О природе зародышей для образования термодоноров в кремнии (или еще один вариант ускоренной диффузии кислорода)

© В.Б. Неймаш[¶], Е.А. Пузенко, А.Н. Кабалдин, А.Н. Крайчинский, Н.Н. Красько

Институт физики Национальной академии наук Украины, 252650 Киев, Украина

(Получена 21 июля 1998 г. Принята к печати 19 мая 1999 г.)

Методом 4-зондовых измерений удельного электросопротивления исследовано влияние предварительной термообработки при 800°С (ПТО-800) на кинетику накопления и отжига термодоноров, образующихся при 450°С в монокристаллах кремния. Обнаружено существенное увеличение энергий активации генерации и отжига термодоноров после ПТО-800. Экспериментальные результаты обсуждены с учетом роли различных фазовых состояний кислорода в исходном Si. Предложена интерпретация, учитывающая влияние внутренних упругих напряжений решетки Si, созданных микроскопическими флуктуациями концентрации кислорода и термодоноров, на коэффициент диффузии атомов кислорода. Количественная оценка размеров микроскопических флуктуаций дает величину порядка сотен ангстремов. Кинетика генерации и отжига термодоноров описывается в рамках модели Кайзера–Фриша–Рейса с учетом локально ускоренной (в областях микроскопических флуктуация) диффузии кислорода. В микроскопических флуктуациях находится порядка 1–3% общего числа атомов кислорода в кристалле. Это затрудняет наблюдение ускоренной диффузии кислорода прямыми методами, однако достаточно для генерации термодоноров.

Эффективность образования кислородосодержащих термодоноров (КТД) в области 450°С существенно зависит от предварительной термообработки (ТО) кристаллов кремния [1,2]. Одной из причин этого может быть растворение в ходе предварительной ТО неких зародышей КТД, которые всегда есть в исходном кристалле [3]. В модели Кайзера-Фриша-Рейса (КФР) [4] зародышами термодонорных комплексов SiO_m являются непосредственно предшествующие им комплексы SiO_{m-1} . Однако при 450°C для образования комплексов даже с m = 2требуется коэффициент диффузии кислорода (D_0) в Si на несколько порядков выше реального. Тем более трудно объяснить существование микроскоплений КТД, которые наблюдались в работах [5-8]. Возможным объяснением может быть предположение о существовании в исходном Si микроскопических флуктуаций концентрации примеси кислорода (МФК), где локальная концентрация атомов кислорода (O_i) значительно выше средней [9]. В этом случае атомы О_i уже исходно могут находиться достаточно близко друг от друга, чтобы успеть образовать комплексы. Кроме того, коэффициент диффузии D₀ в сильно напряженных областях кристалла, которыми являются МФК, может значительно отличаться от величины D₀ в остальном объеме. Таким образом МФК также можно ассоциировать с понятием зародышей для КТД. Однако их влияние на кинетику накопления и отжига КТД после предварительной высокотемпературной ТО может существенно отличаться от влияния зародышей в виде преципитатов SiO_{m-1}.

В настоящей работе исследованы особенности генерации и отжига кислородосодержащих термодоноров в области 450°C в Si (КТД-450), предварительно термообработанном при 800°C, с целью выяснения, какое из двух описанных представлений о природе зародышей лучше соответствует эксперименту.

Использовались образцы бездислокационного Si с исходным удельным сопротивлением $\rho = 25-40 \,\mathrm{OM} \cdot \mathrm{cm}$, без каких-либо TO после выращивания. Разброс начальных значений ρ обусловлен различной локальной концентрацией КТД в разных частях кристалла:

