# Особенности поведения эффективной массы и подвижности в твердых растворах n-(Bi, Sb)<sub>2</sub>(Te, Se, S)<sub>3</sub>

© Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов, В.В. Попов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: lidia.lukyanova@mail.ioffe.ru

(Поступила в Редакцию 26 января 2006 г.)

Исследованы термоэлектрические свойства многокомпонентных твердых растворов  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$  с замещениями атомов в обеих подрешетках  $Bi_2Te_3$ . Учтено изменение механизмов рассеяния носителей заряда при замещениях атомов Sb  $\rightarrow$  Bi, Se, S  $\rightarrow$  Te в твердых растворах на основании данных, полученных при исследовании гальваномагнитных эффектов в слабых магнитных полях. Рассчитаны подвижность с учетом вырождения  $\mu_0$ , эффективная масса плотности состояний  $m/m_0$  и теплопроводность кристаллической решетки  $\kappa_L$ . Проведен анализ величин  $\mu_0$ ,  $m/m_0$  и  $\kappa_L$  в зависимости от состава, концентрации носителей заряда и температуры в исследуемых твердых растворах.

Работа поддержана проектом РФФИ № 04-02-17612а.

PACS: 72.20.Pa, 72.20.My, 72.80.Yc

Твердые растворы  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$  *п*-типа являются многокомпонентными неизоморфными термоэлектрическими материалами с замещениями атомов в обеих подрешетках  $Bi_2Te_3$ . Замещения атомов в подрешетках основного соединения оказывают влияние на процессы рассеяния электронов и фононов, что приводит к изменению свойств, определяющих термоэлектрическую эффективность Z. Влияние механизмов рассеяния на величину Z с учетом данных, полученных при исследовании гальваномагнитных эффектов, может быть выявлено при анализе величин подвижности  $\mu_0$ , эффективной массы плотности состояний  $m/m_0$  и теплопроводности кристаллической решетки  $\kappa_L$  в зависимости от температуры, состава и концентрации носителей заряда [1-4].

Использование в качестве примесного соединения  $Bi_2S_3$ , которое имеет орторомбическую решетку (в отличие от  $Bi_2Se_3$  и  $Sb_2Te_3$ , кристаллизующихся, как и  $Bi_2Te_3$ , в решетке тетрадимита), создает бо́льшие искажения вокруг замещаемых атомов по сравнению с замещениями  $Sb \rightarrow Bi$  и  $Se \rightarrow Te$ . Искажения кристаллической решетки способствуют увеличению рассеяния фононов и, следовательно, ведут к уменьшению  $\kappa_L$  [5,6], что является одной из причин, обеспечивающих повышение эффективности Z.

Таким образом, особенности поведения температурных и концентрационных зависимостей подвижности  $\mu_0$ , эффективной массы  $m/m_0$  и решеточной теплопроводности  $\kappa_L$  при различных замещениях атомов в твердых растворах n-Bi<sub>2-x</sub>Sb<sub>x</sub>Te<sub>3-y-z</sub>Se<sub>y</sub>S<sub>z</sub> могут быть использованы при разработке составов, обладающих оптимальной термоэлектрической эффективностью в различных интервалах рабочих температур — как ниже, так и выше комнатной.

#### 1. Термоэдс и электропроводность

Исследование термоэлектрических свойств твердых растворов  $\operatorname{Bi}_{2-x}\operatorname{Sb}_x\operatorname{Te}_{3-y-z}\operatorname{Se}_y\operatorname{S}_z$  было проведено на составах с  $0 \le x \le 0.2$ ,  $0.06 \le y \le 0.15$ ,  $0 \le z \le 0.15$ , полученных методом направленной кристаллизации с прецизионной регулировкой температуры в процессе роста. Введение избыточного количества Те по сравнению со стехиометрическим составом обеспечивало получение образцов с низкими концентрациями электронов, которые являются оптимальными для области низких температур (< 240 K). Для получения образцов с высокими концентрациями электронов применялось легирование галогенидом CdCl<sub>2</sub>.

