02;04;11;12

Сравнительные эмиссионные характеристики источника отрицательных ионов водорода с отражательным разрядом в режимах с Cs и без Cs

© В.П. Горецкий, А.В. Рябцев, И.А. Солошенко, А.Ф. Тарасенко, А.И. Щедрин Институт физики АН Украины,

252650 Киев, Украина

(Поступило в Редакцию 19 декабря 1997 г.)

Теоретически и экспериментально исследуется воздействие цезия в объеме и на поверхностях ионного источника на его эмиссионные характеристики. Показано, что цезий в объеме в реальных условиях ионного источника вносит значительный вклад в кинетические процессы, но слабо влияет на ток ионов ${\rm H}^-$, извлекаемый из источника. В то же время цезий на поверхности источника даже при малом коэффициенте конверсии ${\rm H}$ в ${\rm H}^-$ ($\gamma \approx 10^{-3}$) приводит к увеличению тока ионов ${\rm H}^-$ в несколько раз. Выводы теории находятся в хорошем согласии с полученными в работе экспериментальными данными.

Введение

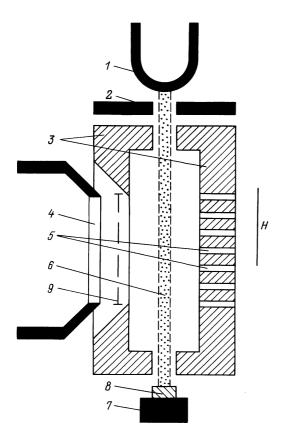
Данная работа является продолжением серии работ [1–4], посвященных исследованию кинетических процессов в источниках отрицательных ионов водорода с отражательным разрядом. В ней теоретически и экспериментально исследуется воздействие цезия в объеме и на поверхностях ионного источника на его эмиссионные характеристики. Как показано в ряде экспериментальных работ (см. например, [5–7]), добавка паров цезия в плазменные источники приводит как к существенному увеличению плотности тока ионов Н-, так и к повышению газовой экономичности источника. Для оптимального использования этого явления необходимо выяснить его механизм. Предположительно он может быть связан либо с увеличением эффективности процессов образования ионов Н- в объеме разряда, либо с дополнительным образованием ионов Н- на поверхности анода, имеющей малую работу выхода за счет пленки цезия. Вопросам воздействия цезия на объемные процессы посвящен ряд теоретических работ. В работах [8-11] проведено исследование цезий-водородного разряда при высоком давлении водорода. Было показано, что сравнительно небольшая добавка цезия $(N_{\rm Cs}/N_{\rm H_2}=10^{-3}-10^{-2})$ значительно изменяет параметры плазмы и газовой смеси. Концентрация отрицательных ионов водорода может достигать $N_{\rm H^-} = 10^{13} \, {\rm cm}^{-3}$ [9]. При этом генерация отрицательных ионов на цезированных поверхностях разрядной камеры и вопросы извлечения ионов Нв [8–11] не рассматривались.

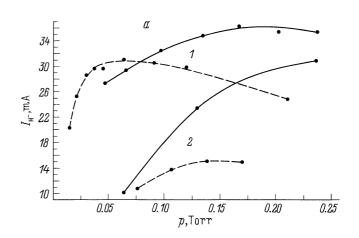
В противоположность [8–11] в работе [12] рассматривалось влияние цезия только через поверхностные эффекты конверсии H, H^+ , H_2^+ в H^- на цезированном аноде двухкамерного источника. Отмечается, что поверхностная конверсия может приводить к увеличению концентрации ионов H^- в несколько раз по сравнению с чисто водородным разрядом.

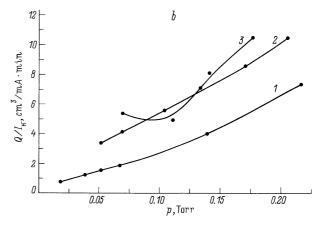
В настоящей работе проведен численный расчет с учетом как влияния цезия на объемные механизмы образования ионов ${\rm H^-}$, так и образования ионов ${\rm H^-}$ на цезированной поверхности анода. Показано, что цезий в объеме в реальных условиях ионного источника вносит значительный вклад в кинетические процессы, но слабо влияет на ток ионов ${\rm H^-}$, извлекаемый из источника. В то же время цезий на поверхности источника даже при малом коэффициенте конверсии ${\rm H}$ в ${\rm H^-}$ ($\gamma \approx 10^{-3}$) приводит к увеличению тока ионов ${\rm H^-}$ в несколько раз. Эти выводы теории находятся в хорошем согласии с полученными в работе экспериментальными данными.

