О роли примесей в формировании силицина — цепочечного кремния: теория и эксперимент

© А.И. Машин[¶], А.Ф. Хохлов, А.Г. Разуваев*, С.К. Игнатов, А.А. Щепалов

Нижегородский государственный университет им. Н.И. Лобачевского,

603600 Нижний Новгород, Россия

* Научно-исследовательский институт химии Нижегородского государственного университета,

603600 Нижний Новгород, Россия

Приведены результаты электронографических исследований структуры ближнего порядка аморфного кремния, полученного различными методами. Изучено влияние посторонних примесей в исходных пленках и облучения их ионами неона, кислорода и углерода дозами до $1 \cdot 10^{16}$ см⁻² на характер структурных перестроек и формирование межатомных кремниевых мультисвязей при отжиге. Обнаружено, что структура отожженных при 500°С пленок зависит от типа посторонних примесей и характера их химической связи с атомами кремния. В частности, наличие кислорода (более 0.2 ат%) в отличие от водорода и углерода является препятствующим фактором для формирования силицина. Отмечается также хорошее согласие между параметрами ближнего порядка, полученными из эксперимента, и рассчитанными неэмпирическим методом Хартри–Фока.

Введение

Ранее в работах [1-3] нами были приведены экспериментальные данные, свидетельствующие о способности элементарного кремния, подобно углероду, образовывать новые аллотропные формы. Новый материал силицин состоит из длинных (до 100 атомов) линейных цепочек атомов кремния в *sp*-гибридном состоянии. При этом, по-видимому, образуются полииновые $(-Si \equiv Si - Si \equiv Si - Si \equiv Si -)_n$ или кумуленовые $(=Si = Si = Si = Si = Si = Si =)_n$ цепочки из кремниевых атомов. Химическая связь между атомами осуществляется *sp*-гибридизированными (*σ*-связь) и *p*-негибридизированными (*п*-связь) атомными орбиталями. Часть атомов кремния ($\approx 10-15 \, \text{ar}\%$) находится в *sp*²-гибридном состоянии. Эти атомы, подобно мостикам, связывают линейные цепочки кремния в объемную неупорядоченную сетку. Новый аморфный материал (силицин) мы получали путем высокотемпературного ($\approx 500^{\circ}$ C) отжига тетраэдрического аморфного кремния в вакууме. При этом исходные пленки аморфного кремния должны были обладать определенными свойствами. В частности, в наших работах для получения тетраэдрически координированного аморфного кремния мы использовали различные методы, позволяющие получать как гидрогенизированный (a-Si: H), так и безводородный (a-Si) аморфный кремний, включая облучение кристаллического кремния ионами инертных газов. Технологические параметры изменялись в широких пределах. Однако только в некоторых случаях отжиг в вакууме полученных пленок аморфного кремния приводил к образованию силицина. Возможно, этим, а также отсутствием детального изучения структуры ближнего порядка аморфного кремния после отжига объясняется тот факт, что линейные кремниевые цепочки атомов не были обнаружены ранее.

Цель настоящей работы — поиск необходимых условий для получения элементарного кремния с атомной структурой, отличной от тетраэдрической. Для ее достижения мы использовали современные методы физики, квантовой химии и полученные нами экспериментальные данные.

Методика проведения эксперимента

Исходные пленки аморфного кремния были получены методами разложения силана в высокочастотном тлеющем разряде, электронно-лучевым испарением, ионноплазменным распылением и сублимацией кремния в вакууме. Для структурных измерений пленки кремния толщиной 70–80 нм наносились на свежий скол кристалла NaCl. Скорость напыления не превышала 0.15 нм/с. Полученный таким образом аморфный кремний имел тетраэдрическую структуру.

С целью модификации структуры пленки и исследования влияния примесей на структурные изменения проводилось облучение аморфного кремния ионами и последующий термический отжиг.

Облучение ионами неона, углерода и кислорода с энергией до 40 кэВ и дозами в пределах от 10^{14} до 10^{16} ион/см² осуществлялось при комнатной температуре мишени. Плотность тока ионов во всех случаях не превышала 1 мкА/см².