Температурные зависимости коэффициента термоэдс  $\alpha$  и электропроводности  $\sigma$  в образцах Bi<sub>2-x</sub>Sb<sub>x</sub>Te<sub>3-y-z</sub>Se<sub>y</sub>S<sub>z</sub> и Bi<sub>2</sub>Te<sub>3-y</sub>Se<sub>y</sub> с низкими и высокими концентрациями электронов приведены на рис. 1, 2. На рис. 1 также представлены данные по  $\alpha$  и  $\sigma$ в твердых растворах 90 mol.% Bi<sub>2</sub>Te<sub>3</sub> + 5 mol.% Sb<sub>2</sub>Te<sub>3</sub> + 5 mol.% Sb<sub>2</sub>Se<sub>3</sub> [7] (кривые 5, 11) и (Bi<sub>0.8</sub>Sb<sub>0.2</sub>)<sub>2</sub>Te<sub>3</sub> [8] (кривые 6, 12). Эти составы также рассматриваются как перспективные для использования при температурах ниже комнатной.

В образцах с низкими концентрациями электронов максимум зависимости  $\alpha$  от T смещается в область низких температур до 270 К в составах с замещениями атомов Sb  $\rightarrow$  Bi, Se, S  $\rightarrow$  Te (кривые 1, 2 на рис. 1) и Sb  $\rightarrow$  Bi, Se  $\rightarrow$  Te (кривая 3 на рис. 1). В образце Bi<sub>2</sub>Te<sub>3-y</sub>Se<sub>y</sub> (кривая 4 на рис. 1) практически при том же суммарном замещении атомов, что и в составах Bi<sub>2-x</sub>Sb<sub>x</sub>Te<sub>3-y-z</sub>Se<sub>y</sub>S<sub>z</sub>, величине  $\alpha_{max}$  соответствует температура около 300 К. Ранее при исследовании твердых растворов Bi<sub>2</sub>Te<sub>3-y</sub>Se<sub>y</sub> [1] с низкими концентрациями электронов при y = 0.3 и 0.36 смещения максимума

температурной зависимости термоэдс в область низких температур не наблюдалось.

В табл. 1 представлены угловые коэффициенты  $s_{\alpha} = d \ln \alpha / d \ln T$ , рассчитанные для линейных участков зависимостей  $\alpha$  от T в интервалах температур 80–150 К (рис. 1) и 150–240 К (рис. 2).

Величины угловых коэффициентов  $s_{\alpha}$  в образцах, оптимизированных для низких температур, составляют 0.65-0.5, а в образцах с оптимальными составами и концентрациями электронов для температур 300-450 К изменяются в интервале 1.5–1.25. Величины s<sub>a</sub> также уменьшаются с ростом содержания замещенных атомов в твердых растворах как с низкими, так и с высокими

3.5

2.5

1.5

0.5

400

 $\frac{2}{3}$ ,  $\nabla$ 

4, 5, 10

 $\diamond$ 

300

8 9

12

 $10^3 \Omega^{-1} \cdot \mathrm{cm}^{-1}$ 

ъ

*T*, K Рис. 1. Температурные зависимость коэффициента термоэдс  $\alpha$  (1-6) и электропроводности  $\sigma$  (7-12) в твердых растворах  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ , 1,7 — x = 0.08, y = z = 0.06; 2,8 — x = 0.16, y = z = 0.06; 3,9 — x = 0.2, y = 0.06,  $z = 0; 4, 10 - Bi_2 Te_{2.7} Se_{0.3}; 5, 11 - 90 \text{ mol.}\% Bi_2 Te_3$ +5 mol.% Sb<sub>2</sub>Te<sub>3</sub>+5 mol.% Sb<sub>2</sub>Se<sub>3</sub> [7]; 6, 12 - (Bi<sub>0.8</sub>Sb<sub>0.2</sub>)<sub>2</sub>Te<sub>3</sub> [8].

200



Рис. 2. Температурные зависимости коэффициента термоэдс  $\alpha$  (1-4) и электропроводности  $\sigma$  (5-8) в твердых растворах  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ , оптимизированных для температур 300–450 К. 1, 5 - x = 0, y = z = 0.09; 2, 6 - x = 0,y = z = 0.15; 3, 7 - x = 0.16, y = z = 0.12; 4, 8 - x = 0,y = 0.3, z = 0.