Экспериментальные исследования эмиссионных характеристик источника

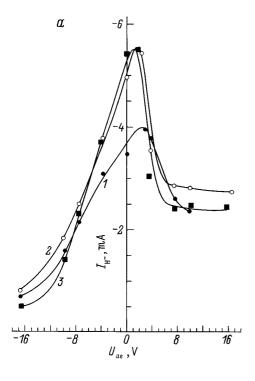
Схема исследуемого источника представлена на рис. 1. Источником электронов служил накаливаемый вольфрамовый катод 1 диаметром 2 mm. Перед анодной камерой 3 располагалась диафрагма 2, ограничивающая радиальный размер разряда и плазменного столба 6. Отражение электронов, производящих ионизацию газа, осуществлялось с помощью антикатода 7, потенциал которого равнялся потенциалу катода. Напуск газа в анодную камеру осуществлялся через отверстия 5, расположенные на одинаковых расстояниях друг от друга. Магнитное поле напряженностью до 2 kOe было направлено вдоль оси системы. Извлечение ионов осуществлялось через щель полем электрода 4. Диаметр разрядной камеры составлял 2.5 mm, диаметр анода — 5 mm. При таком соотношении указанных параметров наблюдался максимальный выход отрицательных ионов. Давление водорода в камере источника изменялось в пределах $2 \cdot 10^{-2} - 2 \cdot 10^{-1}$ Тогг, напряжение разряда — в пределах 100-200 V, ток разряда 1-10 A. Извлекающее напряжение изменялось в пределах 8-14 kV. Для сопоставления результатов экспериментов с результатами расчетов были проведены измерения параметров плазмы.




Рис. 1. Схема ионного источника.


Плотность плазмы в колонне, полученная из измерений тока ионов на антикатод, росла пропорционально току разряда и достигала $10^{14}\,\mathrm{cm}^{-3}$ (температура электронов в области разрядной колонны изменялась от 2 до 6 eV соответственно при изменении давления от $2 \cdot 10^{-1}$ до $2 \cdot 10^{-2}$ Torr). Параметры плазмы за пределами колонны измерялись тонким цилиндрическим зондом, вводимым в плазму через эмиссионную щель и ориентированным поперек магнитного поля. Концентрация плазмы на периферии примерно на порядок ниже, чем в колонне, а температура электронов при $p \approx 1.10^{-1}$ Torr около 1 eV. Уже из этих данных видно, что исследуемый разряд является аналогом разряда в известных двухкамерных системах, разрабатываемых для инжекторов нейтральных частиц. В разряде быстрые электроны создают плотную плазму и нарабатывают колебательно-возбужденные молекулы H_2 , а за пределами колонны существуют оптимальные условия для образования ионов Н⁻. Охлаждение электронов при этом осуществляется в процессе диффузии поперек магнитного поля.

Введение цезия осуществлялось распылением таблетки двуххромового цезия δ , расположенной на отражателе 7 (рис. 1). При включении разряда с указанной таблеткой напряжение на разряде падало до 50 V, а ток отрицательных ионов, извлекаемых из источника, уменьшался. По истечении нескольких часов напряжение на разряде возвращалось к значениям, характерным для


чисто водородного режима, а ток ионов ${\rm H}^-$ возрастал. В этом режиме и производились измерения.