Изотермический отжиг проводился в вакууме $\sim 10^{-5}$ Торр. Время отжига — 20–30 мин. Температуры отжига 350, 500 и 700°С.

Электронограммы на просвет снимались на регистрирующем электронографе ЭМР-102. Переход от интенсивности рассеяния электронов к функции радиального распределения электронной плотности (ФРР) осуществлялся с помощью фурье-преобразования по общепринятой методике [4] и методом оптимизации инофрмационного функционала [5]. Расчет параметров ближнего порядка проводился по площади и положению максимумов ФРР аналогично [6].

[¶] E-mail: mashin@phys.unn.runnet.ru (Alexander I. Mashin)

Исследование спектрального состава пленок осуществлялось методом электронной оже-спектроскопии на спектометре PHI-545 с порогом чувствительности ≈ 0.1 ат%.

Для неструктурных экспериментов пленки аморфного кремния имели толщину 500–700 нм и наносились на подложки из монокристаллического кремния или плавленого кварца.

Теоретические приближения

Квантово-химические расчеты проводились неэмпирическим методом Хартри-Фока в базисе 6–311G(d) (RHF/6–311G(d)). Учет энергии корреляции осуществлялся по теории возмущений Меллера-Плессета 2-го порядка (MP2/6–311G(d)). Оптимизация геометрии выполнялась градиентным методом. Стационарные точки поверхностной потенциальной энергии были охарактеризованы расчетом колебательных частот. В данной работе мы ограничились рассмотрением кластеров из атомов, находящихся только в синглетном спиновом состоянии. Результаты расчетов состояний с более высокой мультиплетностью будут приведены в последующих работах. Все расчеты выполнялись по программе PC Gamess-4.5.1 [7].

Результаты и обсуждение

Изменение структуры с отжигом изучалось в настоящей работе на пленках a-Si: H, полученных разложением силана в тлеющем разряде при температуре подложки $T_s = 50^{\circ}$ С. Толщина пленки — 70 нм. Этот материал существенно отличается от *a*-Si: H, изученного нами в [1]. Содержание водорода в нем достигает 40 ат%. При этом пленки имеют высокую концентрацию пор, в объеме и на поверхности которых содержится значительная доля водорода [8]. В спектре инфракрасного (ИК) пропускания таких пленок (рис. 1), как и следовало ожидать, в отличие от традиционно изучаемого материала (когда $T_{\rm s} = 250 - 300^{\circ} {\rm C}$) имеются максимумы поглощения в области $845-890 \text{ см}^{-1}$, соответствующие Si-H₂-связям и(или) полимерным (-SiH₂)_n-цепочкам. Коротковолновый пик поглощения, обычно наблюдаемый на 2000 см⁻¹, смещается к 2100 см⁻¹. За него отвечают Si-H- или Si-H₂-связи, расположенные на поверхности пор, а не Si-H-связи, растворенные в объеме материала. Необходимо также отметить, что исследуемые нами пленки a-Si:Н имели в ИК спектре слабые пики поглощения вблизи 950-1000 и 780 см-1. Обычно их связывают, соответственно, с колебаниями С-Н- и Si-С-связей.

Отжиг при 500°С в течение 20 мин ведет к частичному испарению водорода. Согласно работе [8], для сильно гидрированных пленок аморфного кремния наблюдается не один, а два пика испарения водорода. Их положение определяется толщиной пленки, однако во всех случаях первый максимум испарения водорода приходится на

