Фоточувствительность структур, созданных термообработкой CulnSe₂ в разных средах

© В.Ю. Рудь*, Ю.В. Рудь

* Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 1 февраля 1999 г. Принята к печати 3 февраля 1999 г.)

Изготовлены фоточувствительные структуры путем термообработки в вакууме и в воздушной среде поликристаллических подложек *p*- и *n*-CuInSe₂ при температуре в окрестности 500°С. Исследованы и анализируются спектральные зависимости фоточувствительности двух типов структур в естественном и в линейно поляризованном излучении. Фоточувствительность лучших структур достигает 16 мA/Вт при T = 300 К. Обнаружены и обсуждаются закономерности поляризационной фоточувствительности таких структур в связи с условиями их получения. Сделан вывод о новой возможности применения поляризационной фотоэлектрической спектроскопии для диагностики фазовых взаимодействий в сложных полупроводниках и оптимизации технологии создания фотопреобразовательных структур.

Диселенид меди и индия CuInSe₂ вошел в круг наиболее перспективных фотовольтаических материалов благодаря оптимальному сочетанию своих оптических и электрических свойств [1,2]. Технологический процесс позволил поднять коэффициент полезного действия (кпд) тонкопленочных солнечных элементов из CuInSe₂ до 18% [1,3]. Однако поведение точечных дефектов решетки в этом веществе до сих пор остается до конца не выясненным и очевидно, что находки в этом направлении могут вскрыть новые пути подъема кпд структур на основе CuInSe₂. Не менее важное значение в решении этой проблемы отводится также вопросам взаимодействия CuInSe2 с различными средами [4]. Данная работа посвящена экспериментальным исследованиям фотоэлектрических свойств структур, возникающих при термообработках объемных кристаллов CuInSe₂ в вакууме и воздушной среде.

Поликристаллические слитки CuInSe₂ выращивались направленной кристаллизацией расплава, близкого к стехиометрии тройного соединения, при вертикальном расположении кварцевого тигля (диаметр ≈ 10 мм). Затем слитки разрезались на шайбы (толщина ≈ 3 мм), поверхность которых полировалась механически, а затем и химически. Выращенные кристаллы *n*- и *p*-типа проводимости были электрически однородными и имели концентрацию свободных носителей заряда $\approx 10^{18}$ см⁻³ при T = 300 K.

С целью формирования фоточувствительных структур шайбы подвергались термообрабоке при температуре $\approx 500^\circ\text{C}$ в вакуумированных кварцевых ампулах стандартного объема (при давлении $\approx 10^{-4}$ мм рт. ст.) или непосредственно в воздушной среде. Результаты этих исследований сводятся к следующему.

1. Термообработка (TO) в вакуумированных ампулах обычно сопровождается конверсией типа проводимости кристаллов *p*-типа и при временах TO, равных $t \approx 1$ мин,

удается получать n-p-переходы. С увеличением времени термообработки до 5–10 мин конверсия становится объемной и из шайб указанного выше размера можно изготовить только изотипные n'-n-переходы. Важно подчеркнуть, что поверхность пластин после такой ТО визуально не отличается от исходного ее состояния, а конверсия типа проводимости при этом обусловлена образованием собственных донорных дефектов решетки — вакансий в подрешетке селена.

Рис. 1. Стационарная вольт-амперная характеристика структуры n-p-CuInSe₂ (кривая *I*, образец 10) и спектр относительной квантовой эффективности фотопреобразования для структуры n'-n-CuInSe₂ (кривая *2*, образец 11; освещение со стороны слоя неполяризованным излучением). Стрелкой отмечена величина $\hbar\omega_{\text{max}}$. Измерения выполнены при T = 300 K.

