Пространственные колебания потока излучения в полосковых лазерах на основе гетеропереходов InAsSb/InAsSbP

© А.П. Данилова, Т.Н. Данилова, А.Н. Именков, Н.М. Колчанова, М.В. Степанов, В.В. Шерстнев, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 8 февраля 1999 г. Принята к печати 15 февраля 1999 г.)

В диодных лазерах на основе гетеропереходов InAsSb/InAsSbP, излучающих на длине волны около 3.3 мкм, обнаружены аномально узкие диаграммы направленности излучения в плоскости *p*-*n*-перехода с одним и двумя лепестками. На основании новых представлений о процессах генерации лазерного излучения получены теоретические распределения излучения в ближнем и дальнем полях при генерации в лазере двух потоков излучения, колеблющихся поперек полоска. Однолепестковая диаграмма направленности получена в случае генерации синфазных потоков, двухлепестковая — противофазных. Установлено соответствие теории эксперименту.

Пространственное распределение лазерного излучения в гетероструктурах и его изменение являются существенными для понимания физических процессов и модуляционных явлений.

1. Введение

Обычно пространственное распределение излучения в полосковых гетеролазерах формировалось за счет резкого уменьшения коэффициента преломления на краях полоска [1]. При этом теоретически оно описывалось волновыми функциями, соответствующими прямоугольным потенциальным ямам. Елисеев и Богатов показали, что зависимость коэффициента преломления от интенсивности излучения приводит к самофокусировке потока излучения вследствие оптического самоограничения потока [2,3]. Мы наблюдали самофокусировку излучения в лазерах на основе гетеропереходов InAsSb/InAsSbP, сопровождавшуюся изменением длины волны излучения [4]. Нами было показано, что увеличение плотности потока инжекции к краям полоска в таких лазерах приводит к зависимости длины волны излучения от тока, обусловленной формированием волновода с диэлектрической проницаемостью, квадратичнно зависящей от Такая зависимость диэлектрической координаты [5]. проницаемости от координаты в волноводе узкозонных лазеров требует нового подхода к формированию лазерного потока и исследованию распределения излучения в ближнем и дальнем поле.

В данной работе ставилась задача создания лазеров с различным распределением световых потоков по ширине полоска, исследования диаграмм направленности излучения и выяснения поведения потоков излучения в лазерах с различной шириной полоска.

2. Объекты исследования

Лазерные гетероструктуры P-InAs_{0.48}Sb_{0.17}P_{0.35}/ n-InAs_{0.95}Sb_{0.05}/N-InAs_{0.48}Sb_{0.17}P_{0.35} (рис. 1) выращивались на подложках p-InAs толщиной h = 300 мкм с концентрацией дырок $5 \div 8 \cdot 10^{18}$ см⁻³. Толщина узкозонной активной области лазера составляла $1 \div 3$ мкм, а толщина широкозонных эмиттеров ~ 3 мкм. Активная область специально не легировалась, концентрация электронов в ней составляла ~ 10^{16} см⁻³. Слой *N*-InAsSbP легировался Sn до концентрации электронов $n \sim 2 \div 5 \cdot 10^{18}$ см⁻³, слой *P*-InAsSbP–Zn до концентрации дырок $p \sim 1 \cdot 10^{18}$ см⁻³. Подложка сошлифовывалась до толщины 100 мкм. На полученных структурах методом фотолитографии формировались мезаполоски шириной 10 и 18 мкм. Методом скалывания получались резонаторы Фабри–Перо длиной 200–400 мкм. Ширина лазерной структуры в области подложки составляла 500 мкм.

В лазерах с шириной полоска 10 мкм ожидалась преимущественная генерация продольной пространственной моды, а при ширине полоска 18 мкм предполагалась генерация первой поперечной моды, как это следовало из наших работ [6,7]. Из-за большой разницы по ширине подложки и полоска получалась повышенная плотность инжекции на краях полоска по сравнению с его серединой [5].

Исследования проводились при температуре жидкого азота при питании лазеров прямоугольными импульсами тока со скважностью 2 (типа "меандр") и частотой следования 80 Гц. Исследовались спектры и диаграммы направленности излучения в интервале токов от 1 до 3 пороговых значений.