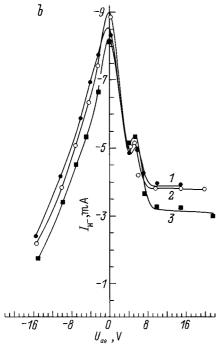

На рис. 2, a приведены зависимости тока ионов H^- , извлекаемого из источника, от давления при извлекающем напряжении 14 kV. Как видно, введение цезия приводит к заметным изменениям эмиссионных характеристик источника. Основные изменения сводятся к следующему: 1) повышается максимальная величина плотности тока ионов Н-; 2) увеличивается газовая экономичность, особенно при низком давлении (рис. 2, b); 3) эффект от подачи цезия уменьшается по мере возрастания ширины щели. Следует обратить внимание на изменение характера указанных зависимостей: если в чисто водородном режиме существует оптимальное давление, при котором достигается наилучшая газовая экономичность $(p \approx 10^{-1} \, \text{Torr})$, то в режиме с цезием последняя обратно пропорциональна давлению Н2. Достигнутое максимальное значение газовой экономичности составляет $\approx 2\%$, что на порядок выше, чем в чисто водородном режиме.

Рис. 2. Эмиссионные характеристики источника: a — зависимость извлекаемого тока ионов H^- от давления в камере источника (I — с цезием, 2 — без цезия, сплошная кривая — эмиссионная щель 1.5×40 , штриховая — 0.7×40 mm); b — зависимость расхода газа на единицу извлекаемого тока ионов H^- от давления (I, 2 — источник с цезием для эмиссионной щели 0.7×40 или 1.5×40 mm соответственно; 3 — источник без цезия, эмиссионная щель 0.7×40 mm).

Рис. 3. Зависимость тока ионов H $^-$ от потенциала эмиссионных электродов (эмиссионная щель $0.7 \times 40\,\mathrm{mm}$ перекрыта сеткой): a — безцезиевый режим, b — режим с цезием; давление в источнике: I — $3.74 \cdot 10^{-2}$, 2 — $5.6 \cdot 10^{-2}$, 3 — $8.7 \cdot 10^{-2}$ Torr.

Следует отметить, что уже эти экспериментальные данные указывают на преимущественно поверхностный характер воздействия цезия. Прежде всего это следует из того, что увеличение ширины щели в режиме в

цезием не приводит к пропорциональному увеличению извлекаемого тока ионов H^- (рис. 2, кривые I). В то время как в режиме без цезия величина извлекаемого тока всегда пропорциональна ширине щели (кривые $\mathit{2}$). На поверхностный характер эффекта указывают еще два факта: 1) воздействие цезия наиболее эффективно при низком давлении газа, когда роль объемных процессов ниже; 2) в режиме с цезием ток извлекаемых ионов H^- зависит слабее от давления, чем в случае чисто водородного разряда.

Однако для убедительности были проведены специальные эксперименты, в которых эмиссионная щель закрывалась металлической сеткой 9, изолированной от анода (рис. 1). Металлическая сетка имела шаг 0.2 mm и прозрачность 0.8. Напряжение на ней по отношению к аноду изменялось от -25 до +25 V. На рис. 3 приведена зависимость тока ионов Н- от напряжения на сетке для различных давлений в чисто водородном режиме и с цезием. В режиме без цезия максимум тока отрицательных ионов находится в области напряжений на сетке порядка 4-5 V. В разряде с цезием имеются два максимума: явно выраженный максимум при нулевом потенциале и слабо выраженный при напряжении около 5 V. В то же время максимум электронного тока, извлекаемого из эмиссионной щели, в обоих режимах соответствует потенциалу порядка 4-5 V. Эти результаты могут быть интерпретированы следующим образом. Как показывают зондовые измерения, потенциал плазмы по отношению к аноду в области разрядной колонны положителен и в зависимости от давления изменяется в пределах $3-5 \, \text{V}$, т.е. электрическое поле между колонной и анодом является тормозящим для электронов и ионов Н-. При напряжении на сетке порядка потенциала плазмы электрическое поле в плазме частично компенсируется и условия извлечения электронов и ионов Н-, образованных за счет объемных процессов, становятся более оптимальными, чем при нулевом напряжении. Если потенциал сетки увеличивать дальше, то электроны и отрицательные ионы начинают захватываться сеткой. Этим можно объяснить наличие максимума тока отрицательных ионов в области напряжений 4-5 V в режиме без цезия и второго максимума в режиме с цезием. Максимум при нулевом потенциале на сетке в цезиево-водородном разряде указывает на то, что основная часть ионов Н рождается на цезированной поверхности эмиссионной щели, имеющей нулевой потенциал.

