьшаются [2].

Следует также отметить, что систематические данные о влиянии на динамику разряда таких параметров контура, как емкость C, индуктивность L и эквивалентное активное сопротивление короткозамкнутой цепи разрядного контура R_k , пока также отсутствуют. Емкость и индуктивность влияют на режим разряда в зависимости от соотношения между волновым сопротивлением контура и активным сопротивлением нагрузки, в качестве которого выступает суммарное сопротивление плазменного сгустка R_a и слоя электролита R_e , усредненные за время разряда, и R_k . При $R_a + R_e + R_k \ge 2\sqrt{L/C}$ разряд будет апериодический, в противном случае — колебательный. Роль начальной электропроводности электролита, о которой применительно к колебательности разряда говорилось выше, сводится здесь к изменению сопротивления R_l . Ввиду отмеченных особенностей, а также поскольку указанные элементы контура (C, L, R_k) необходимо формировать при осуществлении разряда, они будут включены в систему определяющих явление параметров.

Поскольку одним из элементов объекта исследований является плазменный сгусток, то по аналогии с подводной искрой [8] для характеристики разрядной плазмы будем использовать искровую постоянную A, представляющую собой коэффициент пропорциональности между давлением и электропроводностью плазмы, и эффективный показатель адиабаты γ разрядной плазмы. Начальная плотность электролита ρ_0 на основе H₂O + NaCl изменяется по мере увеличения концентрации раствора до насыщения на 20%, что с гидродинамической точки зрения является довольно существенным фактором, и поэтому при исследовании гидрогазодинамических явлений параметров.

В настоящей работе будут рассматриваться только те режимы разряда, в которых образуется сплошной плазменный сгусток, а это в соответствии с результатами работ [1,2] накладывает ограничения снизу на электропроводность электролита. Тогда по крайней мере для $E_0 \lesssim 10^8 \text{ V/m}$ [2] время зажигания короны и количество расходуемой на этой стадии электрической энергии несоизмеримо малы по сравнению с характерным временем разряда $\sqrt{L/C}$ и запасенной в конденсаторной батарее энергией соответственно, причем наблюдается существенное уменьшение времени зажигания по мере

роста *E*₀. Следовательно, искомые зависимые параметры коронного разряда не будут ощущать заметного влияния факторов, определяющих стадию зажигания разряда. В результате в систему определяющих параметров можно включить вместо неизвестного заранее напряжения зажигания напряжение заряда конденсаторной батареи, а вместо начального радиуса плазменного сгустка — радиус стержня положительного электрода.

При коронном разряде вследствие джоулевой диссипации энергии в объеме электролит нагревается при постоянном внешнем давлении и в нем формируется температурное поле. При малости эффектов молекулярной теплопроводности [2] плотность внутренних источников тепла пропорциональна скорости изменения температуры с коэффициентом пропорциональности c_p , представляющих удельную теплоемкость при постоянном давлении. Следовательно, параметр c_p также должен быть включен в систему определяющих параметров.

Резюмируя изложенное, можно выделить независимые физические величины σ_0 , U_0 , C, L, r_0 , l, ρ_0 , T_0 , A, P_0 , R_k , c_p , t, r, γ , определяющие протекание коронного разряда в сильных электролитах и в соответствии с объемом исходных экспериментальных данных и физических соображений в достаточной мере характеризующих его электрофизические и гидрогазодинамические явления. Следовательно, при 14 независимых размерных переменных и 5 первичных размерностях kg, m, s, A, К будем иметь в соответствии с π -теоремой анализа размерностей 9 независимых безразмерных комплексов. Если выбрать в качестве переменных с независимыми размерностями величины U_0 , C, L, T_0 , r_0 , то независимые комплексы можно записать в явном виде следующим образом:

$$\Pi_{A} = Ar_{0}^{2}/(U_{0}^{2}\sqrt{LC}), \quad \Pi_{\sigma} = \sigma_{0}r_{0}\sqrt{L/C},$$
$$\Pi_{R} = R_{k}\sqrt{C/L}, \quad \Pi_{c} = c_{p}T_{0}LC/r_{0}^{2},$$
$$\Pi_{\rho} = \rho_{0}r_{0}^{5}/(LC^{2}U_{0}^{2}), \quad \Pi_{P_{0}} = P_{0}r_{0}^{3}/(CU_{0}^{2}),$$
$$\Pi_{l} = l/r_{0}, \quad \Pi_{r} = r/r_{0}, \quad \Pi_{t} = t/\sqrt{LC}, \quad \Pi_{\gamma} = \gamma.$$
(1)