$$n_0 = n_{\rm P} + n_{\rm RTD},$$

где n₀ — концентрация свободных электронов в исходных образцах; *n*_P —концентрация примеси фосфора; *n*_{RTD} — концентрация ростовых термодоноров, причем $n_{\rm P}/n_{\rm RTD} = 1-2$. Содержание примесей кислорода и углерода, определенное по инфракрасному поглощению на длинах волн 9.1 и 16.5 мкм в пучке света 10×3 мм составляло $(8-10) \cdot 10^{17} \, \text{см}^{-3}$ и менее $5 \cdot 10^{16} \, \text{см}^{-3}$ соответственно. Измерение ρ проводилось 4-зондовым методом при комнатной температуре. Концентрация свободных электронов (n_e) определялась из значений ρ при $\mu = 1350 \,\mathrm{cm^2/(c \cdot B)}$. Суммарная концентрация всех видов термодоноров (N_{TD}) определялась по разности $n_i - n_0$ (n_0, n_i — концентрации свободных электронов в исходных и термообработанных образцах соответственно), пренебрегая термоакцепторами, которые образуются при 800°С за 30 мин, так как их концентрация $n_a < 3 \cdot 10^{13} \, \mathrm{cm}^{-3}$. Расстояние между зондами составляло 1 мм. Образцы одинаковой несимметричной формы во время измерений фиксировались в специальном гнезде, что обеспечивало точность повторной установки зондов на образце не хуже 0.3 мм. Неоднородность распределения ρ в масштабе расстояния между зондами в радиальном направлении слитка составила 37-40%. ТО при 800°С в течение 30 мин уменьшает эту неоднородность до 16-22%. Это означает, что неоднородность ρ в значительной мере обусловлена неоднородным распре-

[¶] E-mail: vova@neimash.elvisti.kiev.ua

Рис. 1. Зависимости концентрации термодоноров N_{TD} от длительности термообработки при 450°С (t_{ann}^{450}) для образцов: $I - I_a$, исходного; $2 - I_b$, предварительно обработанного в течение 30 мин при 800°С.

делением ростовых КТД. В свою очередь неоднородность распределения ростовых КТД естественно связать с неоднородным распределением О_i в процессе роста кристалла.

Были подобраны три группы образцов по величине исходных значений ρ : I — 25 Ом · см, II — 30 Ом · см, III — 40 Ом · см. Все термообработки и измерения проводились на комплектах образцов, включающих по одному образцу из каждой группы. Для генерации КТД применялась изотермическая ТО при (450 ± 1)°С на воздухе. Длительность шага ТО — 5–20 мин. После каждого шага ТО величина ρ измерялась в одном и том же месте образца.

На рис. 1 приведены типичные зависимости N_{TD} , а на рис. 2 — зависимости dN_{TD}/dt от длительности TO при 450°C (t_{ann}^{450}) для исходных образцов (1) и образцов, предварительно обработанных при 800°C в течение 30 мин (2). Видно, что генерация КТД существенно замедляется после предварительной термообработки (ПТО) при 800°C, полоса ИК поглощения O_i после такой ПТО почти не изменяется. Это свидетельствует о незначительных изменениях фазового состояния основной части атомов кислорода в исследуемых кристаллах. Скорость генерации КТД (dN_{TD}/dt) во всех случаях изменяется с длительностью TO при 450°C. Эти изменения происходят более резко на самых ранних этапах TO, что противоречит кинетике гомогенной преципитации по модели КФР. Характерным является принципиальное изменение поведения зависимостей $dN_{\rm TD}/dt$ от времени ТО при 450°С. Если в исходных образцах темп генерации КТД уменьшается сравнительно с начальным, то после предварительной термообработки при 800°С (ПТО-800) увеличивается.

Этот результат аналогичен наблюдавшемуся в работах [2,10] и может быть объяснен с одинаковым успехом влиянием ПТО при 800° С на зародыши комплексов обоих обсуждавшихся выше типов. В первом случае это влияние сводится к растворению преципитатов SiO_{*m*-1}. Во втором — к "рассасыванию" МФК в результате диффузии и преципитации атомов O_{*i*} в наиболее плотных центральных частях МФК.