температуры ниже 400°С, а второй — на 500-600°С. Полное испарение водорода можно ожидать только при температурах выше 900°С. Таким образом, после отжига при 500°С концентрация водорода в пленках уменьшится, но не до нуля. Это хорошо можно видеть из ИК спектров пропускания пленок a-Si:H, отожженных при 500°С. Хорошо известно, что колебательная спектроскопия является не вполне количественным методом, однако ее можно эффективно использовать для обнаружения присутствия примесных атомов и определения конфигураций, в которых они могут находиться. Как видно из рис. 1, интенсивность всех пиков поглощения, связанных с водородом, существенно падает при отжиге. Особенно это касается пиков поглощения, обусловленных колебаниями связей типа Si-H2. Кроме этого, максимум поглощения в области 2100 см⁻¹ смещается в сторону 2000 см^{-1} , следовательно, в пленках кремния в основном остался водород в виде связей Si-H, распространенных по всему объему аморфного материала. Слабые пики поглощения, отвечающие за С-Н- и Si-C-связи, также можно видеть на этом спектре. Таким образом, согласно данным инфракрасной спектроскопии, при анализе структурных изменений мы должны учитывать, что в наших пленках кроме Si присутствуют также водород в моногидридной (Si-H) и дигидридной (Si-H₂) конфигурациях и углерод, связанный с водородом или кремнием. Проведенный нами оже-спектральный анализ исследуемых пленок a-Si:Н подтвердил наличие в них углерода на уровне порога чувствительности ($\approx 0.1 \, \text{at}\%$)

Meton nonviening	Концентрация постор	MVIII THODOOH	
негод получения	кислород	углерод	тультисвязи
Разложение силана в тлеющем разряде (бузмасляная откачка)	< 0.1	≈ 0.1	Есть
Электронно-лучевое испарение	1.7	1.3	Нет
Ионно-плазменное распыление	1.1	2.3	Нет
Сублимация кремния в вакууме	≈ 0.1	0.3	Есть
Разложение силана в установке с паромасляной откачкой	1.8	2.1	Нет

Таблица 1. Результаты оже-спектрального анализа пленок аморфного кремния

используемого прибора. Других примесей обнаружено не было.

Согласно нашим измерениям, пленки a-Si: H, напыленные при температуре подложки 50°C, имеют структуру ближнего порядка, близкую к тетраэдрической. Кривые распределения электронной плотности с подобными параметрами ближнего порядка наблюдались нами [1], а также другими исследователями [6] ранее в пленках *a*-Si: Н приборного качества. Первое координационное число k₁ для изучаемых в данной работе пленок равно 3.4 ± 0.2 . Небольшое уменьшение k_1 по сравнению с данными [1] обусловлено более высоким содержанием микропор и связанного водорода. Как известно, атомы водорода обладают более низкой эффективностью рассеяния электронов по сравнению с атомами кремния, поэтому наличие высокой концентрации Si-H-, а тем более Si-H2-связей может сказаться на величине первого координационного числа. Значения валентного угла $\varphi = 113 \pm 6^{\circ}$ и межатомного расстояния $r_1 = 2.34 \pm 0.04$ Å близки к идеально тетраэдрическим и свидетельствуют о том, что атомы кремния имеют четыре ординарные, почти идеальные, тетраэдрические связи.

Отжиг при 350°С ведет к восстановлению структуры аморфного кремния до значений параметов ближнего порядка, характерных для пленок *a*-Si:H, полученных при высоких (250–300°С) температурах подложки. При дальнейшем росте температуры отжига характер структурных перестроек и значения параметров структуры ближнего порядка пленок аморфного вещества в пределах ошибки эксперимента повторяют данные, опубликованные нами ранее в работе [1], для случая $T_s = 250$ °С, т.е. после отжига при 500°С мы наблюдали резкое уменьшение k_1 до 2.1 ± 0.2 и 2.08 ± 0.04 Å, а также рост валентного угла почти до 180° ($\varphi = 173 \pm 6^\circ$). Отжиг при 700°С приводил уже к частичной рекристаллизации пленки.

Существенные структурные изменения при отжиге мы наблюдали и в безводородном кремнии. В этом случае пленки *a*-Si были получены методом сублимации кремния в вакууме. Температура подложки составляла 300°С. Как и *a*-Si: H, пленки оставались аморфными до температуры отжига 700°С, а при $T_a = 500$ °С мы наблюдали существенное изменение структуры ближнего порядка еще аморфного материала. При этой температуре отжига k_1 падает с 3.8 ± 0.2 до 2.8 ± 0.2 , а r_1 уменьшается

до 2.15 ± 0.04 Å. Валентный угол, однако, изменился ощутимо меньше, чем в пленках *a*-Si: H ($\varphi = 132 \pm 6^{\circ}$). Несмотря на то что изменение всех параметров ближнего порядка слабее, чем у гидрогенизированного кремния, списать их на ошибку эксперимента нельзя.