Таблица 1. Угловые коэффициенты температурных зависимостей термоэдс  $s_{\alpha} = d \ln \alpha / d \ln T$  в твердых растворах  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ 

| Номер<br>рисунка | Номер<br>кривой | x    | у    | z    | Sα   |
|------------------|-----------------|------|------|------|------|
| 1                | 1               | 0.08 | 0.06 | 0.06 | 0.66 |
| 1                | 2               | 0.16 | 0.06 | 0.06 | 0.55 |
| 1                | 3               | 0.2  | 0.06 | 0    | 0.66 |
| 1                | 4               | 0    | 0.3  | 0    | 0.52 |
| 1                | 5 [7]           | 0.1  | 0.15 | 0    | 0.43 |
| 1                | 6 [8]           | 0.4  | 0    | 0    | 0.51 |
| 2                | 1               | 0    | 0.09 | 0.09 | 1.55 |
| 2                | 2               | 0    | 0.15 | 0.15 | 1.26 |
| 2                | 3               | 0.16 | 0.12 | 0.12 | 1.47 |
| 2                | 4               | 0    | 0.3  | 0    | 1.45 |

концентрациями электронов (табл. 1). Как следует из табл. 1, в составах Bi<sub>2</sub>Te<sub>3-v</sub>Se<sub>v</sub> наблюдается большее по сравнению с многокомпонентными твердыми растворами ослабление температурных зависимостей термоэдс, что можно объяснить изменением процессов рассеяния носителей заряда при различных замещениях атомов. Уменьшение  $s_{\alpha}$  в твердом растворе  $(Bi_{0.8}Sb_{0.2})_2Te_3$  [8] может быть связано с большим содержанием замещенных атомов по сравнению с другими образцами. Температурные зависимости электропроводности  $\sigma$  (рис. 1, 2) ослабевают с ростом концентрации электронов и содержания замещенных атомов в твердых растворах вследствие снижения подвижности при увеличении числа рассеивающих центров и дополнительного рассеяния на атомах легирующей примеси.

Характер измнения коэффициента термоэдс и электропроводности определяет поведение параметра мощности  $\alpha^2 \sigma$  в твердых растворах в различных температурных интервалах (рис. 3). В образцах с низкими концентрациями электронов на температурной зависимости параметра  $\alpha^2 \sigma$  не наблюдается максимума, наличие которого характерно для твердых растворов с более высокими концентрациями электронов (рис. 3). По-видимому, при низких концентрациях электронов положение максимума на зависимости  $\alpha^2 \sigma$  от T смещается к более низким температурам. Аналогичные изменения  $\alpha^2 \sigma$  в зависимости от T наблюдались в твердых растворах системы  $Bi_2Te_{3-v}Se_v$  (y = 0.12-0.36), при этом величина  $\alpha^2 \sigma$  в составах с замещениями атомов  $Se \rightarrow Te$  выше, чем при замещениях  $Sb \rightarrow Bi$  и Se,  $S \rightarrow Te$  вследствие более высокой подвижности  $\mu_0$  [1].

Увеличение  $\alpha^2 \sigma$  в низкотемпературной области в образцах с низкими концентрациями электронов связано с высокой подвижностью, поскольку в этой области концентраций электронов при значениях коэффициента термоэдс около  $\alpha = 285 - 295 \,\mu \text{V} \cdot \text{K}^{-1}$  начинается заполнение второй дополнительной зоны в зоне проводимости твердых растворов на основе Bi2Te3. Кроме

300

250

200

150

100

100

 $\alpha, \mu V \!\cdot\! K^{-1}$ 



**Puc. 3.** Температурные зависимости параметра мощности  $\alpha^2 \sigma$  в твердых растворах  $\text{Bi}_{2-x} \text{Sb}_x \text{Te}_{3-y-z} \text{Se}_y \text{S}_z$ . 1 - x = 0.08, y = z = 0.06; 2 - x = 0.16, y = z = 0.06; 3 - x = 0.2, y = 0.06, z = 0; 4 - x = 0, y = 0.3, z = 0;  $5 - 90 \text{ mol.}^{\circ}\text{Bi}_2\text{Te}_3 + 5 \text{ mol.}^{\circ}\text{Sb}_2\text{Te}_3 + 5 \text{ mol.}^{\circ}\text{Sb}_2\text{Se}_3$  [7];  $6 - (\text{Bi}_{0.8}\text{Sb}_{0.2})_2\text{Te}_3$  [8]; 7 - x = 0, y = z = 0.09; 8 - x = 0, y = z = 0.15; 9 - x = 0.16, y = z = 0.12; 10 - x = 0, y = 0.3, z = 0.

того, росту параметра  $\alpha^2 \sigma$  способствует ослабление температурной зависимости термоэдс (табл. 1). Увеличение числа замещенных атомов Sb  $\rightarrow$  Bi и Se, S  $\rightarrow$  Te в твердых растворах приводит к уменьшению параметра  $\alpha^2 \sigma$  для всех исследованных концентраций электронов.