Предпочтение тому или иному типу зародышей комплексов может дать эксперимент по влиянию ПТО-800 на отжиг ТД. Действительно, если зародышами являются однородно распределенные преципитаты SiO_{m-1} , то ПТО-800 может лишь уменьшить их число (и соответственно темп генерации КТД), но не способна повлиять на отжиг КТД. Если же зародышами являются МФК, то можно ожидать влияния ПТО-800 на кинетику отжига КТД из-за их взаимного влияния. Действительно, по этой модели КТД находятся в микроскоплениях с большой локальной концентрацией по месту локализации МФК в исходном кристалле [5]. Точечные дефекты,

Рис. 2. Зависимости скорости генерации термодоноров $dN_{\rm TD}/dt$ от длительности термообработки при 450°С ($t_{\rm ann}^{450}$) для образцов: $1 - \text{II}_a$, исходного, $2 - \text{II}_b$, предварительно отожженного при 800°С в течение 30 мин.

Физика и техника полупроводников, 1999, том 33, вып. 12

Рис. 3. Зависимости концентрации N_{Td} от длительности отжига при 515°С (t_{ann}^{515}) для образцов: I — после отжига при 450°С, 2 — подвергнутого, кроме того, предварительной термообработке при 800°С. Штриховые линии — аппроксимация $y = A_0 \exp(-t/\tau)$.

находящиеся в деформационном поле других дефектов (например, *А*-центры в областях разупорядочения при нейтронном облучении или вблизи дислокаций), могут существенно изменять параметры своего отжига [12]. ПТО-800 способна уменьшить локальную концентрацию O_i в МФК и соответственно локальную концентрацию КТД в микроскоплениях. Следовательно, можно ожидать изменения кинетики отжига КТД после ПТО-800, так как взаимное влияние КТД уменьшится.

Отжиг КТД, образованных при 450°С, изучался нами при двух температурах T = 510 и 515°С. При этих температурах наряду с отжигом КТД-450 происходит (хоть и значительно медленнее, чем при 450°С) формирование других видов КТД. Однако эффективный темп их генерации по крайней мере в 5 раз меньше, чем скорость отжига КТД-450. Поэтому их вкладом в кинетику концентрации электронов при отжиге КТД-450 можно пренебречь.

В качестве примера на рис. З приведены зависимости концентрации термодоноров $N_{\rm TD}$ от времени отжига при 515°С ($t_{\rm ann}^{515}$) для образцов с КТД-450 без ПТО (1) и для образцов после ПТО-800 (2). Такие же зависимости строились и для отжига при 510°С — для отжига термодоноров, введенных при 450°С без ПТО и введенных при 450°С после ПТО при 800°С. Полученные таким образом зависимости концентрации КТД-450 от

длительности отжига при 510°С имеют вид, качественно аналогичный приведенным на рис. 3.