№ образца	Среда ТО	<i>t</i> , мин	Тип структуры	<i>S</i> ^{max} , В/Вт	<i>S</i> _{<i>I</i>} ^{max} , мА/Вт	$\hbar\omega_{ m max},$ э $ m B$	<i>S</i> , эВ ⁻¹	<i>δ</i> , мэВ	$\eta_2/\eta_{ m max}$	$P_I^{\max},$
6	Воздух	1	n'-n	0.2	0.04	0.995	46	440	0.34	20
5	»	5	n'-n	0.4	16	0.995	46	280	0.21	33
4	»	10	n'-n	0.1	1	0.995	50	200	0.12	30
7	»	40	n'-n	0.3	10	0.995	50	290	0.15	38
3	»	120	p'-p	0.05	0.1	0.89		80	0.0003	25
1	»	120	p'-p	0.05	0.01	0.90		90	0.001	27
2	»	120	p'-p	0.03	0.02	0.92		80	0.0005	18
10	Вакуум	1	n-p	0.2	0.5	0.97	72	40	0.001	52
11	»	8	n'-n	0.2	1	0.92		—	—	53

Фотоэлектрические свойства структур на основе CuInSe₂ при $t = 300 \,\mathrm{K}$

Примечание. ТО — термообработка, *t* — время термообработки.

Типичная стационарная вольт-амперная характеристика (ВАХ) для одной из таких структур приведена на рис. 1 (кривая *1*). Начальный участок прямых ВАХ экспоненциальный и ему отвечает фактор неидеальности $\beta = 3.1-4.4$, тогда как в области прямых смещений U > 0.7 В характеристики следуют соотношению

$$I = (U - U_0)/R_0,$$
 (1)

где для n-p-структур напряжение отсечки $U_0 \approx 0.6$ В, а остаточное сопротивление $R_0 \approx 80-100$ Ом при T = 300 К. В случае n'-n-структур соответствующие параметры равны $U_0 \approx 0.1$ В, а $R_0 \approx 20-40$ Ом, причем коэффициент выпрямления существенно падает по отношению к n-p-структурам. Обратная ветвь ВАХ для полученных при ТО в вакууме анизо- и изотипных структур имеет вид $I \sim U^n$, где $n \approx 1.1$ вплоть до напряжений ≈ 1 В. Последнее может указывать на влияние токов утечки на процесс протекания обратного тока в таких структурах.

При освещении *n*-*p*- и *n'*-*n*-структур созданный путем ТО слой всегда заряжается отрицательно, что соответствует направлению выпрямления. Вольтовая (S_U) и токовая (S_I) фоточувствительности в этих структурах (см. таблицу) доминируют при освещении со стороны образующихся при ТО слоев и имеют вид узких полос с полной шириной на полувысоте $\delta \approx 40$ мэВ. Энергетическое положение максимума $\hbar\omega_{\rm max}$ в спектре относительной квантовой эффективности фотопреобразования *п* всегда локализовано несколько ниже ширины запрещенной зоны CuInSe₂, равной $E_G \approx 1.02$ эВ [3–5] (рис. 1, кривая 2). Типичный для таких структур резкий коротковолновый спад *n*, наблюдаемый в условиях освещения со стороны слоев, полученных ТО в вакууме, обусловлен увеличением влияния поглощения по мере приближения к энергии кванта E_G . При TO CuInSe₂ на воздухе на поверхности шайб возникали слои, окраска которых изменялась в зависимости от времени выдержки на воздухе, а тип проводимости исходного состояния сохранялся.

На рис. 2 приведена стационарная ВАХ одной из изотипных p'-p-структур. Видно, что использованные

режимы ТО позволяют получить выпрямляющие структуры (рис. 2, кривая *I*), пропускное направление которых всегда отвечает положительной полярности внешнего смещения на слое. Типичные параметры ВАХ этих структур следующие: $\beta = 3.0-3.2$, $U_0 \approx 0.5-0.6$ В, $R_0 \approx 120-250$ Ом, $n \approx 1.1$, что, вообще говоря,

Рис. 2. Стационарная вольт-амперная характеристика структуры p'-p-CuInSe₂ при T = 300 K (образец 1, кривая 1). Прямая ветвь ВАХ в логарифмическом масштабе (2), обратная ветвь (3).

