Положение примесных атомов сурьмы в решетке PbS, определенное методом эмиссионной мессбауэровской спектроскопии на изотопе ¹¹⁹Sb(^{119m}Sn)

© В.Ф. Мастеров, Ф.С. Насрединов, П.П. Серегин, Н.П. Серегин, А.В. Ермолаев, С.И. Бондаревский

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Получена 19 января 1999 г. Принята к печати 20 января 1999 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопе 119 Sb $(^{119m}$ Sn) показано, что место локализации примесных атомов сурьмы в решетке PbS зависит от типа проводимости материала: в электронных образцах сурьма локализуется преимущественно в анионной подрешетке, а в дырочных — преимущественно в катионной подрешетке. Отмечается, что зарядовое состояние антиструктурного дефекта 119m Sn, образующегося в анионной подрешетке PbS после радиоактивного превращения 119 Sb, не зависит от положения уровня Ферми. Центр 119m Sn в катионной подрешетке PbS представляет собой электрически активную примесь замещения: в электронных образцах спектр отвечает нейтральному состоянию донорного центра (119m Sn⁴⁺), а в дырочных — двукратно-ионизованному состоянию этого центра (119m Sn⁴⁺).

В последние годы достигнут заметный прогресс в исследовании природы примесных состояний, образуемых в халькогенидах свинца атомами третьей и четвертой групп. В частности, для примесей третьей группы обнаружен эффект резонансного рассеяния носителей тока [1], а для примесей четвертой группы идентифицированы двухэлектронные центры с отрицательной корреляционной энергией [2]. Однако практически отсутствуют работы, посвященные изучению в халькогенидах свинца примесей пятой группы (As, Sb и Bi). Известно лишь, что эти примеси являются донорами, хотя доля электрически активных атомов существенно меньше единицы [3]. Может быть дано два объяснения последнего факта: либо значительная часть примесных атомов образует в решетке электрически неактивные комплексы (типа Sb₂Te₃), либо примесь распределяется между катионной (где она является донором) и анионной (где она должна быть акцептором) подрешетками. Выбор между альтернативными моделями возможен, если определено положение атомов сурьмы в решетках халькогенидов свинца. В настоящей работе такое определение осуществлено для случая примесных атомов сурьмы в сульфиде свинца PbS методом эмиссионной мессбауэровской спектроскопии на изотопе ¹¹⁹Sb(^{119m}Sn). На рис. а приведена схема образования мессбауэровского уровня ^{119m}Sn при использовании материнского изотопа ¹¹⁹Sb (период полураспада 38 ч). Учитывая, что энергия отдачи дочерних атомов ^{119m}Sn вследствие процесса электронного захвата в ¹¹⁹Sb и испускания нейтрино не превышает 1.4 эВ, можно сделать вывод, что радиоактивное превращение не приводит к смещению атомов олова из нормальных узлов кристаллической решетки. Таким образом, параметры эмиссионных мессбауэровских спектров 119 Sb(119m Sn) должны отражать валентное (зарядовое) состояние атомов ^{119m}Sn, локализованных в узлах, занятых атомами сурьмы.

Радиоактивный изотоп ¹¹⁹Sb получали на циклотроне по реакции ¹²⁰Sn $(p, 2n)^{119}$ Sb. Для выделения безносительного (carrier-free) препарата ¹¹⁹Sb мишень растворяли в концентрированной соляной кислоте, экстрагировали SbCl₃ изопропиленовым спиртом и очищали препарат методом анионного обмена. Мессбауэровские источники готовили путем сплавления образцов PbS с

a — схема распада ¹¹⁹Sb; эмиссионные мессбауэровские спектры ¹¹⁹Sb(^{119m}Sn) при T = 80 К для образцов *n*-PbS (*b*) и *p*-PbS (*c*). Показано разложение экспериментальных спектров на компоненты, отвечающие ^{119m}Sn⁰, ^{119m}Sn²⁺ и ^{119m}Sn⁴⁺.

Параметры	эмиссионных	мессбауэровских	спектров
¹¹⁹ Sb(^{119m} Sn) e	в PbS при темпер	атуре 80 К	

Тип проводимости	Тип спектра	Примесный центр	<i>I. S.</i> , мм/с	Г, мм/с	<i>S</i> ,%
n	Ι	$^{119m}\mathrm{Sn}^{0}$	2.34	1.34	78
	Π	$^{119m}Sn^{2+}$	3.73	1.33	22
p	Ι	$^{119m}\mathrm{Sn}^{0}$	2.33	1.33	21
	III	$^{119m}Sn^{4+}$	1.23	1.32	79
Погрешности			± 0.01	±0.02	± 2

Примечание. I. S. — изомерный сдвиг относительно $CaSnO_3$, Γ — ширина спектра на полувысоте, S — площадь под спектром.

безносительным препаратом ¹¹⁹SbCl₃, так что оценочная концентрация примесных атомов сурьмы не превышала 10^{17} ат · см⁻³. Исходные образцы PbS были электронного типа (с избытком свинца, концентрация электронов $n \simeq 5 \cdot 10^{18}$ см⁻³) и дырочного типа (с избытком серы, концентрация дырок $p \simeq 10^{18}$ см⁻³).

Мессбауэровские спектры ¹¹⁹Sb(^{119m}Sn) измерялись на промышленном спектрометре CM-2201 при 80 K с поглотителем CaSnO₃ (поверхностная плотность по олову 5 мг · см⁻²). Спектр с таким поглотителем и источником Ca^{119m}SnO₃ представлял собой одиночную линию с шириной на полувысоте $\Gamma = 0.79 \pm 0.01$ мм/с, которая принималась за аппаратурную ширину спектральной линии. Типичные спектры образцов PbS:¹¹⁹Sb приведены на рис. *b*, *c*, а результаты их обработки сведены в таблице.