На рис. 3 точки соответствуют данным эксперимента, штриховые линии — компьютерной аппроксимации экспоненциальной функцией вида $y = A_0 \exp(-t/\tau)$. Видно, что эксперимент хорошо описывается одной экспонентой. Это имеет место во всех двенадцати образцах. Вывод о двустадийности отжига КТД-450, сделанный в работе [11], по-видимому, обусловлен малым числом экспериментальных точек. Таким образом ПТО при 800°С существенно замедляет процесс отжига КТД-450 при T = 510 и 515°C. Как отмечалось выше, этот результат может свидетельствовать в пользу второй точки зрения на природу зародышей для образования КТД (микроскопических флуктуаций концентрации примеси кислорода), т.е. увеличение однородности пространственного распределения примеси кислорода вследствие ПТО-800 приводит к более однородному распределению и самих КТД; соответственно к ослаблению их взаимного влияния посредством деформационных полей, что и замедляет их отжиг. Иными словами, образующиеся в предварительно термообработанных при 800°С кристаллах микроскопления КТД становятся более рыхлыми. Соответственно взаимное влияние составляющих их КТД уменьшается и эффект облегченного отжига дефектов в скоплениях ослабляется. Действительно, определенная нами из экспериментов по отжигу КТД-450 при T = 510 и 515°C энергия активации отжига (E_a) и частотный фактор отжига (ν) существенно увеличиваются после ПТО при 800°С. Для различных групп образцов $E_a = 1.64 - 1.88$ 9B; $\nu = 6.3 \cdot 10^8 - 2.3 \cdot 10^7 c^{-1}$ 6e3 ПТО и $E_a = 2.3 - 2.47$ эВ; $\nu = 1.8 \cdot 10^{11} - 2.4 \cdot 10^{12} \text{ c}^{-1}$ после ПТО-800. Причем довольно широкий диапазон значений этих параметров при погрешности метода $\Delta E_a = \pm 0.05$ эВ и $\Delta \nu = \pm 5 \cdot 10^{10} \, {
m c}^{-1}$ в обоих случаях обусловлен, по-видимому, уже макронеоднородным (масштаба межзондового расстояния) распределением самих микрофлуктуаций. В пользу этого свидетельствует следующий факт. Темп генерации КТД в образцах с различием интегрального содержания О, менее 20% (концентрация No определялась по поглощению инфракрасного излучения в луче света сечением 10×3 мм) может отличаться в 4 раза (при измерении 4-зондовым методом с расстоянием между измерительными зондами 1 мм). Исследования, проведенные на группе из 12 образцов, однозначно свидетельствуют об общей тенденции увеличения энергии активации и частотного фактора отжига КТД-450 после ПТО-800. Такое увеличение трудно объяснить уменьшением концентрации зародышей в виде преципитатов SiO_{*m*-1} в ходе ПТО-800. Полагая же зародышами МФК, изменение параметров отжига можно объяснить влиянием упругих напряжений решетки, которые создаются МФК и соответствующими скоплениями КТД. Аналогичный подход использовался в работе [12], в которой рассматривалось влияние дислокаций на параметры отжига радиационных дефектов в Si.

В модели КФР диффузия атомов кислорода является главным фактором, лимитирующим как процесс образования КТД, так и процесс их отжига. Следовательно, изменение Еа может в определенной мере характеризовать изменение условий диффузии О_i. Тогда увеличение Еа после ПТО-800 означает замедление диффузии О_i в окрестностях термодонорных комплексов. Причиной этого может быть уменьшение локальных упругих напряжений кристалла внутри скоплений КТД из-за разрыхления скоплений вследствие "рассасывания" исходных микрофлуктуаций О_i в ходе ПТО-800. Как видно из приведенных результатов, энергия активации $E_a = 2.3 - 2.47$ эВ для "замедленной" (после ПТО-800) диффузии близка к значению энергии активации дисперсного О_i [13]. Для образцов без ПТО-800 $E_a = 1.64 - 1.88$ эВ, что соответствует энергии активации процесса генерации КТД-450, известной из работ других авторов [14], и для объяснения которой привлекалось предположение об "ускоренной" диффузии О_i. Основываясь на полученных результатах, можно предположить, что "ускоренная" диффузия О_i в процессе генерации КТД присуща только тем атомам кислорода, которые находятся в напряженных областях кристалла внутри микрофлуктуаций с высокими значениями No. Их доля в общем количестве О_i, по-видимому, не превышает 1-2% [9]. Однако этого вполне достаточно для объяснения реальных скоростей генерации КТД на начальных этапах. С точки зрения такого подхода проанализируем количественно полученные экспериментальные результаты.

Рассмотрим отжиг при $T = 510^{\circ}$ С образцов, которые прошли ПТО-800 перед ТО-450. Отжиг термодоноров КТД-450 (примем, что это комплексы SiO_m) при 510°С в основном идет путем диссоциации, так как предельный размер преципитатов кислорода в кремнии при 450°С меньше критического размера зародышей преципитации при 510°С [15].