Рис. 3. Спектральные зависимости относительной квантовой эффективности фотопреобразования структур n'-n-CuInSe₂ (номера образцов: 1 - 6, 2 - 5, 3 - 4, 4 - 7) и структуры p'-p-CuInSe₂ (кривая 5, образец 3). Измерения выполнены при T = 300 К в неполяризованном излучении (освещение структур со стороны слоев).

достаточно близко к аналогичным параметрам структур, получаемых термообработкой кристаллов CuInSe₂ в вакууме.

2. При освещении изотипных p'-p- и n'-n-структур, полученных ТО кристаллов CuInSe₂ на воздухе, слои всегда заряжаются положительно, и это соответствует пропускному направлению для таких структур. Максимальные фоточувствительности S_U^{max} и S_I^{max} были достигнуты в n'-n-структурах, полученных при ТО в течение $t \approx 5$ мин (см. таблицу). Знак фотовольтаического эффекта оказался независимым ни от места локализации светового зонда (диаметр ≈ 0.2 мм), ни от энергии падающих фотонов и, следовательно, может быть связан с формированием активной области в результате термообработки CuInSe₂ в воздушной среде.

Спектры эффективности преобразования η для ряда изотипных структур, созданных при разных временах ТО, приведены на рис. 3. Главные особенности этих спектров, проявляющиеся по мере роста времени термообработки *t*, состоят в следующем:

а) усиление коротковолнового спада зависимости η ($\hbar \omega$);

б) смещение длинноволнового края фоточувствительности в примесную область поглощения. Мерой коротковолнового спада фоточувствительности в таблице служит отношение η при $\hbar \omega = 2 \Im B (\eta_2)$ к абсолютному максимуму квантовой эффективности фотопреобразования η_{max} , т.е. отношение η_2/η_{max} . Длинно-

волновый край фоточувствительности n'-n-структур экспоненциальный (рис. 3, кривые 1-4), а его крутизна $S = \partial(\ln \eta) / \partial(\hbar \omega)$ сохраняется высокой (см. таблицу) и соответствует прямым межзонным переходам в CuInSe₂ [6]. Наблюдаемое смещение $\hbar\omega_{\text{max}}$ в длинноволновую область с ростом времени TO t может быть связано с увеличением концентрации соответствующих дефектов решетки в активной области структур. Эти особенности коррелируют с соответствующими уровнями дефектов решетки, которые проявились в фотолюминесценции CuInSe₂ [7]. Из рис. 3 также видно, что возникающая на длинноволновом спаде η четкая особенность в виде максимума при $\hbar\omega \approx 0.87$ эВ с увеличением t до 120 мин преобразуется в абсолютный максимум, тогда как фоточувствительность в области фундаментального поглощения CuInSe2 становится пренебрежимо малой. В целом наблюдаемая эволюция спектров η свидетельствует о том, что с ростом времени ТО соединения CuInSe₂ на воздухе увеличиваются концентрация дефектов решетки и, соответственно, вклад длинноволновой фоточувствительности, а также наблюдается понижение ширины полос и усиление коротковолнового спада η (см. таблицу) вследствие удаления активной области структур в глубь подложек.

Таким образом, исследования фоточувствительности в неполяризованном свете для двух разных типов структур из CuInSe₂ позволяют указать только на возрастание концентрации дефектов решетки в этом тройном полупроводниковом соединении вследствие диффузионного выхода селена в паровую фазу. Можно полагать, что в присутствии воздушной среды этот процесс замедляется вследствие возникновения на поверхности CuInSe₂ слоя окисла. С этим, по-видимому, связано снижение скорости конверсии $p \rightarrow n$ при TO CuInSe₂ на воздухе.

3. Оба типа полученных структур при освещении линейно поляризованным излучением (ЛПИ) вдоль нормали к освещаемой плоскости (угол падения $\Theta = 0^{\circ}$) не обнаружили какой-либо зависимости от пространственной ориентации вектора электрического поля световой волны **E**. Это определяется преднамеренным выбором для данных исследований образцов с поликристаллической структурой, что дало возможность маскировать естественный фотоплеохроизм CuInSe₂ [6] и по этой причине наблюдать только проявление наведенного фотоплеохроизма [5].