Температурные зависимости термоэдс  $\alpha$  и электропроводности  $\sigma$  были использованы для определения усредненной эффективной массы  $m/m_0$  и подвижности  $\mu_0$ , рассчитанной с учетом вырождения носителей заряда. Расчеты  $m/m_0$  и  $\mu_0$  были выполнены с учетом изменений механизмов рассеяния в твердых растворах  ${\rm Bi}_{2-x}{\rm Sb}_x{\rm Te}_{3-y-z}{\rm Se}_y{\rm S}_z$ , связанных с замещениями атомов в подрешетках  ${\rm Bi}_2{\rm Te}_3$ .

#### 2. Механизмы рассеяния

Основными механизмами рассеяния в твердых растворах на основе  $Bi_2Te_3$  являются рассеяние на акустических фононах, на ионизированных примесях и на атомах вторых компонентов твердых растворов, которым соответствует параметр рассеяния r, близкий к -0.5, в случае однозонной модели энергетического спектра с изотропным рассеянием носителей заряда. Изменения параметра r вследствие влияния рассеяния на атомах Sb, Se и S, дополнительного рассеяния на атомах легирующей примеси и влияния второй дополнительной зоны в зоне проводимости твердых растворов были учтены с привлечением данных, полученных из исследований гальваномагнитных коэффициентов (ГМК), и данных о коэффициенте термоэдс [4]. Методика, предложенная в [4], применялась для исследования механизмов рассе

яния широкого круга твердых растворов *n*- и *p*-типа на основе халькогенидов висмута и сурьмы [1,9,10].

Расчетные значения параметра рассеяния r<sub>eff</sub> и приведенный уровень Ферми η были получены на основании данных о параметре вырождения  $\beta_d(r, \eta)$  [4] совместно с данными о коэффициенте термоэдс  $\alpha(r, \eta)$ . Параметр вырождения  $\beta_d(r, \eta)$  в твердых растворах  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$  был определен в рамках многодолинной модели энергетического спектра с изотропным рассеянием носителей заряда на основе экспериментальных данных по ГМК (компонентам тензоров удельного сопротивления  $\rho_{ii}$ , магнетосопротивления  $\rho_{iikl}$  и эффекта Холла  $\rho_{iik}$ ), измеренным в слабых и промежуточных магнитных полях. В результате расчетов r<sub>eff</sub>, приведенных по данным измерений ГМК в магнитных полях 25 и 28 kOe, было показано, что значения эффективного параметра рассеяния слабо зависят от состава и концентрации носителей заряда в  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$  и составляют (-0.7)-(-0.8) для исследованных составов (табл. 2).

В отличие от  $n-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$  в составах  $n-\text{Bi}_2\text{Te}_{3-y}\text{Se}_y$  [11,12] и  $p-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y}\text{Se}_y$  [13] величина  $r_{\text{eff}}$  изменялась от -0.35 до -0.8 в зависимости от концентрации, состава и температуры. Полученные особенности поведения величины эффективного параметра рассеяния в твердых растворах  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ при различных замещениях атомов в подрешетках теллурида висмута (Se  $\rightarrow$  Te; Sb  $\rightarrow$  Bi, Se  $\rightarrow$  Te и Sb  $\rightarrow$  Bi, Se, S  $\rightarrow$  Te) указывают на изменения механизмов рассеяния носителей заряда.

#### 3. Эффективная масса и подвижность

Величины концентрации носителей заряда в твердых растворах  $\operatorname{Bi}_{2-x}\operatorname{Sb}_x\operatorname{Te}_{3-y-z}\operatorname{Se}_y\operatorname{S}_z$ , необходимые для определения усредненной эффективной массы  $m/m_0$  и подвижности носителей заряда с учетом вырождения  $\mu_0$ , были определены по данным, полученным при исследовани ГМК, в соответствии с выражением, применимым