3. Экспериментальные результаты

Диаграмма направленности лазеров с шириной полоска 10 мкм (рис. 2) при небольшом превышении тока *I* над пороговым значением $I_{\rm th}(I \approx 1.05 \cdot I_{\rm th})$ имеет форму, характерную для косинусоидального распределения амплитуды электромагнитной волны на выходном зеркале резонатора. Ширина диаграммы на половине интенсивности (полуширина) составляла $\Delta\Theta_{0.5} = 22^{\circ}$. С увеличением тока $\Delta\Theta_{0.5}$ сначала уменьшается до $\sim 17^{\circ}$ при $I \approx 2 \div 2.5I_{\rm th}$,

Рис. 1. Структура исследуемого диодного лазера: *a* — схема расположения эпитаксиальных слоев: *b* — послойный профиль ширины запрещенной зоны; *c* — схема конструкции мезаполоскового диодного лазера.

а затем снова слегка увеличивается до $18 \div 19^{\circ}$ при $I \approx 3I_{\rm th}$. Минимальная полуширина диаграммы направленности, как уже нами отмечалось в работе [6], соответствует равномерному распределению электрического поля световой волны на зеркале резонатора.

Диаграмма направленности излучения лазеров с шириной полоска 18 мкм (рис. 3) при тех же превышениях токов над пороговым имела два максимума, угловое расстояние между которыми составляет $\sim 11^{\circ}$, тогда как в случае преобладания первой поперечной пространственной моды, расстояние между максимумами должно было составить 20°. Глубина минимума между пиками уменьшается с увеличением тока, а угловое положение максимумов почти не изменяется.

Таким образом, в лазерах с шириной полоска 18 мкм диаграмма направленности представляет два острых пика, угловое расстояние между которыми почти в 2 раза меньше, чем должно быть при наличии первой поперечной моды.

Обсуждение экспериментальных результатов

Соответствие полуширины диаграммы направленности лазеров с ширной полоска 10 мкм равномерному распределению амплитуды электрического поля световой волны на зеркале резонатора не говорит о том, что такое распределение действительно реализуется. Оно не может реализоваться, так как амплитуда волны на краю полоска должна быть практически равна нулю из-за большой разницы коэффициентов преломления кристалла и воздуха. Кроме того, амплитуда волны не может изменяться скачком с координатой. Такую полуширину еще могли бы дать параллельные световые потоки, разнесенные на ~ 6 мкм, если бы они были устойчивы. Их пространственная определенность появляется, если они будут колебаться от одно-

Рис. 2. Диаграммы направленности излучения лазера V12192 $N_{\rm P}$ 1 в плоскости *p*-*n*-перехода при различных превышениях тока *I* над пороговым значением *I*_{th}: *I* — 1.05, *2* — 2.5.

Рис. 3. Диаграммы направленности излучения лазера V1109 - 3 № 39 в плоскости p-n-перехода при различных превышениях тока I над пороговым значеним I_{th} : I - 1.14, 2 - 1.8.

го края полоска к другому, меняясь местами. В работе [5] мы показали, что колебания одного потока излучения в лазере возможны в случае уменьшения диэлектрической проницаемости в направлении от середины полоска к его краям по квадратичному закону. Линейность дифференциального уравнения, описывающего колеблющийся поток, допускает суммирование с ним другого потока с отличающимися амплитудой и фазой.

Надо отметить, что линейное уравнение выведено в [5] из нелинейного при упрощении. Поэтому в реальных лазерах возможны ограничения по количеству спектральных и пространственных мод, связанные с нелинейностью.

В лазерах с шириной полоска 18 мкм угловое расстояние между максимумами в диаграмме направленности, равное 11°, могло бы получиться при наличии противофазных потоков излучения, разнесенных на 17 мкм, если бы такое положение потоков было устойчивым. Но это только мысленный предел. Поэтому возникает проблема рассмотрения колебаний еще и противофазных потоков.

5. Диаграмма направленности полоскового гетеролазера при наличии в нем двух пространственно колеблющихся потоков излучения

Ограничимся случаем, когда сопротивление подложки больше, чем дифференциальное сопротивление p-nперехода в лазерном режиме, и меньше. чем в долазерном режиме, и будем считать малым растекание носителей заряда по ширине полоска.