Главные закономерности поляризационных исследований фоточувствительности двух типов структур из CuInSe₂ заключаются в следующем.

Во всех структурах, полученных путем ТО в вакууме, угловые зависимости фототоков короткого замыкания i^P (вектор Е параллелен плоскости падения (ПП) излучения) и i^S (вектор Е перпендикулярен ПП) находятся в соответствии с результатами анализа процессов прохождения световой волной границы раздела двух сред воздух/CuInSe₂ на основании соотношений Френеля [8] (рис. 4, *a*, кривые *I* и 2). Действительно, во всей области

Рис. 4. Угловые зависимости фототоков $i^{P}(1, 5, 7)$ и $i^{S}(2, 6, 8)$, а также коэффициента наведенного фотоплеохроизма $P_{I}(3, 9, 10)$ и $\sqrt{P_{I}}(4, 11, 12)$ для структур на основе CuInSe₂ при T = 300 К (a — образец 11; b — образец 5). Освещение производилось линейно поляризованным излучением со стороны слоев; энергия излучения $\hbar\omega$, эВ: 1-4 - 0.92; 5, 6, 9, 11 - 0.955; 7, 8, 10, 12 - 1.08).

фоточувствительности фототок i^{P} вначале возрастает, достигает максимума в окрестности угла псевдобрюстеровского отражения (отмечены стрелками на рис. 4) и только затем спадает, тогда как ток i^{S} во всем диапазоне углов Θ только снижается. Угловая зависимость $i^{P}(\Theta)$ (рис. 4, *a*, кривая 1) с учетом [9] свидетельствует о достаточно хорошем оптическом качестве фотоприемной плоскости, образовавшейся в результате термообработки CuInSe₂ в вакууме, а возрастание отношения фототоков $i^{P}(55^{\circ})/i^{P}(0^{\circ}) \approx 1.12$ в окрестности максимума в спектре η указывает на снижение потерь ЛПИ на отражение.

В случае же структур, полученных термообработкой CuInSe₂ на воздухе (рис. 4, *b*, кривые 5–8), для фототока i^{S} , как и для тока i^{P} , при $\Theta > 0^{\circ}$ в определенной области изменения Θ обнаруживается возрастание, указывающее на снижение потерь на отражение и в случае *s*-волны. На основании результатов [10] эту особенность можно связать с интерференцией ЛПИ во входном слое таких структур. Угловые зависимости коэффициента наведен-

Физика и техника полупроводников, 1999, том 33, вып. 8

ного фотоплеохроизма

$$P_{I} = (i^{P} - i^{S}) / (i^{P} + i^{S}), \qquad (2)$$

как видно из рис. 4 (кривые 3, 9 и 10), подчиняются в обоих типах структур одинаковому квадратичному закону $P_I \sim \Theta^2$, о чем свидетельствуют прямые $P_I^{1/2} = f(\Theta)$, (см. рис. 4, кривые 4, 11 и 12).

На рис. 5 представлены примеры спектральных зависимостей коэффициента наведенного фотоплеохроизма для некоторых из полученных структур при $\Theta = 75^{\circ}$. Максимальное значение $P_I = 53\%$ (см. таблицу) характерно для структур, полученных ТО в вакууме. Это значение P_I соответствует теоретической оценке этого параметра в случае, если ЛПИ преодолевает границу воздух/CuInSe₂ [11].

В структурах, полученных термообработкой CuInSe₂ на воздухе (рис. 5, кривые 2-7 и в таблице), экспериментальные значения P_I оказываются ниже теоретического значения P_I для границы воздух/CuInSe₂ [11]. Сам факт изменения величины P_I при переходе от одной структуры

Рис. 5. Спектральные зависимости коэффициента наведенного фотоплеохроизма структур на основе CuInSe₂ при T = 300 K. Кривые соответствуют следующим номерам образцов в таблице: I - 11, 2 - 7, 3 - 5, 4 - 6, 5 - 3, 6 - 1, 7 - 2; $\Theta = 75^{\circ}$.