**Таблица 2.** Параметры вырождения  $\beta_d$ , рассеяния  $r_{\text{eff}}$  и приведенный уровень Ферми  $\eta$  в образцах твердых растворов  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$  с различными концентрациями электронов

| №<br>п/п | <i>T</i> ,K | x    | у    | z    | $\beta_d$ | $r_{\rm eff}$ | η     | $n,$ $10^{18} \text{cm}^{-3}$ |
|----------|-------------|------|------|------|-----------|---------------|-------|-------------------------------|
| 1        | 300         | 0.08 | 0.06 | 0.06 | 0.36      | -0.74         | -1.38 | 2.3                           |
|          | 80          |      |      |      | 0.46      | -0.74         | 0.72  | 1.8                           |
| 2        | 300         | 0.4  | 0.06 | 0.06 | 0.3       | -0.76         | -1.36 | 2.5                           |
|          | 80          |      |      |      | 0.6       | -0.68         | 0.96  | 1.8                           |
| 3        | 300         | 0.2  | 0.15 | 0.15 | 0.4       | -0.72         | -0.84 | 5                             |
|          | 80          |      |      |      | 0.49      | -0.74         | 1.54  | 3                             |
| 4        | 300         | 0.08 | 0.06 | 0.06 | 0.19      | -0.72         | 0.02  | 11.5                          |
|          | 80          |      |      |      | 0.46      | -0.82         | 2.58  | 10                            |
|          |             |      |      |      |           |               |       |                               |

для анизотропных материалов [4] (табл. 2),

$$n = \frac{A(r_{\text{eff}}, \eta) \left[ (\rho_{11}\rho_{1133}/\rho_{123}^2)\beta_d(r_{\text{eff}}, \eta) \right]^{-1}}{\rho_{123}e}$$
$$= \frac{A(r_{\text{eff}}, \eta)}{\rho_{123}e} \frac{4u}{(1+u)^2}, \tag{1}$$

где  $A(r_{\text{eff}}, \eta)$  — Холл-фактор,  $\rho_{11}, \rho_{1133}, \rho_{123}$  — компоненты тензоров сопротивления, магнетосопротивления и эффекта Холла соответственно, и — один из параметров многодолинной модели энергетического спектра, определяющих форму поверхности постоянной энергии. Одинаковые величины концентрации, полученные для экспериментальных ГМК и с помощью параметра u (1), подтверждают высокую точность определения параметров эллипсоидов постоянной энергии [4] и свидетельствуют о применимости многодолинной модели для исследования многокомпонентных твердых растворов  $Bi_{2-x}Sb_{x}Te_{3-y-z}Se_{y}S_{z}$ . Измерения ГМК в твердых растворах  $Bi_{2-x}Sb_{x}Te_{3-y-z}Se_{y}S_{z}$  показали, что концентрация электронов в рассматриваемом интервале температур возрастает с ростом T приблизительно на 20%, как и в твердых растворах p-Bi<sub>2-x</sub>Sb<sub>x</sub>Te<sub>3-y</sub>Se<sub>y</sub> [10].

Температурные зависимости  $m/m_0$  и  $\mu_0$  были определены в соответствии с методикой, применявшейся в [9,10], с учетом изменений механизмов рассеяния в твердых растворах  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ .

Как и при исследовании твердых растворов  $n-Bi_2Te_{3-v}Se_v$  [1,9] и  $p-Bi_{2-v}Sb_xTe_{3-v}Se_v$  [10], в составах  $n-Bi_{2-x}Sb_{x}Te_{3-y-z}Se_{y}S_{z}$ наблюдается увеличение эффективной массы *m*/*m*<sub>0</sub> с ростом концентрации носителей и увеличением содержания замещенных атомов в подрешетках  $Bi_2Te_2$ . Величина  $m/m_0$  возрастает при переходе от образцов с низкими концентрациями электронов (около  $2 \cdot 10^{18} \, \mathrm{cm}^{-3}$ ) различного состава (кривые 1-3 на рис. 4) к образцам с высокими концентрациями электронов (кривые 5-8 на рис. 4). B составе  $Bi_2Te_{3-v}Se_v$  (y = 0.3,  $n \approx 3 \cdot 10^{18} \text{ cm}^{-3}$ ) эффективная масса выше, чем в n-Bi<sub>2-x</sub>Sb<sub>x</sub>Te<sub>3-y-z</sub>Se<sub>y</sub>S<sub>z</sub>, за счет небольшого роста концентрации электронов и изменения состава твердого раствора (соответственно кривые 4 и 1–3 на рис. 4).

Увеличение эффективной массы  $m/m_0$  при переходе от образцов с низкими (кривые 1-4 на рис. 4) к образцам с высокими концентрациями электронов (кривые 5-8 на рис. 4) можно объяснить заполнением дополнительной зоны в зоне проводимости твердых растворов. Эффективная масса возрастает при увеличении содержания замещенных атомов Sb  $\rightarrow$  Bi (кривые 1, 2 на рис. 4) и при замещениях S  $\rightarrow$  Te (кривые 6, 5 на рис. 4) в образцах с близкими концентрациями электронов.