Численное моделирование

Для определения плотности тока отрицательных ионов ${\rm H^-}$ и расчета концентраций как заряженных (n_e , $N_{{\rm H^-}}$, $N_{{\rm H^+}}$, $N_{{\rm H^+}}$, $N_{{\rm Cs^+}}$, $N_{{\rm Cs^+}}$), так и нейтральных ($N_{{\rm H_2}}$, $N_{{\rm H}}$, $N_{{\rm H_2(\nu)}}$, $N_{{\rm Cs}}$) компонент смеси решалась система кинетических уравнений (1)–(3) совместно с уравнением

Больцмана [13,14].

$$\frac{\partial N_i}{\partial t} + \operatorname{div} \Gamma_i = \sum_i k_i N_i + \sum_{i,j} k_{ij} N_i N_j, \tag{1}$$

$$\Gamma_i = \mu_i E N_i - D_i \frac{\partial N_i}{\partial r} \tag{2}$$

 $(\mu_i$ с соответствующим зарядовым знаком),

$$n_e + N_{\rm H^-} \approx N_{\rm H_2^+} + N_{\rm H^+} + N_{\rm Cr^+} + N_{\rm Cs_2^+},$$
 (3)

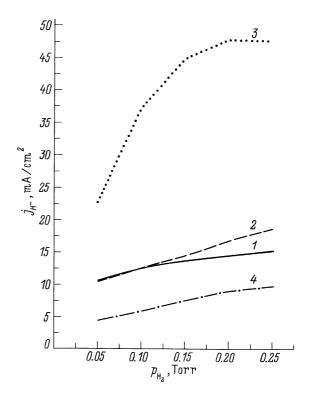
где E — радиальное электрическое поле, μ_i и D_i — соответственно подвижности и коэффициенты диффузии заряженных компонент.

Распределение плазмы вдоль оси разрядной камеры и по азимуту предполагалось однородным.

Пространственное распределение нейтральных компонент по всем осям предполагалось однородным, так как их длины свободного пробега в условиях эксперимента порядка или больше радиуса камеры. Поэтому для них $\operatorname{div} \Gamma_i = 0$.

Скорости неупругих процессов

$$k_{ij} = \sqrt{\frac{2q}{m}} \int_{0}^{\infty} \varepsilon Q_{ij} f_0(\varepsilon) d\varepsilon \tag{4}$$


рассчитывались с использованием функции распределения электронов по энергии $f_0(\varepsilon)$. В (4) ε — энергия электронов (eV), m — масса электрона (g), $q=1.602\cdot 10^{-12}\,\mathrm{erg/eV},\,Q_{ij}(\varepsilon)$ — сечение соответствующего неупругого процесса (cm²).

Функция распределения электронов (ФРЭ) в разрядной колонне находилась из уравнения Больцмана в предположении, что концентрация электронов в области колонны слабо зависит от радиуса. Как показано в предыдущих работах [1–4], в чисто водородном режиме ФРЭ в области колонны имеет плоское плато от энергии входящего пучка ~ 100 до $\sim 20 \, \mathrm{eV}$ и при малых энергиях практически максвелловская ($T=3-5 \, \mathrm{eV}$). Между колонной и анодом высокоэнергетическая часть ФРЭ отсутствует вследствие сильной замагниченности электронов вдоль радиуса, а температура электронов ниже, чем в области колонны ($T_e \leqslant 1 \, \mathrm{eV}$). В связи с этим вне разрядной камеры ФРЭ предполагалась максвелловской f_{0m} с зависящей от радиуса температурой, которая находилась из уравнения баланса энергий

$$\frac{3}{2}V_{e}\frac{dT_{e}}{dr} = -\varepsilon_{\nu}\sqrt{\frac{2q}{m}}N_{\text{H}_{2}}\int_{0}^{\infty}\varepsilon f_{0m}(\varepsilon)Q_{\nu}(\varepsilon)d\varepsilon,$$

$$f_{0m} = \frac{2}{\sqrt{\pi}}T_{e}^{-3/2}e^{-\frac{\varepsilon}{T_{e}}}.$$
(5)