Распределение амплитуды световой волны на зеркале резонатора, зависящее от времени, выразим в соответствии с [5,8] формулой

$$u(\xi, \omega_c t) = \exp\left[-\frac{1}{2}\xi^2 + \xi\xi_0 \cos\omega_c t - \frac{1}{2}\xi_0^2 \cos^2\omega_c t - i\left(\frac{1}{2}\omega_c t + \xi\xi_0 \sin\omega_c t - \frac{1}{4}\xi_0^2 \sin 2\omega_c t\right)\right], (1)$$

где введены следующие обозначения: $\xi = \alpha y$ — безразмерная координата, y — координата по ширине резонатора, отсчитываемая от его середины, α —коэффициент, характеризующий зависимость диэлектрической проницаемости от y;

$$\alpha = 2\left(\frac{\pi}{\lambda b}\right)^{1/2} \left(k\frac{i_0}{i_0+1}\right)^{1/4},\tag{2}$$

 λ — длина волны излучения в вакууме, b — ширина резонатора, ξ_0 — относительное отклонение центра тяжести потока от начала координат, k — коэффициент, зависящий от отношения ширины подложки c к ее толщине h и от распределения интенсивности излучения по ширине полоска,

$$k = \frac{c}{2h} - 1 \tag{3}$$

при однородном распределении интенсивности излучения по ширине полоска; $i_0 = \frac{J-J_{\rm th}}{J_{\rm th}-J_i}$ — относительная плотность накачки в середине полоска, J — плотность тока в середине полоска, J_i и $J_{\rm th}$ — плотности тока на пороге инверсии и генерации соответственно; t — время; ω_c — круговая частота колебаний потока;

$$\omega_c = \frac{c_0 \alpha^2 \lambda}{\pi},\tag{4}$$

где *c*₀ — скорость света.

Распределение интенсивности излучения на зеркале при колеблющемся потоке зависит от времени:

$$|u|^2 \approx \exp\left\{-(\xi - \xi_0 \cos \omega_c t)^2\right\}.$$
 (5)

Для получения усредненного распределения необходимо интегрирование по времени. Если взять два потока, для

Рис. 4. Расчетное распределение интенсивности лазерного излучения по ширине полоска. При различных комбинациях пространственно колеблющихся потоков излучения при $\xi_0 = 1$ и $\alpha = 0.2 \cdot 10^4$ см⁻¹, $\lambda = 3.3$ мкм: I — один поток; 2 — два противофазных потока с равными амплитудами; 3 — два противофазных потока с отличающимися в 2 раза амплитудами; 4 — два синфазных потока с одинаковыми амплитудами.

которых y_0 имеет разный знак, то в случае синфазных потоков получим

$$|u^2| \approx \gamma \exp(-\xi^2 - \xi_0^2 \cos^2 \omega_c t) [\operatorname{sh}^2 \varphi + \cos^2 \psi], \quad (6)$$

а в случае противофазных потоков

$$|u|^2 \approx \gamma \exp(-\xi^2 - \xi_0^2 \cos^2 \omega_c t) [\operatorname{sh}^2 \varphi + \sin^2 \psi], \quad (7)$$

где γ — отношение амплитуд потоков, и

$$\varphi = \xi \xi_0 \cos \omega_c t - \frac{1}{2} \ln \gamma, \quad \psi = \xi \xi_0 \sin \omega_c t.$$
 (8)

На рис. 4 приведены усредненные по времени распределения интенсивности излучения (значения параметров $\xi_0 = 1$ и $\alpha = 0.2 \cdot 10^4 \text{ см}^{-1}$ взяты из работы [5]). Из рисунка видно, что два синфазных потока (кривая 4) дают большую локализацию излучения в середине полоска, чем один поток (кривая 1).

Противофазные потоки (кривые 2 и 3) образуют минимум интенсивности в середине полоска, глубина которого уменьшается при увеличении различия потоков по амплитуде. Вычисленная по формуле (4) круговая частота колебаний потоков ω_c составляет $1.3 \cdot 10^{13}$ Гц. Характер распределения интенсивности излучения по зеркалу резонатора непосредственно влияет на величину параметра *k* и вероятность существования одного или нескольких потоков, разность фаз и соотношения амплитуд в зависимости от ширины полоска и совершенства его границ.

Интервал перестройки лазера по частоте также оказывается связанным с этими условиями.

Диаграмму направленности вычислим приблизительно, пренебрегая конечностью размеров полоска, по формуле

$$|D_u|^2 \sim (1 + \cos \Theta)^2 \\ \times \left| \int_{-\infty}^{\infty} U(y, \omega_c t) \exp\left(i\frac{2\pi y}{\lambda}\sin\Theta\right) dy \right|^2, \quad (9)$$

где Θ — угол между проекцией направления наблюдения на плоскость активной области и нормалью к зеркалу резонатора в этой плоскости.