характер Немонотонный изменения температурных зависимостей эффективной массы в  $n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$  приводит к тому, что в зависимости  $m/m_0 \sim T^s$ степенной показатель степени *s* является функцией температуры, как и в исследованных ранее системах  $n-\text{Bi}_2\text{Te}_{3-y}\text{Se}_y$  [9] и  $p-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y}\text{Se}_y$  [10].

Характер концентрационных и температурных зависимостей  $m/m_0$  определяется аналогичными зависимостями отношений компонент тензора эффективных масс  $m_i/m_j$  и связан с различной анизотропией поверхности постоянной энергии твердых растворов. На величину  $m/m_0$  также оказывают влияние изменение процессов рассеяния носителей заряда вследствие заполнения дополнительной зоны в зоне проводимости твердых растворов и анизотропия рассеяния носителей заряда [1,9].



**Puc.** 4. Температурные зависимости эффективной массы  $m/m_0$  в твердых растворах  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ . n,  $10^{19}$  cm<sup>-3</sup>: I - 0.2 (x = 0.08, y = z = 0.06); 2 - 0.2 (x = 0.16, y = z = 0.06); 3 - 0.2 (x = 0.2, y = 0.06, z = 0); 4 - 0.3 (x = z = 0, y = 0.3); 5 - 1.2 (x = 0, y = z = 0.09); 6 - 1.45 (x = 0, y = z = 0.15); 7 - 1 (x = 0.16, y = z = 0.12); 8 - 1.1 (x = z = 0, y = 0.3).



**Рис. 5.** Температурные зависимости подвижности  $\mu_0$  в твердых растворах  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ . Номера кривых соответствуют рис. 4.

**Таблица 3.** Угловые коэффициенты температурных зависимостей подвижности, рассчитанной с учетом вырождения  $s_{\mu 0} = d \ln \mu_0 / d \ln T$  в твердых растворах  $\text{Bi}_{2-x} \text{Sb}_x \text{Te}_{3-y-z} \text{Se}_y \text{S}_z$ 

| Номер кривой | r    | у    | z    | S <sub>µ0</sub> |           |  |
|--------------|------|------|------|-----------------|-----------|--|
| на рис. 5    | л    |      |      | 80–150 K        | 150–240 K |  |
| 1            | 0.08 | 0.06 | 0.06 | 1.25            |           |  |
| 2            | 0.16 | 0.06 | 0.06 | 1.17            | 0.54      |  |
| 3            | 0.2  | 0.06 | 0    | 1.6             | 0.72      |  |
| 4            | 0    | 0.3  | 0    | 1.57            | 1.3       |  |
| 5            | 0    | 0.09 | 0.09 | 1.4             | 1.47      |  |
| 6            | 0    | 0.15 | 0.15 | 1.26            | 0.76      |  |
| 7            | 0.16 | 0.12 | 0.12 | 1.68            | 1.03      |  |
| 8            | 0    | 0.3  | 0    | 1.62            | 0.76      |  |

На рис. 5 приведены температурные зависимости подвижности  $\mu_0$ , рассчитанные с учетом вырождения носителей заряда. В образцах с низкими концентрациями электронов (кривые 1-4 на рис. 5), при которых влияния второй дополнительной зоны практически не наблюдается, наиболее высокая подвижность имеет место в составе с замещениями атомов Sb  $\rightarrow$  Bi и Se  $\rightarrow$  Te (кривая 3 на рис. 5). Высокая подвижность в этом образце при x = 0.2 y = 0.06 связана с отсутствием атомов серы в твердом растворе, поскольку дополнительное рассеяние на атомах S приводит к уменьшению подвижности.

При исследовании концентрационных зависимостей подвижности следует обратить особое внимание на определение концентрации носителей заряда в образцах твердых растворов  $n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ . Расчет концентрации носителей заряда без учета анизотропии исследуемых материалов и отсутствие учета изменений механизмов рассеяния по сравнению с акустическим механизмом (r = -0.5) могут приводить к увеличению подвижности с ростом концентрации носителей заряда [14]. Расчет подвижности в  $n-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$  (x = 0, y = z = 0.15) для параметра рассеяния r = -0.5 показал, что величины  $\mu_0$ возрастают от 600 до 690 сm $^2 \cdot V^{-1} \cdot s^{-1}$  при 295 K и от 2570 до 2690 ст $^2 \cdot V^{-1} \cdot s^{-1}$  при 80 К с ростом концентрации электронов в образцах от 1.2 до  $1.45 \cdot 10^{18} \,\mathrm{cm}^{-3}$ . При учете изменений механизмов рассеяния с помощью  $r_{\rm eff}$  подвижность  $\mu_0$  и угловые коэффициенты температурных зависимостей  $|s_{\mu 0}| = d \ln \mu_0 / d \ln T$  уменьшаются с ростом концентрации носителей и увеличением содержания замещенных атомов в твердых растворах вследствие увеличения числа рассеивающих центров (табл. 3).