Приведенные выше изменения структуры ближнего порядка пленок *a*-Si: Н и *a*-Si мы связываем, как и в [1], с формированием при отжиге кремниевых мультисвязей.

Измерения структуры пленок безводородного аморфного кремния, полученных другими методами, показали отсутствие эффекта существенного изменения параметров первой координационной сферы при отжиге вплоть до температуры частичной рекристаллизации.

В табл. 1 приведены данные оже-спектрального анализа исследуемых нами пленок, а также способность атомов кремния в этих пленках образовывать мультисвязи при отжиге. Видно, что интересующий нас эффект наблюдается только в пленках кремния, метод получения которых обеспечивает достаточно низкое (< 1 ат%) содержание посторонних примесей, таких как кислород и углерод. К сожалению, имеющиеся в нашем распоряжении методы получения пленок аморфного кремния не позволяют контролируемо изменять раздельно концентрацию кислорода и углерода, если концентрация последних ниже 1 ат%. Поэтому с целью выявления роли каждой из указанных примесей мы провели эксперименты по изучению структуры ближнего порядка *a*-Si:H, облученного ионами углерода, кислорода и неона.

Использование метода ионной имплантации для внедрения примесей сопровождается созданием высокой концентрации радиационных дефектов, поэтому наши эксперименты по облучению неоном были вызваны необходимостью учета влияния таких дефектов на возможные структурные перестройки облученных ионами углерода и кислорода пленок при отжиге.

Результаты структурных изменений с отжигом предварительно облученных пленок *a*-Si: Н показаны на рис. 2 и 3. Энергия ионов выбиралась так, чтобы их максимальный пробег соответствовал толщине облучаемой пленки. В этом случае можно достаточно легко оценить среднюю концентрацию внедренной примеси, которая однозначно определяется только величиной дозы облучения. В случае максимальной дозы она составляла величину порядка 2 ат%, что как минимум на порядок выше собственной концентрации посторонних примесей в исходной пленке кремния.

Рис. 2. Влияние дозы облучения на величину первого координационного числа (*a*) и межатомного расстояния (*b*) в пленках *a*-Si: H. Температура отжига — 500°С. Сорт ионов: *1* — неон, 2 — углерод, 3 — кислород.

Видно, что введение радиационных дефектов при облучении a-Si: Н ионами неона способствует восстановлению тетраэдрической структуры кремния (рис. 2, кривая 1). В частности, мы наблюдали рост первого координационного числа с 3.4 в необлученном кремнии до 4.0 в облученном дозой $> 10^{15}$ неон/см². Частично неон накапливается в порах, вытесняя водород. Последний переходит в объем, образуя новые Si-H-связи, или покидает пленку. Отжиг при 350°С можно считать постимплантационным, обеспечивающим структурные перестройки, понижающие величину свободной энергии неупорядоченной сетки a-Si:H, путем более равномерного распределения неона, снижения концентрации пор и других дефектов. Согласно данным вторичной ионной масс-спектроскопии, имплантированный неон остается в облученном слое до температур отжига $\sim 1000^{\circ}$ С, а начальная температура его испарения приходится на 700°С [9]. Таким образом, в области используемых нами температур отжига неон остается в пленках и будет оказывать влияние на диффузию и испарение водорода, и тем самым влиять на возможные структурные перестройки при отжиге. Этим, в частности, мы объясняем задержку процесса рекристаллизации аморфных пленок кремния при дозах облучения больше $10^{15} \, \mathrm{cm}^{-2}$. Они оставались аморфными и при максимально используемой нами температуре отжига. В то же время следует заметить, что наличие радиационных дефектов и неона в пленках не приводит к исчезновению эффекта уменьшения первого координационного числа и межатомного расстояния после отжига, а лишь увеличивает необходимую температуру.