Здесь V_e — скорость дрейфа электронов поперек магнитного поля с учетом амбиполярного поля, $Q_{\nu}(\varepsilon)$ — сечение возбуждения первого колебательного уровня H_2

Рис. 4. Расчетная зависимость плотности тока ионов ${\rm H}^-$ на поверхность анода от давления в источнике: I — чисто водородный разряд; 2 — разряд с цезием при учете только объемных реакций; 3 — разряд с цезием только на поверхности; 4 — то же, что и 2; U_p , V: I-3 — 120, 4 — 50.

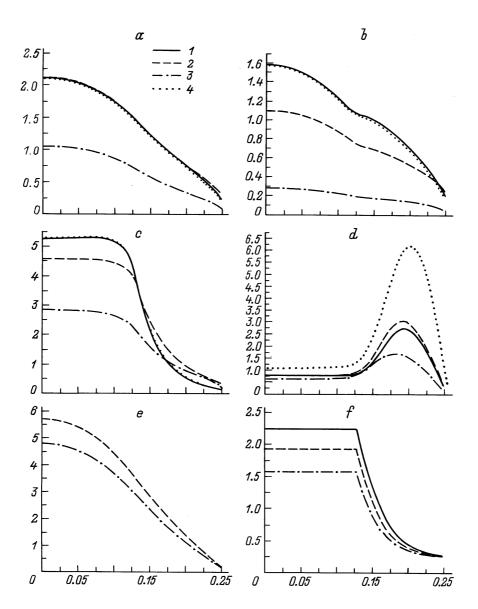
(поскольку колебательное возбуждение является основным каналом потерь энергии электонов между колонной и анодом), ε_{ν} — энергия колебательного кванта (eV).

Подвижности и коэффициенты диффузии рассчитывались с учетом замагниченности. При этом предполагалось, что во всей разрядной камере ионы имеют максвелловское распределение. Основным механизмом, определяющим коэффициенты переноса для электронов при давлении $p \sim 0.1\,\mathrm{Torr}$ и концентрации плазмы $\sim 10^{13} - 10^{14}\,\mathrm{cm}^{-3}$, является рассеяние на ионах. Так же как и в [2], полагалось, что температура атомарного водорода T_{H} и отрицательных ионов T_{H^-} равна $4\cdot 10^3\,\mathrm{K}$. Температура остальных ионов и атомарных компонент смеси близка к комнатной.

При решении уравнений (1)–(3) и уравнения Больцмана учитывались элементарные процессы, приведенные в таблице. Скоростные коэффициенты k_1 описывают линейные по концентрации процессы (4, 9, 18–20 в таблице).

Следует отметить, что в расчетах не учитывался механизм образования отрицательных ионов посредством ридберговских состояний, поскольку, как следует из численных оценок, в условиях настоящих экспериментов вклад этого механизма не превышает нескольких процентов. Образование отрицательных ионов Н⁻ в объеме