к другой может быть связан с образованием на поверхности CuInSe₂ окислов сложного состава, что согласуется с известными результатами эллипсометрических исследований [12,13]. В частности, экспериментальные значения P_I для образцов 5 и 7 (рис. 5, кривые 2 и 3) на основании анализа [11] приводят к оценке показателя преломления $n \approx 2.1$, что совпадает с результатами [13]. С другой стороны, характер экспериментальных спектральных зависимостей P_I и проявившаяся чувствительность величины коэффициента наведенного фотоплеохроизма к условиям термообработки (среда, время) на основании [10] могут быть следствием интерференции ЛПИ в образующихся на поверхности CuInSe₂ слоях окислов переменного состава.

Таким образом, впервые осуществленное сопоставление результатов экспериментальных исследований фоточувствительности двух различных типов структур, изготовленных на основе CuInSe₂, открывает новые возможности поляризационной фотоэлектрической спектроскопии в диагностике процессов фазового взаимодействия на поверхности сложных полупроводников и, следовательно, выбора оптимальных технологий создания фотопреобразователей оптического излучения.

Список литературы

 J.R. Tuttle, E.D. Cole, K.R. Ramanathan, M. Contreras, J. Alleman, J. Keane, R. Noufi. *Proc. 10th Sunshine Workshop on Thin Film Solar Cells* (Tokyo, Japan, Nov. 8– 9, 1996) p. 139.

- [2] L. Stolt. Proc. 9th Int. Photovoltaic Science and Engineering Conf. (Niyazaki, Japan, Nov. 11–15, 1996) p. 139.
- [3] H.W. Schock. Appl. Surf. Sci., 92, 606 (1996).
- [4] Copper Indium Diselenide for Photovoltaic Applications, ed. by T.J. Coutts, L.L. Kazmerskii and S. Wagner (Elsevier, Amsterdam, 1986).
- [5] N.N. Konstantinova, M.A. Magomedov, V.Yu. Rud', Yu.V. Rud'. Jpn. J. Appl. Phys., 32(3), 106 (1993).
- [6] И.В. Боднарь, А.А. Вайполин, В.Ю. Рудь, Ю.В. Рудь. ФТП, 28, 1322 (1994).
- [7] A.N.Y. Samaan, R. Waidhyanathan, R. Noufi, R.D. Tomlinson. Solar Cells, 16, 181 (1986).
- [8] Г.С. Ландсберг. Оптика (М., Высш. шк., 1976).
- [9] V.Yu. Rud', Yu.V. Rud', H.W. Schock. Abstracts Int. Conf. POLYSE'98 (Schwabisch Gmund, Germany, 1998) p. 37.
- [10] V.Yu. Rud', Yu.V. Rud', T. Walter, H.W. Schock. Proc. 11th Int. Conf. Ternary and Multinary Semiconductors (Salford, UK, Sept. 8–12, 1997) [Inst. Phys. Ser., № 152, 971 (1998)].
- [11] G.A. Medvedkin, Yu.V. Rud'. Phys. St. Sol. (a), 67, 333 (1981).
- [12] Р.Н. Бекимбетов. Автореф. канд. дис. (СПб., ФТИ им. А.Ф. Иоффе РАН, 1987).
- [13] Г.А. Медведкин, Р.Н. Бекимбетов, Т.Л. Макарова, А.Д. Смирнова, В.И. Соколова. ЖТФ, 57, 960 (1987).

Редактор Т.А. Полянская

Photosensitivity of CuInSe₂ structures, obtained by thermal treatment in different atmospheres

V.Yu. Rud*, Yu.V. Rud

* St. Petersburg State Technical University, 195251 St. Petersburg, Russia
A.F. loffe Physicotechnical Institute
Russian Academy of Sciences, 194021 St. Petersburg, Russia