При имплантации углерода и кислорода наряду с возникновением радиационных дефектов идет процесс встраивания атомов этих примесей в неупорядоченную сетку и образование соответствующих химических связей. Обладая ионной составляющей, такие химические связи являются более сильными, чем кремнийкремниевая связь.

Как видно из рис. 2 и 3, уменьшение k_1 и r_1 наблюдается и после облучения пленок аморфного кремния углеродом даже в случае максимальной дозы. Более того, наблюдаемое уменьшение среднего межатомного расстояния является более существенным. При этом максимально внедренная концентрация углерода ($\approx 2 \, \text{at}\%$) выше концентрации углерода в пленках a-Si, полученных методами, в которых интересующий нас эффект не наблюдался. Хорошо известно, что атом углерода, обладая меньшим ковалентным радиусом, чем атом кремния, является причиной возникновения дополнительных растягивающих механических напряжений и оборванных связей в кремнии. Кроме того, он может формировать мультисвязи с кремнием. Наличие ионной компоненты наряду с возможным образованием *п*-составляющей связи кремний-углерод делают ее заведомо короче, чем кремний-кремниевая связь. Однако концентрация углерода в пленках, облученных даже максимальной дозой углерода, недостаточна для объяснения наблюдаемого нами уменьшения среднего расстояния между атомами (до 2.01 вместо 2.10 Å).

Наконец, как видно из рис. 2 и 3, введение около 0.2 ат% (доза облучения $\sim 10^{15}$ см⁻²) атомов кислорода в пленки *a*-Si: Н достаточно, чтобы свести на нет влияние

Рис. 3. Влияние облучения на изменения первого координационного числа (*a*) и межатомного расстояния (*b*) в пленках *a*-Si: Н при отжиге. Доза облучения — 1 · 10¹⁶ ион/см². Сорт ионов: *1* — неон, *2* — углерод, *3* — кислород, *4* — необлученный образец.

Физика и техника полупроводников, 1999, том 33, вып. 10

		Длина связи, Å			Порядок связи		
Метод расчета	Кластер	короткая Si–Si	длинная Si–Si	Si–X	короткая Si–Si	Длинная Si–Si	Si–X
	Si_2H_2	1.939	-	1.453	2.916	-	0.956
	Si_4H_2	1.951	2.213	1.454	2.802	0.973	0.955
	Si ₆ H ₂	1.965	2.210	1.454	2.665	0.994	0.957
	Si_8H_2	1.966	2.207	1.453	2.633	1.019	0.958
RHF/6-311G(d)	$Si_{10}H_2$	1.968	2.206	1.453	2.599	1.024	0.959
	$Si_{12}H_2$	1.968	2.205	1.453	2.595	1.027	0.960
	Si_2H_4	2.126	_	1.471	1.936	-	0.943
	Si ₄ H ₄	2.071	2.112	1.467	1.934	1.849	0.941
	Si ₆ H ₄	2.069	2.075	1.466	1.885	1.805	0.941
	Si_8H_4	2.066	2.072	1.466	1.830	1.799	0.942
	Si ₂ H ₆	2.367	-	1.483	0.970	-	0.936
	Si_2H_2	1.984	_	1.463	2.916	_	0.954
MP2/6-311G(d)	Si_4H_2	2.010	2.166	1.465	2.802	1.009	0.952
	Si ₆ H ₂	2.044	2.152	1.466	2.665	1.045	0.954
	Si_2H_4	2.141	_	1.478	1.933	-	0.942
	Si_4H_4	2.084	2.134	1.476	1.936	1.841	0.940
	Si ₂ H ₆	_	2.346	1.488	-	0.971	0.936
	$Si_2C_2H_2$	-	2.165	1.626	-	0.971	2.830
	$Si_4C_2H_2$	2.038	2.154	1.631	2.643	1.003	2.788
	$Si_2C_2H_4$	2.068	_	1.722	1.974	-	1.873
	$Si_4C_2H_4$	2.074	2.089	1.720	1.898	1.805	1.856
	Si ₂ C ₂ H ₆	1.985	-	1.880	2.918	-	0.916
	Si ₄ C ₂ H ₆	2.010	2.170	1.878	2.764	0.996	0.928