Кинетику отжига дефектов в приближении времени релаксации можно записать:

$$\frac{dN}{dt} = -\frac{N}{\tau},\tag{1}$$

$$\frac{1}{\tau} = \nu \exp(-E_a/kT), \qquad (2)$$

где N — концентрация дефектов в момент времени t.

В случае отжига термодонорного комплекса через диссоциацию атом кислорода должен отойти на некоторое расстояние Δx , чтобы не быть захваченным комплексом снова. Значение Δx можно определить из соотношения

$$\Delta x = \sqrt{D_x \tau},\tag{3}$$

где D_x — коэффициент диффузии дисперсного кислорода. Рассчитаем Δx для различных значений D_x , полученных разными авторами. Для $D_x = 0.09 \exp(-2.4kT)$ из работы [16] при $T = 510^{\circ}$ С значение Δx равно 30 Å. Для $D_x = 0.07 \exp(-2.44kT)$ [17] $\Delta x = 21$ Å; для $D_x = 0.02 \exp(-2.42kT)$ [15] $\Delta x = 13$ Å; для $D_x = 0.17 \exp(-2.54kT)$ [18] $\Delta x = 16$ Å.

Рассмотрим теперь случай отжига КТД-450 без ПТО-800. Согласно данным [14], энергия активации процесса накопления КТД-450 $E_a = 1.7 \pm 0.1$ эВ. То же значение Еа получено нами из эксперимента по отжигу КТД-450 без ПТО. Равенство значений энергий активации генерации и отжига дает возможность допустить, что процесс исчезновения термодоноров (в ходе отжига при более высоких температурах) также лимитирован диффузией О_i. Запишем соотношение, аналогичное (3), где $D_x = 6.26 \cdot 10^{-3} \exp(-1.8kT)$ — коэффициент диффузии кислорода, полученный из эксперимента по образованию КТД-450 в работе [14]. Подставляя соответствующие экспериментальные значения τ , получаем $\Delta x = 730$ Å, т.е. получаем, что в случае отжига термодоноров, сформированных без ПТО при 800° С, расстояние Δx увеличивается в 40 раз при значительном уменьшении энергии активации процесса. Существование деформационных полей (с энергией выше kT при T = 510°C) такой протяженности представляется более возможным внутри микрофлуктуаций концентрации примеси кислорода или скоплений термодоноров (с размерами порядка сотен ангстремов и локальной концентрацией, значительно превышающей среднюю), чем вблизи зародышей в виде преципитатов SiO_{m-1} .

Таким образом, количественный анализ полученных в настоящей работе экспериментальных результатов свидетельствует в пользу предположения об ускорении диффузии кислорода внутри МФК и микроскоплений термодоноров. Доля атомов кислорода, находящихся в МФК, не превышает нескольких процентов от их общего количества, поэтому выявление ускоренной диффузии O_i прямыми методами затруднительно.

Приведенный анализ результатов носит оценочный характер. Однако, на наш взгляд, он достаточен для следующих выводов.

1. В процессах генерации КТД роль "зародышей" (в смысле дополнительных факторов, стимулирующих преципитацию O_i) играют микрофлуктуации концентрации O_i размером порядка 700 Å.

2. Генерация и отжиг КТД, находящихся в микроскоплении по месту локализации исходных микрофлуктуаций примеси кислорода, существенно облегчены ускорением диффузии O_i в полях упругой деформации вблизи и внутри микроскоплений КТД и МФК.

Список литературы

- C.S. Fuller, J.A. Ditzenberg, N.B. Hannay, E. Buehler. Phys. Rev., 96(3), 833 (1954)
- [2] В.М. Бабич, Н.И. Блецкан, Е.Ф. Венгер. *Кислород в* монокристаллах кремния (Киев, Наук. думка, 1997).
- [3] L.I. Murin, V.P. Markevich. Proc. Int. Conf. on Science and Technology of Defect Control in Semiconductors, Yokohama, Japan, 1989, ed. by K. Sumino (North-Holland, Amsterdam, 1990) p. 190.