Для одного потока излучения получим

$$|D_u|^2 \sim (1 + \cos \Theta)^2 \\ \times \exp\left\{-\left(\frac{2\pi \sin \Theta}{\lambda \alpha} - \xi_0 \sin \omega_c t\right)^2\right\}.$$
 (10)

При наличии двух потоков, для которых *у*₀ имеет разный знак, в случае синфазных потоков имеем

$$|D_{u}|^{2} \sim (1 + \cos \Theta)^{2} \gamma \exp\left\{-\left(\frac{2\pi \sin \Theta}{\lambda \alpha}\right)^{2} - \xi_{0}^{2} \sin^{2} \omega_{c} t\right\}$$
$$\times [\operatorname{sh}^{2} \varphi + \cos^{2} \psi], \qquad (11)$$

в случае противофазных потоков

$$|D_{u}|^{2} \sim (1 + \cos \Theta)^{2} \gamma \exp\left\{-\left(\frac{2\pi \sin \Theta}{\lambda \alpha}\right)^{2} - \xi_{0}^{2} \sin^{2} \omega_{c} t\right\}$$
$$\times [\operatorname{sh}^{2} \varphi + \sin^{2} \psi]. \tag{12}$$

Здесь φ и ψ выражаются формулами

$$\varphi = \frac{2\pi \sin \Theta}{\lambda \alpha} \xi_0 \sin \omega_c t - \frac{1}{2} \ln \gamma,$$

$$\psi = \frac{2\pi \sin \Theta}{\lambda \alpha} \xi_0 \cos \omega_c t + \frac{1}{4} \sin 2\omega_c t.$$
(13)

Для получения усредненной диаграммы направленности излучения необходимо интегрирование по времени.

Результат суммирования $|D_u|^2$ при изменении $\omega_c t$ от 0 до 2π приведен на рис. 4 для таких же значений $\xi_0 = 1$ и $\alpha = 0.2 \cdot 10^4 \,\mathrm{cm}^{-1}$, как в работе [5]. Из рисунка видно, что один поток (кривая *I*) и два синфазных потока (кривая *4*) дают один лепесток в диаграмме направленности. При наличии двух потоков полуширина лепестка в 1.7 раза меньше, чем в случае одного потока. Противофазные потоки (кривые 2 и 3) образуют двухлепестковую диаграмму направленности с минимумом при $\Theta = 0$. Глубина провала уменьшается при увеличении различия в амплитудах потоков.

6. Сопоставление теории и экспериментальных данных

Однолепестковая экспериментальная диаграмма направленности лазера с шириной полоска 10 мкм при токах, в 2–2.5 раза превышающих пороговый, по полуширине и форме сопоставима с расчетной для случая двух синфазных потоков. Эта экспериментальная кривая по форме и по полуширине оказывается близкой к теоретической для двух синфазных потоков с $\alpha = 0.2 \cdot 10^4 \text{ см}^{-1}$, $\gamma = 0.3$ и $\xi_0 = 1$. Отличие γ от 1 указывает на различие амплитуд колеблющихся потоков. Второй поток способствует не только сужению диаграммы направленности (рис. 5), но и уменьшению полуширины распределения интенсивности излучения на зеркале резонатора (рис. 4). Последнее обстоятельство делает этот режим генерации, по-видимому, наиболее вероятным в узких резонаторах.

Рис. 5. Расчетная диаграмма направленности лазерного излучения в плоскости p-n-перехода при таких же комбинациях пространственно колеблющихся потоков излучения и значениях параметров, как в случае рис. 4.

Двухлепестковая экспериментальная диаграмма направленности лазера с шириной полоска 18 мкм по форме и угловому расстоянию между максимумами сопоставима с диаграммой направленности при наличии двух противофазных потоков с $\alpha = 0.2 \cdot 10^4 \, {\rm cm}^{-1}$ и $\xi_0 = 1$. Глубина минимума в центре экспериментальной кривой соответствует различию амплитуд противофазно колеблющихся потоков в 2-3 раза. Величина γ составляет 0.5 для $I = 1.14I_{\text{th}}$ и 0.35 для $I = 1.8I_{\text{th}}$. Второй поток улучшает равномерность заполнения резонатора генерируемым излучением (рис. 4). Этот режим генерации, по-видимому, более вероятен в лазерах с широким полоском. Надо отметить, что при ширине полоска более 20 мкм в лазерах на 3.3 мкм будут размещаться пространственные моды более высокого порядка, чем нулевая и первая, которые были приняты в расчет. При этом увеличится максимальное относительное отклонение потока излучения от начала координат ξ_0 и теоретические кривые изменятся. Поэтому лазеры с шириной полоска более 20 мкм требуют специального рассмотрения.