Таблица 2. Оптимизированные длины (Å) и порядки связей в линейных структурах кремниевых кластеров

отжига на ощутимые структурные перестройки неупорядоченной сетки. Учитывая это, можно однозначано сказать, что основной причиной отсутствия эффекта снижения k_1 и r_1 при отжиге в большинстве исследуемых нами пленок аморфного кремния (табл. 1) является присутствие в них высокой концентрации (более 1 ат%) атомов кислорода.

Таким образом, при использовании методов квантовой химии в расчетах возможных не тетраэдрических кремниевых структур мы должны учитывать, что в реальных пленках кроме атомов кремния присутствует небольшая концентрация водорода в виде Si-H- и(или) Si-H₂-связей и связанные с кремнием атомы углерода и кислорода. В теоретических расчетах нами рассматривались две модели цепочечной структуры кремния. Первая из них предполагала, что атомы кремния могут формировать только линейные (одномерные) цепочки. Длина таких цепочек варьировалась в пределах от 2 до 12 атомов кремния. С учетом экспериментальных результатов на концах цепочек располагались атомы водорода, кислорода или углерода. Цель теоретических расчетов поиск устойчивых линейных структур кремния и определение их параметов. Использование ограничения в виде существования только линейной структуры может быть вполне оправдано, так как на опыте реконструкция структуры происходит в материале, представляющем собой твердое тело, а следовательно, имеются существенные ограничения на смещения атомов при отжиге.

Квантово-химические расчеты с учетом энергии корреляции по теории возмущений Меллера-Плессета 2-го порядка (MP2/6-311G(d)) являются довольно громоздкими и технически трудно осуществимыми. Поэтому нам удалось их провести только для кластеров с относительно небольшим числом атомов кремния. Используя более простой метод Хартри-Фока в базисе 6-311G(d) (RHF/6-311G(d)), в расчетах можно значительно увеличить длину цепочек кремниевых атомов. При этом, естественно, падает достоверность полученных результатов. Однако проведенные нами расчеты небольших кластеров обеими методами не дают принципиальных различий в результатах (табл. 2). Это позволяет надеяться, что полученные нами для больших кластеров данные, рассчитанные без учета энергии корреляции, также заслуживают доверия.

Итак, в табл. 2 приведены параметры найденных нами устойчивых линейных кластеров кремния. Если цепочка атомов кремния заканчивалась атомами кислорода, то нам не удавалось найти структуру кластера с минимумом энергии. Расстояния между атомами кремния, приведенные в таблице, соответствуют ближайшим к центру кремний-кремниевым связям. Под X в колонке Si-X здесь и далее следует понимать атомы водорода для кластера типа Si_nH_m, атомы углерода — для кластера Si_nC_kH_m и атомы кислорода — для Si_nO_k. Видно, что если на концах кремниевой цепочки находится по одному атому водорода, то такая структура оптимизируется к

Длина связи,		лина связи, Å		Порядок связи			Угол. град.
Кластер	короткая Si–Si	длинная Si–Si	Si–X	короткая Si–Si	длинная Si–Si	Si–X	Si1-Si2-Si3(X)
Si_2H_2	2.102	-	1.492	2.292	_	0.933	125.0
Si_4H_2	2.117	2.288	1.493	2.158	0.960	0.937	118.2
Si_4O_2	2.2	99	1.544	0.9	20	1.886	140.7

Таблица 3. Оптимизированные длины (Å), углы (градусы) и порядок связей в нелинейных структурах кремниевых кластеров. Метод MP2/6-311G(d)

полииновому виду кластера с чередующимися тройными и ординарными связями (структура а на рис. 4). Длина тройной кремниевой связи определяется длиной цепочки и в рассматриваемых нами случаях варьируется от 1.966 до 2.044 Å. Ординарная связь меньше, чем в идеально тетраэдрическом материале, и в зависимости от длины цепочки изменяется от 2.152 до 2.213 Å. Подобное уменьшение длины ординарной связи в молекулах с мультисвязями наблюдалось ранее авторами [10] для углерода. Если учесть, что электронографический метод дает усредненное по всему объему исследуемого вещества значение межатомных расстояний, длина связи $(\sim 2.08 \text{ Å})$ находится в хорошем согласии с теоретически рассчитанной. Таким образом, полученные из расчетов устойчивые линейные цепочки атомов кремния полиинового типа вполне могут присутствовать в пленках a-Si: H, отожженных при 550°С.