Для интересующих нас зависимых переменных *i*, *U*, *P*, *a* можно записать еще 4 зависимых безразмерных комплекса

$$\Pi_{i} = i\sqrt{L/C}/U_{0}, \quad \Pi_{U} = U/U_{0},$$
$$\Pi_{P} = Pr_{0}^{3}/(CU_{0}^{2}), \quad \Pi_{a} = a/r_{0}.$$
(2)

Критерий Π_A , качественно соответствующий известному канальному критерию Π_k для подводной искры [9] и характеризующий комплексное воздействие на среду электротехнических параметров разрядного контура и плазменного сгустка, не совсем удобен, например, для анализа вольт-ампер-секундных характеристик на всем разрядном промежутке. Более удобной для этих целей будет комбинация критериев Π_A и Pi_{σ}

$$\Pi_{A\sigma} = \Pi_A \cdot \Pi_{\sigma} = A\sigma_0 r_0^3 / (CU_0^2), \qquad (3)$$

представляющая собой отношение начальных интегральной плотности энергии в объеме и плотности электрической энергии источника. Критерий Π_P (как и Π_{P_0}) ввиду невысоких по сравнению с CU_0^2/r_0^3 плотностей энергии в плазме и электролите также целесообразнее заменить комбинацией критериев Π_P , Π_σ и Π_A

$$\Pi'_{P} = \Pi_{P} \cdot (\Pi_{\sigma} \cdot \Pi_{A})^{-1} = P/(A\sigma_{0}), \quad \Pi'_{P_{0}} = P_{0}/(A\sigma_{0}).$$
(4)

Критерий П_о целесообразнее переписать в виде

$$\Pi'_{\sigma} = \Pi_{\sigma}^{-1} = (\sigma_0 r_0)^{-1} / \sqrt{L/C},$$
(5)

и тогда комплексы Π'_{σ} и Π_R будут представлять собой соотношения между сопротивлениями слоя электролита (при $r_0 \ll l$), контура и волновым сопротивлением соответственно.

Таким образом, с учетом соотношений (3)–(5) изложенной постановке задачи будут отвечать обобщенные решения в виде критериальных зависимостей

$$\Pi_{i} = F_{i}(\Pi_{t}, \Pi_{A\sigma}, \Pi'_{\sigma}, \Pi_{R}, \Pi_{c}, \Pi_{\gamma}),$$

$$\Pi_{U} = F_{U}(\Pi_{t}, \Pi_{A\sigma}, \Pi'_{\sigma}, \Pi_{R}, \Pi_{c}, \Pi_{\gamma}),$$

$$\Pi_{a1} = F_{a1}(\Pi_{t}, \Pi_{A\sigma}, \Pi'_{\sigma}, \Pi_{R}, \Pi_{c}, \Pi_{\gamma}),$$

$$\Pi'_{P} = F_{P}(\Pi_{t}, \Pi_{R}, \Pi_{A\sigma}, \Pi_{c}, \Pi_{\rho}, \Pi'_{\sigma}, \Pi_{l}, \Pi_{\gamma}),$$

$$\Pi_{a2} = F_{a2}(\Pi_{t}, \Pi_{A\sigma}, \Pi_{c}, \Pi_{\rho}, \Pi_{\rho}, \Pi_{\gamma}).$$
(6)

Здесь Π_{a1} соответствует Π_a для плазменного сгустка, а П_{а2} — для полости. Получением критериальных зависимостей вида (6) исчерпываются возможности метода анализа размерностей и подобия. Приближенные выражения функций F_i в явном виде необходимо искать на основе обобщения экспериментальных данных. Обычно это делается путем представления функций F_i в виде степенных функций их аргументов и нахождения показателей степеней из экспериментальных данных. Хотя такой подход и обеспечивает достаточно хорошую точность в интервале изменения параметров в эксперименте, но за этими пределами получаемые формулы практически не работают. При этом следует заметить также, что возможность моделирования явлений при наличии более двух независимых критериев подобия, исключая безразмерные координаты и время, весьма проблематична. Поэтому целесообразнее, исходя из физических соображений, выделить основной (или несколько основных) критерий, а затем при обобщении опытных данных показать, что существенное изменение второстепенных критериев подобия не изменяет картину процесса.