Таким образом, аномально узкие экспериментальные однолепестковые и двухлепестковые диаграммы направленности излучения можно объяснить генерацией нескольких пространственно колеблющихся потоков излучения.

7. Заключение

В лазерах на основе гетеропереходов InAsSb/InAsSbP, излучающих в спектральном диапазоне 3.3 мкм, обнаружены аномально узкие диаграммы направленности излучения в плоскости *p*-*n*-перехода с одним и двумя лепестками. Для объяснения аномалий учтено увеличение концентрации неравновесных носителей заряда и соответствующее уменьшение диэлектрической проницаемости в направлении от середины полоска лазера к его краям из-за повышения в этом направлении плотности накачки и уменьшения интенсивности лазерного излучения. Из линеаризации уравнения Гельмгольца для потока излучения предположена возможность генерации нескольких разнесенных пространственно и по фазе потоков излучения и их колебания по ширине полоска. Получены теоретические распределения излучения в ближнем и дальнем полях. Однолепестковые диаграммы направленности получаются при генерации синфазных потоков излучения. Такая генерация более вероятна при малой ширине полоска, так как способствует удержанию излучения в пределах полоска. Двухлепестковые диаграммы направленности получаются при генерации противофазных потоков излучения, которая более вероятна в лазерах с широким полоском, так как способствует равномерности заполнения излучением полоска. Амплитуды потоков различаются. Теоретические диаграммы направленности в общих чертах соответствуют экспериментальным.

Работа частично поддержана контрактом INCO-Copernicus № 1С15-СТ97-0802 (DG12-CDPF) и частично грантом Министерства науки РФ по программе "Оптика и лазерная физика".

Список литературы

- [1] О.В. Богданкевич, С.А. Дарзняк, П.Г.Елисеев. Полупроводниковые лазеры (М., Наука, 1976) с. 139.
- [2] А.П. Богатов, П.Г. Елисеев. Квант. электрон., 12, 465 (1985).
- [3] П.Г. Елисеев, А.П. Богатов. Тр. ФИАН, 166, 15 (1986).
- [4] Т.Н. Данилова, О.И. Евсеенко, А.Н. Именков, Н.М. Колчанова, М.В. Степанов, В.В. Шерстнев, Ю.П. Яковлев. Письма в ЖТФ, 22, 7 (1996).
- [5] Т.Н. Данилова, А.П. Данилова, А.Н. Именков, Н.М. Колчанова, М.В. Степанов, В.В. Шерстнев, Ю.П. Яковлев. Тр. конф. "Физика на пороге 21 века" (СПБ., 1998).
- [6] Т.Н. Данилова, А.П.Данилова, О.Г.Ершов, А.Н. Именков, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 32, 373 (1998).
- [7] А.Н. Баранов, Т.Н. Данилова, О.Г. Ершов, А.Н. Именков, В.В. Шерстнев, Ю.П. Яковлев. Письма ЖТФ, 19, 30 (1993).
- [8] Л. Штфф. Квантовая механика (М., Иностр. лит., 1957) с. 78.

Редактор В.В. Чалдышев

Spatial oscillations of radiation flux in stripe lasers based on InAsSb/InAsSbP heterojunctions

A.P. Danilova, T.N. Danilova, A.N. Imenkov, N.M. Kolchanova, M.V. Stepanov, V.V. Sherstnev, Yu.P. Yakovlev

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract Spatial distribution of radiation of 3.3 μ m diode lasers based on InAsSb/InAsSbP heterojunctions grown by liquid phase epitaxy has been inverstigated. Abnormally narrow far-field patterns with one or two peaks have been observed in the p-n junction plane.

This paper presents a new approach to spatial distribution of laser emission. Two emitting sources in phase and two anti-phase ones oscillating across the stripe have been considered theoretically. It was shown that the one-peak far-field diagram was peculiar to two emitting fluxes locked in phase, whereas the two-peaks diagram was connected with two anti-phase emitting fluxes. Calculation results are in agreement with experimental data.

Phone: (812) 247 99 56 Fax: (812) 247 00 06 E:mail: yak@iroptl.ioffe.rssi.ru