Как и температурная зависимость эффективной массы, зависимость  $\ln \mu_0$  от  $\ln T$  не является линейной для всего температурного интервала, где наблюдается примесная проводимость, и может быть представлена в виде  $T^{s(T)}$ . Аналогичный характер температурной зависимости подвижности наблюдался в твердых растворах на основе  $Bi_2Te_3$  *n*- и *p*-типа [9,10].

При низких концентрациях электронов подвижность  $\mu_0$  уменьшается с увеличением количества атомов Sb при одинаковом содержании атомов Se и S (кривые 1, 2 на рис. 5). Более высокая подвижность  $\mu_0$  в образце с замещениями Sb  $\rightarrow$  Bi и Se  $\rightarrow$  Te указывает на более слабое рассеяние электронов атомами Sb и Se, чем атомами S (кривые 1-3 на рис. 5). В образцах с высокой концентрацией электронов подвижность уменьшается при увеличении содержания атомов S в твердом растворе (кривые 5, 6 на рис. 5). Замещения атомов в обеих подрешетках Bi<sub>2</sub>Te<sub>3</sub> приводят к дальнейшему уменьшению подвижности (кривая 7 на рис. 5).

При высоких концентрациях электронов в твердом растворе  $Bi_2Te_{3-y}Se_y$  (y = 0.3) (кривая 8 на рис. 5) подвижность и угловые коэффициенты температурных зависимостей подвижности  $s_{\mu 0}$  (табл. 3) выше, чем в многокомпонентных твердых растворах с замещениями атомов в обеих подрешетках  $Bi_2Te_3$  с близким общим содержанием замещенных атомов.

## Теплопроводность кристаллической решетки

Для твердых растворов  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$  при замещениях атомов в обеих подрешетках (Sb  $\rightarrow$  Bi и Se, S  $\rightarrow$  Te) характерно уменьшение полной теплопроводности  $\kappa$  и ослабление зависимости  $\kappa$  от T, связанное с бо́льшими искажениями кристаллической решетки по сравнению с замещениями атомов только в катионной подрешетке  $\text{Bi}_2\text{Te}_3$  [5–7].

Расчет теплопроводности кристаллической решетки *к*<sub>L</sub> проводился по формуле

$$\kappa_L = \kappa - \kappa_e, \tag{2}$$

где  $\kappa_e = L(r_{\text{eff}}, \eta)\sigma T$  — электронная теплопроводность.

При определении числа Лоренца в твердых растворах  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$  учитывались изменения механизма рассеяния в выражении

$$L = \left(\frac{k}{e}\right)^2 \left[\frac{(r+7/2)F_{r+5/2}(\eta)}{(r+3/2)F_{r+1/2}(\eta)} - \frac{(r+5/2)^2F_{r+3/2}^2(\eta)}{(r+3/2)^2F_{r+1/2}^2(\eta)}\right].$$
(3)

Замена *r* на  $r_{\rm eff}$  в (3) дает возможность более корректно учесть величину электронной теплопроводности  $\kappa_e$ , чем в случае r = -0.5, что особенно важно для исследуемых материалов, в которых электронная составляющая теплопроводности составляет около 10-15% от полной теплопроводности.

Расчеты числа Лоренца для r = -0.5 в твердых растворах  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$  для образцов с высокими концентрациями носителей заряда показывают, что значения  $L|_{r=-0.5}$  могут быть отрицательными, что не позволяет оценить решеточную теплопроводность в соответствии с выражением (2).



**Рис. 6.** Температурные зависимости решеточной теплопроводности  $\kappa_L$  в твердых растворах  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ . Номера кривых соответствуют рис. 4.