Так, для случая осуществления разряда в средах одного химического состава из совокупности критериев выпадает Π_{γ} , составленный только из физических свойств среды и являющийся константой. Критерий Π_l оказывает влияние на динамику разряда только в области $\Pi_l < 1$ и, следовательно, для условий реализации коронного разряда со сплошным плазменным образованием, когда

Рис. 1. Обобщенные временные зависимости тока (*a*) и напряжения (*b*) для $\beta = 0.35$.

 $\Pi_l \gg 1$ [2], его можно не учитывать. Критерии Π_R и Π_ρ намного меньше единицы и их также не будем учитывать, поскольку имеются критерии $\Pi_{A\sigma}$ и Π'_{σ} порядка единицы. В результате вместо критериальных соотношений (6) можно записать их приближенные аналоги

$$\Pi_{i} = \Psi_{i}(\Pi_{t}, \Pi_{A\sigma}, \Pi_{\sigma}'),$$

$$\Pi_{U} = \Psi_{U}(\Pi_{t}, \Pi_{A\sigma}, \Pi_{\sigma}'),$$

$$\Pi_{a1} = \Psi_{a1}(\Pi_{t}, \Pi_{A\sigma}, \Pi_{\sigma}'),$$

$$\Pi_{P}' = \Psi_{P}(\Pi_{t}, \Pi_{r}, \Pi_{A\sigma}, \Pi_{\sigma}', \Pi_{c}),$$

$$\Pi_{a2} = \Psi_{a2}(\Pi_{t}, \Pi_{A\sigma}, \Pi_{c}, \Pi_{P_{0}}).$$
(7)

Легко видеть, что структура обобщенных функций для электрофизических характеристик и радиуса сгустка существенно упростилась и применительно к ним может быть подвергнута обобщенной экспериментальной проверке. Для этой цели выполнялся эксперимент с вариацией размерных физических величин $U_0 = 15...47$ kV, $C = 0.5...12 \,\mu$ F, $L = 2.4, ...3.8 \,\mu$ H, $\sigma_0 = 3...22$ S/m, $r_0 = 0.5...5$ mm таким образом, чтобы критерии $\pi_{A\sigma}$ и Π'_{σ} оставались постоянными. Для их фиксированных значений осуществлялось по 10 разрядов с регистрацией разрядного тока i(t), напряжения на разрядном промежутке U(t), радиуса плазменной области a(t) и амплитуды первичной волны сжатия P_{m1} , которые впоследствии нормировались к соответствующим масштабным значениям $i_M = U_0 \sqrt{C/L}$, $U_M = U_0$, $a_M = r_0$, $P_M = A\sigma_0, t_M = \sqrt{LC}$. Использовалась методика измерений, описанная в работе [2], а также полученные ранее [2] экспериментальные результаты.

Безразмерные кривые тока и напряжения в зависимости от времени для фиксированных критериев подобия $(\Pi_{A\sigma} = 2.5 \cdot 10^{-6}, \Pi'_{\sigma} = 29.4)$ приведены на рис. 1 (вертикальными значками на кривых показаны границы доверительного интервала с доверительной вероятностью 0.9). Легко видеть, что число Π_U (рис. 1, *b*) однозначно определяется двумя критериями подобия П_А и Π'_{σ} , тогда как число Π_i (рис. 1, *a*) расщепляется на две области: в первой (кривая 1) расположены семь режимов тока с максимальным значением числа $\Pi_{i \max} = 0.38$, во второй (кривая 2) — три режима с $\Pi_{i \max} = 0.08$. Следовательно, токовые характеристики подвержены в рамках рассматриваемого приближенного подобия действию масштабного эффекта. Поскольку отличительная особенность этих двух классов электрофизических явлений — это различие характерных времен (для первой серии кривых $t_M \leq 4.2 \,\mu$ s, для второй $t_M > 4.2 \,\mu$ s), то возможно, что масштабный эффект по току (как наблюдалось ранее [8] для подводного искрового разряда) связан с наличием некоторого порогового времени, выше которого приближенное подобие нарушается. Дальнейшее обобщение экспериментальных результатов проводилось лишь для характерных времен $t_M \leq 4.2 \,\mu s$.