Спектр образца *п*-типа представляет собой наложение двух линий. Ширины обеих линий существенно превышают аппаратурную ширину, что указывает на искажение кубического окружения дочерных атомов ^{119m}Sn. Причина этого искажения неясна — ею может быть, например, нецентральное положение ионов олова, возникающее из-за большого отличия их размеров от размеров замещаемых ионов Pb²⁺ или S²⁻. Одна из этих линий (она преобладает в образцах *n*-типа и мы обозначим ее как спектр І) имеет изомерный сдвиг, характерный для сплавов и интерметаллических соединений олова, и ее следует приписать центрам ^{119m}Sn⁰ в анионной подрешетке PbS (в ближайшем окружении этих центров находятся атомы свинца, и взаимодействие олова с ними приводит к изомерному сдвигу, типичному для металлических сплавов олова). Очевидно, что атомы ^{119m}Sn⁰ образуются из атомов ¹¹⁹Sb, находящихся в анионной подрешетке PbS. Вторая линия (спектр II) имеет изомерный сдвиг, характерный для соединений двухвалентного олова, и ее следует приписать центрам ^{119m}Sn²⁺ в катионной подрешетке PbS (в ближайшем окружении этих центров находятся атомы серы, и взаимодействие олова с ними приводит к изомерному сдвигу, близкому к изомерному сдвигу спектра ¹¹⁹Sn соединения SnS). Очевидно, что атомы ^{119m}Sn²⁺ образуются из атомов ¹¹⁹Sb, находящихся в катионной подрешетке PbS.

Спектр образца *p*-типа также представляет собой наложение двух уширенных линий. Одна из этих линий имеет параметры, близкие к параметрам спектра типа *I* (она преобладала в образцах *n*-типа, однако ее интенсивность в образцах *p*-типа существенно уменьшается). Этот спектр следует приписать центрам ^{119m}Sn⁰, которые образовались из атомов ¹¹⁹Sb, находящихся в анионной подрешетке PbS. Вторая линия (спектр *III*) имеет изомерный сдвиг, характерный для соединений четырехвалентного олова, и ее следует приписать центрам ^{119m}Sn⁴⁺, которые образовались из атомов ¹¹⁹Sb, находящихся в катионной подрешетке PbS.

Таким образом, локализация примесных атомов сурьмы в решетке PbS зависит от характера нарушения стехиометрии материала: в образцах с избытком свинца сурьма локализуется преимущественно в анионной подрешетке, а в образцах с избытком серы — преимущественно в катионной подрешетке (и играет роль донора). Доля электрически активных атомов сурьмы зависит от распределения сурьмы между подрешетками, но она всегда меньше единицы, так что даже в образцах *р*-типа значительная часть атомов сурьмы оказывается в анионной подрешетке.

Следует отметить, что центр ¹¹⁹Sn в анионной подрешетке PbS (ему соответствует спектр типа I) представляет собой антиструктурный дефект и, как следует из независимости изомерного сдвига спектра I от типа проводимости материала, зарядовое состояние антиструктурного дефекта не зависит от положения уровня Ферми. Центр ^{119m}Sn в катионной подрешетке PbS (ему соответствуют спектры типа II и III) представляет собой изоэлектронную примесь замещения. Как следует из данных авторов [3], изоэлектронная примесь олова в PbS является электрически активной и играет роль двухэлектронного донора с отрицательной корреляционной энергией. Это объясняет обнаруженную нами зависимость изомерного сдвига спектра для таких центров от типа проводимости материала: в электронных образцах спектр отвечает нейтральному состоянию донорного центра $(^{119m}\mathrm{Sn}^{2+})$, а в дырочных — двукратно-ионизованному состоянию (119m Sn $^{4+}$).

Список литературы

- [1] В.И. Кайданов, С.А. Немов, Ю.И. Равич. ФТП, **26**, 201 (1992).
- [2] В.Ф. Мастеров, Ф.С. Насрединов, С.А. Немов, П.П. Серегин. ФТП, **31**, 327 (1997).
- [3] В.Ф. Мастеров, Ф.С. Насрединов, С.А. Немов, П.П. Серегин. ФТП, 30, 840 (1996).

Редактор Т.А. Полянская

The position of antimony impurity atoms in PbS as determined by the ¹¹⁹Sb(^{119m}Sn) emission Mössbauer spectroscopy

V.F. Masterov, F.S. Nasredinov, P.P. Seregin, N.P. Seregin, A.V. Ermolaev, S.I. Bondarevskii

St. Petersburg State Technical University, 195251 St. Petersburg, Russia

Abstract The ¹¹⁹Sb(^{119m}Sn) emission Mössbauer spectroscopy study has established that a localization site of antimony impurity atoms in the PbS lattice depends on the conductivity type. Antimony predominantly occupies the anion or cation sublattices in *n*- and *p*-type samples, respectively. A charge state of the ^{119m}Sn antistructural defect arising in the anion sublattice of PbS after the radioactive transformation of ¹¹⁹Sb has been found to be unaffected by the Fermi level position. The ^{119m}Sn center in the cation sublattice of PbS is an electrically active substitution impurity. Its Mössbauer spectra correspond to a neutral (^{119m}Sn²⁺) or to a two-fold ionized (^{119m}Sn⁴⁺) states of a donor in *n*- and *p*-type samples, respectively.