Решеточная теплопроводность  $\kappa_{L}$  (рис. 6) в твердых растворах  $Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$  снижается, и зависимость  $\kappa_L(T)$  ослабевает по сравнению с составами  $Bi_{2-x}Sb_{x}Te_{3-y}Se_{y}$  (кривая 3) и особенно по сравнению с твердым раствором  $Bi_2Te_{3-y}Se_y$  (кривая 4), в котором нет замещений в катионной подрешетке. С увеличением количества замещенных атомов Sb при равном содержании атомов Se и S в твердых растворах (кривые 1,2 на рис. 6) величина к<sub>L</sub> уменьшается. Такое изменение *к*<sub>L</sub> при замещениях атомов в обеих подрешетках Bi<sub>2</sub>Te<sub>3</sub> можно объяснить увеличением вклада добавочного теплового сопротивления при введении нейтральных атомов, которые участвуют в образовании твердого раствора замещения. Дополнительные искажения кристаллической решетки  $Bi_2Te_3$  при замещениях атомов Se, S  $\rightarrow$  Te по сравнению с замещениями Se — Те приводят к уменьшению величины к<sub>L</sub> в связи с различием ковалентных радиусов атомов S и Se [6].

В твердых растворах  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$  с повышением температуры величина  $\kappa - \kappa_e$  возрастает вследствие влияния собственной проводимости, и выражение (2) имеет вид

$$\kappa_L = \kappa - \kappa_e - \kappa_{np}, \tag{44}$$

где  $\kappa_{np}$  — теплопроводность за счет влияния собственной проводимости, обусловленная биполярной диффузией.

При низких концентрациях электронов, оптимальных для T < 240 К, влияние собственной проводимости проявляется при температурах вблизи комнатной (кривые 1-4 на рис. 6). Рост концентрации носителей и содержания замещенных атомов кроме снижения величины  $\kappa_L$  приводит к увеличению температуры, при которой наблюдается собственная проводимость (кривые 5-8 на рис. 6). В составе с y = z = 0.15 (кривая 6 на рис. 6) влияние собственной проводимости отсутствует в области исследованных температур, что связано с возрастанием ширины запрещенной зоны  $E_g$  в твердом растворе  $Bi_2Te_{3-y-z}Se_yS_z$  при замещениях Se,  $S \rightarrow Te$  [15].

Рассмотренные особенности поведения эффективной массы  $m/m_0$  и подвижности  $\mu_0$  совместно с данными по теплопроводности кристаллической решетки  $\kappa_L$  могут быть использованы для анализа термоэлектрической эффективности в твердых растворах  $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$  в зависимости от состава, концентрации носителей заряда и температуры [2–4,13].

### Список литературы

- В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов. ФТТ 42, 1985 (2000).
- [2] L.N. Luk'yanova, V.A. Kutasov, P.P. Konstantinov. In: Proc. of the XIX Int. Conf. on Thermoelectrics. Cardiff, U. K. (2000). P. 391.
- [3] Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов. В сб.: Докл. IX Межгосударственного семинара "Термоэлектрики и их применения". СПб (2004). С. 68.
- [4] Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов, В.В. Попов. ФТТ 48, 607 (2006).
- [5] В.А. Кутасов, Л.Н. Лукьянова. ФТТ **38**, 2366 (1996).
- [6] Г.Т. Алексеева, М.В. Ведерников, П.П. Константинов, В.А. Кутасов. ФТП 30, 918 (1996).
- [7] Н.Х. Абрикосов, Л.Д. Иванова, Т.Е. Свечникова, С.Н. Чижевская, Г.А. Иванов, Г.А. Парахин, В.К. Воронин, Т.Е. Свечникова, С.Н. Чижевская, Г.А. Иванов, Г.А. Парахин, В.К. Воронин. Неорган. материалы 25, 745 (1989).
- [8] A.I. Anykhin, S.Ya. Skipidarov, O.B. Sokolov. Proc. of the XII Int. Conf. on Thermoelectrics. Yokogama, Japan (1993). P. 97.
- [9] В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов. ФТТ 41, 187 (1999).
- [10] Л.Н. Лукьянова, В.А. Кутасов, В.В. Попов, П.П. Константинов. ФТТ 46, 1366 (2004).
- [11] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 26, 2501 (1984).
- [12] В.А. Кутасов, Л.Н. Лукьянова. ФТТ 28, 899 (1986).
- [13] Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов. ФТТ 47, 224 (2005).
- [14] V.A. Kutasov, L.N. Luk'yanova. Phys. Stat. Sol. (b) 154, 669 (1989).
- [15] Ч.Д. Бекдурдыев, Б.М. Гольцман, В.А. Кутасов, А.В. Петров. ФТТ 16, 2121 (1974).