Напротив, размещение на концах цепочек двух атомов водорода делает устойчивой кумуленовую структуру кластера, которая уже состоит из атомов кремния с двойными связями (структура *b* на рис. 4). При этом, как и для полииновой цепочки, длина связи зависит от числа атомов, входящих в кластер. Она варьируется в пределах от 2.066 до 2.141 Å и хорошо коррелирует с данными, полученными из эксперимента.

Для случая трех атомов водорода на концах цепочек атомов кремния, как и следовало ожидать, мы получили структуру кластера с ординарными кремний-кремниевыми связями и межатомными расстояниями, близкими к идеальным для тетраэдрической структуры.

Для второй модели кластеров при квантово-химических расчетах мы сняли ограничение на линейность атомной структуры. Часть полученных результатов приведена в табл. 3 на рис. 4 (структуры c и d). Видно, что для этой модели мы также имеем устойчивые цепочечные структуры кластеров. Они расположены в одной плоскости, но не на одной прямой. Оптимизированные значения углов между атомами кремния варьируются для кластеров типа Si_nH₂ в области от 115 до 127 градусов. Интересно также отметить, что для этих кластеров суммарный порядок связей в расчете на один атом кремния равен только трем. Следовательно, можно предположить, что в реальной пленке аморфного кремния каждый атом кремния обладает одной незаполненной связью, либо она может быть использована для формирования связи с другой цепочкой, способствуя образованию объемной неупорядоченной сетки. Атомы кремния находятся в данном случае в *sp*²-гибридном состоянии и имеются ординарные и двойные связи. Среднее расстояние между атомами больше, чем для линейных цепочек. Интересно заметить, что по данным электронного парамагнитного резонанса (ЭПР) пленки безводородного аморфного кремния, отожженные при 500°С, имеют достаточно высокую концентрацию нескомпенсированных спинов $(\approx 10^{19} \, {\rm сm}^{-3})$. Сигнал ЭПР имеет *g*-фактор, близкий к 2.0055, который обычно приписывается оборванным связям. В отличие от первой модели нам удалось найти устойчивую форму кластера, содержащую атомы кислорода. Результаты расчетов для Si_nO₂ приведены в табл. 3 и на рис. 4 (структура d). Можно видеть, что атомы кремния связаны ординарными связями, а длины связей близки к тетраэдрическим значениям. Исходная линейная цепочка атомов скрутилась, и увеличение числа

Рис. 4. Конечные геометрии структур кремниевых кластеров после оптимизации.

Физика и техника полупроводников, 1999, том 33, вып. 10

кремниевых атомов приведет к формированию объемной структуры. Это означает, что и для данной модели кислород является препятствием для формирования мультисвязей.

Таким образом, для обеих рассматриваемых моделей кластеров существуют устойчивые цепочечные формы. В случае линейного кластера существующий минимум поверхностной потенциальной энергии является условным и при переходе к трехмерной оптимизации не сохраняется. В то же время для второй модели кластеров найденная стационарная точка является локальным минимумом и в случае полной оптимизации. Полученные данные подтверждаются также расчетом колебательных частот. Разница энергий кластеров в случае линейного и нелинейного расположения атомов кремния в цепочках составляет в расчете на один атом Si величину порядка 8-10 ккал. Эта величина небольшая, поэтому на результат структурных перестроек при отжиге оказывают существенное влияние свойства исходных тетраэдрических пленок кремния и условия, в которых происходят структурные превращения. Расстояние между этими локальными и глобальными, соответствующим тетраэдрическому расположению атомов, минимумами энергий различных форм кластеров ~ 20 ккал на один атом Si.