_	Процесс
1	$H_2(\nu) + e \rightarrow H_2^+ + e + e, \nu = 0, \dots, 14$
2	$H + e \rightarrow H^+ + e + e$
3	$H_2 + e \rightarrow H + H + e$
4	$H + H(wall) \rightarrow H_2$
5	$H_2^+ + e \rightarrow H + H$
6	$\text{H}_{2}^{2} + e \leftrightarrow \text{H}_{2}(\nu) + e, \nu = 1, 2, 3$
7	$H_2 + e \rightarrow H_2^*(B^1\Sigma_u^+, c^1\Pi_u) + e \rightarrow H_2(\nu) + e + \hbar\omega, \nu = 1, \dots, 14$
8	$H_2(\nu) + H \xrightarrow{\mathcal{L}} H_2(\nu') + H$
9	$H_2(\nu) + wall \rightarrow H_2(\nu'), \nu = 1,, 14, \nu' = 0,, \nu$
10	$H_2(\nu) + e \to H^- + H, \nu = 1, \dots, 14$
11	$H + e \rightarrow H^-$
12	$\mathrm{H_2^+} + e ightarrow \mathrm{H^-} + \mathrm{H^+}$
13	$ ilde{ ext{H}^-} + ext{H}_2^+ ightarrow ext{H} + ext{H}_2$
14	$\mathrm{H^-} + \mathrm{H^{\overline{+}}} ightarrow \mathrm{H} + \mathrm{H}$
15	$\mathrm{H^-} + \mathrm{H_2} ightarrow \mathrm{H} + \mathrm{H_2} + e$
16	${ m H^-} + { m H} ightarrow { m H} + { m H} + e$
17	${ m H^-} + e ightarrow { m H} + e + e$
18	$\mathrm{H_2^+} + e(wall) ightarrow \mathrm{H_2}$
19	${ m H}^{ m ar{+}} + e(wall) ightarrow { m H}$
20	$\mathrm{Cs} + e ightarrow \mathrm{Cs}^+ + e$
21	$\mathrm{Cs^+} + \mathrm{Cs} + M \to \mathrm{Cs_2^+} + M$
22	$\mathrm{Cs}_2^+ + e o \mathrm{Cs} + \mathrm{Cs}$
23	$Cs^+ + H^- \rightarrow Cs + H$
24	$Cs_2^+ + H^- \rightarrow Cs + Cs + H$
25	$\mathrm{Cs^+} + e(wall) o \mathrm{Cs}$
26	$\mathrm{H} + e(wall) ightarrow \mathrm{H}^-$


посредством диссоциативного прилипания электронов к молекулам CsH также не учитывалось, поскольку концентрация CsH в условиях нашего разряда низкая. Как показывают самые оптимистические оценки, скорость наработки ${\rm H}^-$ по вышеуказанному каналу на два порядка ниже, чем посредством процесса 10 (см. таблицу).

Результаты расчета и обсуждение эксперимента

Как указывалось во Введении, основной целью работы было выяснение влияния цезия в объеме разрядной камеры и адсорбированного на поверхности на эмиссионные характеристики источника отрицательных ионов водорода с отражательным разрядом. В связи с этим было проведено численное моделирование отражательного разряда для трех основных ситуаций: 1) чисто водородный разряд (учитывались процессы 1–19 в таблице), 2) цезий присутствует только в объеме разрядной камеры (процессы 1–25), 3) цезий присутствует только на поверхности (процессы 1–19, 26). Конверсия ионов Н⁺ в Н⁻ на цезированной поверхности не учитывалась, поскольку концентрация атомарного водорода много больше концентрации Н⁺ в условиях исследуемого разряда.

На рис. 4 приведены зависимости плотности тока отрицательных ионов водорода $j_{\rm H^-}$ на аноде от давления для трех перечисленных случаев. Как видно из рис. 4

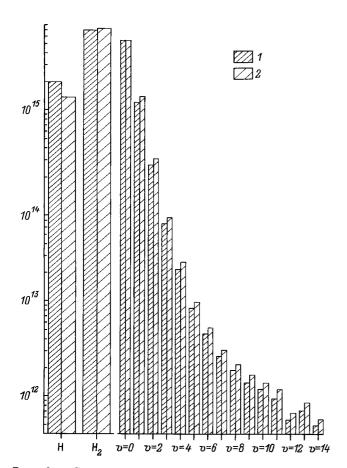

(кривая 2), введение паров цезия в объем разрядной камеры при условии искусственного сохранения напряжения на разряде приводит лишь к незначительному повышению тока j_{H^-} при большем давлении по отношению к чисто водородному случаю (кривая 1). Основным механизмом образования отрицательных ионов водорода в этом случае, как и в чисто водородном разряде, является диссоциативное прилипание электронов к колебательно-возбужденным молекулам водорода (процесс 10). Слабое повышение тока отрицательных ионов при добавлении Cs вызвано следующими причинами. Цезий в объемных процессах играет как положительную, так и отрицательную роль. Вследствие низкой энергии электронного возбуждения и ионизации цезия уменьшается количество электронов с энергией, большей энергии возбуждения Сs. Температура электронов T_e $(T_e = -1/(d \ln(f_0/d\varepsilon))$ имеет смысл до энергии $\leq 20 \,\mathrm{eV}$) при этом падает (рис. 5, f), что находится в соответствии с экспериментальными данными. С одной стороны, уменьшение температуры электронов и количество быстрых электронов вызывает замедление темпа образования колебательно-возбужденных молекул Н2 и, следовательно, ионов Н-. С другой стороны, понижение T_{e} приводит к уменьшению скорости отлипания электронов (процесс 17, сечение этого процесса сильно зависит от температуры), а также к уменьшению скорости диссоциации Н2 и соответственно концентрации атомарного водорода (рис. 6), который принимает активное участие