Физика и техника полупроводников, 1999, том 33, вып. 12

- [4] W. Kaizer, H. Frisch, H. Reiss. Phys. Rev., 112(2), 1546 (1958).
- [5] О.М. Кабалдін, В.Б. Неймаш, В.М. Цмоць, В.І. Шаховцов, В.С. Штим. УФЖ, 40(3), 218 (1995).
- [6] А.Н. Кабалдин, В.Б. Неймаш, В.М. Цмоць, В.И. Шаховцов, А.В. Батунина, В.В. Воронков, Г.И. Воронкова, В.П. Калинушкин. УФЖ, 38(1), 34–39 (1993).
- [7] О.М. Кабалдін, В.Б. Неймаш, В.М. Цмоць, Л.І. Шпінар. УФЖ, 40(10), 1079 (1995).
- [8] Н.Т. Баграев, Н.А. Витовский, Л.С. Власенко, Е.В. Машовец, О. Рахимов. ФТП, 17(11), 1979 (1983).
- [9] Д.И. Бринкевич, В.П. Маркевич, Л.И. Мурин, В.В. Петров. ФТП, 26(4), 682 (1992).
- [10] V.P. Markevich, L.I. Murin. Phys. St. Sol (a), 111(2), K149 (1989).
- [11] Ю.М. Бабицкий, П.М. Гринштейн, М.А. Ильин, В.П. Кузнецов. ФТП, **18**(7), 1280 (1984).
- [12] Л.А. Казакевич, П.Ф. Луганов. Электрон техн., сер. Материалы, № 9, 170 (1982).
- [13] G.D. Watkins, J.W. Corbett, R.S. McDonald. J. Appl. Phys., 53(10), (1982).
- [14] Л.И. Мурин, В.П. Маркевич. ФТП, **22**(7), 1324 (1988).
- [15] R.C. Newman, M.J. Binns, F.M. Livingston, S. Messoloras. Physica B, **116**(1–3), 264 (1983).
- [16] Y. Takano, M. Maki. In: *Semiconductor silicon* 1973, ed. by H.R. Huff and R.R. Burgess (Elecrochemical Society, Pennington, 1973) p. 469.
- [17] J.C. Mikkelsen, Jr. Appl. Phys. Lett., 40(4), 336 (1982).
- [18] M. Stavola, J.R. Patel, L.C. Kimerling, P.E. Freeland. Appl. Phys. Lett., 42(1), 73 (1983).

Редактор Т.А. Полянская

On the nature of thermal donor nucleation is silicon

V.B. Neimash, E.A. Puzenko, A.H. Kabaldin, A.H. Kraichinskii, H.H. Krasko

Institute of Physics, Ukrainian National Academy of Sciences, 252650 Kiev, Ukraine

Abstract The influence of preliminary heat treatment at 800°C (PHT-800) on the kinetics of accumulation and annealing of thermal donors (TD), that form at 450°C have been investigated by the 4-probe method of resistivity measurements. An essential increase of the activation energies of TD generation and annealing is observed in Si after PHT-800. The experimental results are discussed with the allowance for the role of various phase states of oxygen in as-grown Si. The interpretation with regard to the influence of internal elastic stresses in Si lattice on oxygen atoms diffusion is offered. That internal elastic stresses are created by micro-fluctuations (MF) in oxygen and TD densities. The quantitative evaluation of MF sizes gives a magnitude of some hundred angstroms. The kinetics of TD generation and annealing is described within the framework of a Kaiser-Frish-Reiss model, which accounts for the locally accelerated (in MF areas) diffusion of oxygen atoms. MF involves about 1-3% of the total number of oxygen atoms in crystal, which complicates observation of an accelerated diffusion of oxygen by direct methods, but is sufficient for TD generation.