Весьма широкий диапазон численных значений критерия $\Pi_{A\sigma} = 10^{-10} \dots 1$ делает его неудобным параметром, по крайней мере для классификации режимов разряда. Поэтому вместо $\Pi_{A\sigma}$ была сконструирована более удобная по значениям численного интервала комбинация критериев $\Pi_{A\sigma}$ и Π'_{σ}

$$\beta = 0.1 [\Pi'_{\sigma} / (4\pi^2 \Pi_{A\sigma})]^{0.1}, \tag{8}$$

качественно подобная критерию η [9] для подводного искрового разряда; в области малых β имеют место колебательные режимы разряда, а при $\beta \to 1$ — апериодические (рис. 2). Причем критерий β оказался более существенным по сравнению с Π'_{σ} применительно к его влиянию на обобщенные временные зависимости тока, напряжения и радиуса плазменного сгустка (рис. 2, 3).

Нормированное распределение максимального давления в первичной волне сжатия $\pi_{P_{m1}}$ (Π_r) для фиксированного значения критерия $\beta = 0.35$ иллюстрируется таблицей (n — количество режимов разряда с β = idem).

Π_r	$\Pi_{P_{m1}}$	n
33	15.2	2
50	11.8	3
100	5.1	1

В первом приближении это распределение подчиняется акустическому закону.

Судя по тому, что активное сопротивление слоя электролита будет превалировать над величинами R_a и

Рис. 2. Нормированные кривые тока (a) и напряжения (b) в зависимости от времени и критерия β .

Рис. 3. Нормированные кривые радиуса СПО в зависимости от времени и критерия *β*.

 R_k , то Π'_{σ} будет являться вторым основным критерием приближенного подобия электрофизических и кинетиматических характеристик коронного разряда в сильных электролитах. Однако аналогично тому, как это было проделано с $\Pi_{A\sigma}$, лучше использовать конструкцию

$$\delta = (\Pi_{\rho} \cdot \Pi'_{\sigma})^{-1} = \sigma_0 E_0^2 / [\rho_0 r_0^2 / (LC)^{3/2}], \qquad (9)$$

являющуюся мерой отношения плотностей потока энергии электрического поля и энергии динамического напора жидкой среды. Критерий подобия δ , от которого в меньшей степени зависят исследуемые характеристики коронного разряда, определяет, на наш взгляд, порог перехода разветвленной импульсной короны в разряд со сплошным плазменным сгустком. Ориентировочное значение этого порога составляет $\delta_* = 0.2$. При $\delta > \delta_*$ реализуется разряд со сплошным плазменным сгустком.

Список литературы

- [1] Ушаков В.Я. Импульсный электрический пробой жидкостей. Томск: ТГУ, 1975. 256 с.
- [2] Богуславский Л.З., Кучеренко В.В., Кривицкий Е.В. Препринт ИИПТ. Николаев, 1993. № 22. 41 с.
- [3] Кривицкий Е.В. // ЖТФ. 1991. Т. 61. Вып. 1. С. 9–13.
- [4] Глущенко В.Ж., Жекул В.Г., Трофимова Л.П. // Теория, эксперимент, практика электроразрядных технологий. Киев: Наукова думка, 1995. Вып. 2. С. 4–7.
- [5] Поздеев В.А., Бескаравайный Н.М., Шолом В.К. // ЭОМ. 1990. № 3. С. 33–36.
- [6] Ищенко Ж.Н. // Теория, эксперимент, практика электроразрядных технологий. Киев: Наукова думка, 1995. Вып. 2. С. 55–59.
- [7] *Кутателадзе С.С.* Анализ подобия и физические модели. Новосибирск: Наука, 1986. 296 с.
- [8] Кривицкий Е.В., Шамко В.В. Переходные процессы при высоковольтном разряде в воде. Киев: Наукова думка, 1979. 208 с.
- [9] Кривицкий Е.В., Шамко В.В. // ЖТФ. 1972. Т. 42. Вып. 1. С. 83–89.