Рис. 5. Распределение концентраций различных компонентов плазмы и температуры вдоль радиуса разрядной колонны: a — концентрация электронов (10^4 cm $^{-3}$); b — концентрация ионов H $^+$ (10^{14} cm $^{-3}$); c — концентрация ионов H $^-$ (10^{11} cm $^{-3}$); e — концентрация ионов Cs $^+$ (10^{13} cm $^{-3}$), температура электронов (eV). I–t — то же, что и на рис. 4.

в снятии колебательного возбуждения H_2 . Последние два фактора способствуют увеличению концентрации ионов H^- . Указанные отрицательный и положительные эффекты от введения Сs в объем практически компенсируют друг друга при условии искусственного сохранения одного и того же разрядного напряжения (рис. 4). Уменьшение же значения напряжения до $50\,\mathrm{V}$ (фактически наблюдаемого в экспериментах с цезием в объеме) приводит к уменьшению тока ионов H^- (рис. 4, кривая 4). Итак, в соответствии с экспериментом численное моделирование указывает на то, что цезий в объеме не может увеличить плотность тока ионов H^- , извлекаемых из источника.

В противоположность этому учет конверсии Н в ${\rm H^-}$ на аноде с адсорбированным цезием уже при коэффициенте конверсии $\gamma=10^{-3}$ приводит к увеличению тока ${\rm H^-}$ (рис. 4, кривая 3) и концентрации ${\rm H^-}$ в объеме (рис. 5, e) в 2–4 раза. Не вдаваясь пока в другие детали сравнения расчета и эксперимента, отметим, что это увеличение находится в соответствии с экспериментально наблюдаемым изменением тока ${\rm H^-}$ (рис. 2). Отметим также, что в условиях эксперимента не принимались специальные меры для оптимизации покрытия поверхности анода цезием. Однако, как следует из [15], коэффициент конверсии в условиях ионных источников обычно изменяется в пределах от 10^{-3} до 10^{-1} в зависимости

Рис. 6. Сравнительные концентрации атомарного и молекулярного водорода, а также различных колебательновозбужденных уровней молекулы H_2 : I — чисто водородный разряд, 2 — разряд с цезием только в объеме.

от температуры атомов водорода и степени покрытия поверхности цезием.

Концентрация отрицательных ионов как в чисто водородном режиме, так и в режиме с цезием достигает максимального значения в области между разрядной колонной и анодом. Этот важный для эксперимента факт обусловлен следующим. Величина $N_{\rm H^-}$ определяется процессами рождения и гибели Н-. Основным механизмом гибели Н- является отлипание электрона под действием столкновений Н с быстрыми электронами плазмы (процесс 17). Сечение этого процесса, как указывалось выше, зависит от энергии и носит пороговый характер: сечение равняется нулю при энергии электронов $\varepsilon \leqslant 1.25\,\mathrm{eV}$ и при энергии $\sim \! 10\,\mathrm{eV}$ достигает значения $\sim 2 \cdot 10^{-15} \, \text{cm}^2$. Поскольку температура электронов за пределами колонны спадает вдоль радиуса (рис. 5, f), то скорость указанного процесса резко падает, что и приводит к росту концентрации Н-, несмотря на некоторое уменьшение скорости их образования. Если искусственно считать скорость процесса 17 постоянной, то максимум исчезнет. Как видно из рис. 5, e, для радиуса разрядной колонны $R_k = 0.125\,\mathrm{cm}$ максимум концентрации ионов ${
m H}^-$ достигается при $R/R_k \approx 1.4$.