Заключение

Исходя из проведенных нами расчетов, хорошо согласующихся с экспериментами, можно сказать, что в природе не существует принципиальных ограничений для образования достаточно длинных кремниевых цепочек атомов, находящихся в sp- или sp^2 -гибридном состоянии. Конечный результат структурной перестройки, как и сам процесс, зависит от свойств исходного материала и наличия внешних воздействий. Использование аморфного кремния, насыщенного водородом, в качестве исходного при определенных условиях позволяет получить при отжиге линейный аморфный кремний. Однако на сегодняшний день эксперимент и расчет не отвечают однозначно на вопрос, какой тип линейной цепочки кремниевых атомов (полииновый, кумуленовый или оба вместе) при этом формируется. При отжиге безводородного аморфного кремния наиболее вероятно получение цепочечного материала с атомами кремния, находящимися в sp^2 -гибридном состоянии. Наличие кислорода в исходных пленках кремния является основным препятствующим фактором для формирования силицина при отжиге. Полученный материал является аморфным. Это, а также частые изломы затрудняют, к сожалению, прямое наблюдение длинных кремниевых цепочек атомов.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (код проекта 97-03-32428).

Список литературы

- А.Ф. Хохлов, А.И. Машин, Д.А. Хохлов. Письма в ЖЭТФ, 67, 646 (1998).
- [2] А.И. Машин, А.Ф. Хохлов, И.В. Кольчугин, Н.И. Машин. Тез. докл. Всерос. симп. "Аморфные и микрокристаллические полупроводники" (СПб., 1998) с. 28.
- [3] Д.А. Хохлов, Д.А. Павлов, А.И. Машин. Тез. докл. Всерос. конф. "XVI научные чтения им. Н.В. Белова" (Нижний Новгород, 1997) с. 136.
- [4] Л.И. Татаринова. Электронография аморфных веществ (М., Наука, 1972).
- [5] С.И. Овсецин, Д.А. Хохлов, Е.А. Солдатов, А.И. Машин. Тез. докл. Всерос. конф. "XVI научные чтения им. Н.В. Белова" (Нижний Новгород, 1997) с. 105.
- [6] В.Н. Гордеев, А.И. Попов, В.А. Филиков. Неорг. матер., 16, 1773 (1980).
- [7] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. J. Comput. Chem., 14, 1347 (1993).
- [8] W. Beyer. In: *Tetrahedrally-Bonded Amorphous Semiconductors*, ed. by D. Adler and H. Fritzsche (N.Y., Plenum Press, 1985) p. 129.
- [9] А.Ф. Хохлов, А.И. Машин, Д.А. Павлов, Д.А. Хохлов. ФТП, 28, 1750 (1994).
- [10] А.Ф. Скрышевский. Структурный анализ жидкостей и аморфных тел (М., Высш. шк., 1980).

Редактор В.В. Чалдышев

About impurity role in formation of silicyne – the chain-like-bonded silicon: theory and experiment

A.I. Mashin, A.F. Khokhlov, A.G. Razuvaev*, C.K. Ignatov, A.A. Schepalov

Lobachevsky State University, 603600 Nizhni Novgorod, Russia * Research Institute of Chemistry of Lobachevsky State University, 603600 Nizhni Novgorod, Russia

Abstract The results of electronographic investigations of shortrange order structure of amorphous silicon prepared by different methods are presented. The influence of foreign impurities in initial films and influence of neon, oxygen and carbon ion implantation in the dose range up to $1 \cdot 10^{16}$ cm⁻² on the nature of structure changes and the formation of multiple silicon-silicon bonds under annealing have been studied. It has been found that the structure of films annealed at 500°C depends on the foreign impurity type and on chemical nature of their bonding with silicon atoms. In particular, presence of oxygen (above 0.2 at%), unlike the hydrogen and carbon, is the obstacle for formation of silicyne. Good agreement between short-range order parameters recieved by experiments and by nonempirical Hartree–Fock method calculations is obtained.