Результаты экспериментов, проведенных с различными диаметрами анодной камеры R_a , находятся в хорошем согласии с расчетом: максимум тока отрицательных ионов, извлекаемый из источника в режиме работы без цезия, достигается при $R_a/R_k=2$.

Некоторое различие численных значений расчетной и экспериментальной величины тока отрицательных ионов, извлекаемых из источника, как указывалось в [4], обусловлено, во-первых, тем, что площадь эмиссионной поверхности плазмы вблизи щели заметно больше площади поверхности щели; во-вторых, диффузионное приближение, используемое в расчетах при анализе движения ионов Н⁻, находится на пределе применимости при указанных давлениях.

Уменьшение тока ${\rm H^-}$, наблюдаемое в эксперименте при больших давлениях, может быть связано с перезарядкой отрицательных ионов на струе газа, выходящей из эмиссионной щели источника. Оценки показывают, что этот процесс может приводить при высоком давлении к гибели до 30% ионов ${\rm H^-}$, выходящих через щель, что вполне достаточно для появления максимума в измеренной экспериментально зависимости $j_{\rm H^-}(p)$.

Итак, на основании результатов экспериментов и расчетов можно утверждать, что цезий в объеме исследуемого источника не может приводить к увеличению тока ионов ${\rm H}^-$. Наблюдаемое увеличение тока ионов ${\rm H}^-$ вызвано конверсией атомов водорода на цезированной поверхности анода. Другими словами, введение цезия превращает источник ионов ${\rm H}^-$ объемного типа в поверхностно-плазменный.

Данная работа была поддержана Фондом фундаментальных исследований Министерства науки Украины (договор № Ф4/342-97-32, 1997).

Список литературы

- [1] Головинский П.М., Горецкий В.П., Рябцев А.В. и др. // ЖТФ. 1991. Т. 61. Вып. 10. С. 46–52.
- [2] Головинский П.М., Горецкий В.П., Солошенко И.А. и др. // ЖТФ. 1993. Т. 63. Вып. 9. С. 46–52.
- [3] Горецкий В.П., Рябцев А.В., Солошенко И.А. и др. // ЖТФ. 1994. Т. 64. Вып. 7. С. 152–157.
- [4] Горецкий В.П., Рябцев А.В., Солошенко И.А. и др. // ЖТФ. 1996. Т. 66. Вып. 2. С. 88–97.
- [5] Okumara Y., Hanada M., Inoue T. et al. // Production and Neutralization of Negative Ions and Beams. 5th Intern. Symposium. New York: Brookhaven, 1990. P. 169.
- [6] Walter S.R., Leung K.N., Hunkel W.B. // J. Appl. Phys. 1988. Vol. 64. P. 3424.
- [7] Бельченко Ю.И., Димов Г.И., Дудников В.Г. // Препринт № 39-73. Новосибирск: ИЯФ СО АН СССР, 1973.
- [8] Бакшт Ф.Г., Иванов В.Г. // Письма в ЖТФ. 1986. Т. 12. Вып. 11. С. 672–676.
- [9] *Бакшт Ф.Г., Елизаров Л.И., Иванов В.Г.* // Физика плазмы. 1990. Т. 16. Вып. 7. С. 854–861.
- [10] *Бакшт Ф.Г., Иванов В.Г.* // ЖТФ. 1992. Т. 62. Вып. 2. С. 195–200.

- [11] *Бакшт Ф.Г., Иванов В.Г.* // Письма в ЖТФ. 1997. Т. 23. Вып. 1. С. 26–32.
- [12] *Fukumasa O., Niitani E.* // Production and Neutralization of Negative Ions and Beams. 7th Intern. Symposium. New York: Woodbury, 1995. P. 187.
- [13] Шкаровский И., Джанстон Т., Бачинский М. Кинетика частиц плазмы. М.: Атомиздат, 1969.
- [14] Горецкий В.П., Рябцев А.В., Солошенко И.А. и др. // Физика плазмы. 1994. Т. 20. Вып. 9. С. 836–848.
- [15] Seidl M., Cui H.L., Isenbery J.D. et al. // Production and Neutralization of Negative Ions and Beams. 6th Intern. Symposium. New York: Brookhaven, 1992. P. 25.