## Сравнение температурных зависимостей квантовой эффективности фотоэлектропреобразования *p*-*n*-структур и диодов Шоттки на основе GaAs

© Ю.А. Гольдберг, О.В. Константинов, В.М. Лантратов, О.И. Оболенский, Т.В. Петелина, Е.А. Поссе, М.З. Шварц

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 9 декабря 1998 г. Принята к печати 15 декабря 1998 г.)

Проведено сравнение температурных зависимостей квантовой эффективности фотоэлектропреобразования p-n- и m-s-структур на основе GaAs. В области энергий фотонов порядка ширины запрещенной зоны температурные зависимости p-n- и m-s-структур подобны. В области энергий фотонов, больших ширины запрещенной зоны, квантовая эффективность p-n-структур от температурны не зависит, в то время как квантовая эффективность m-s-структур проявляет сильную температурную зависимость. Дано качественное объяснение этому явлению.

**1**. В настоящее время полупроводниковые приборы на основе GaAs широко используются в качестве детекторов излучения, причем в видимой области спектра наибольшее распространение получили приборы на основе p-n-структур (см., например, [1]), а в ультрафиолетовой области — диоды Шоттки (m-s-структуры) (см., например, [2]).

В работе [3] изучалась температурная зависимость квантовой эффективности фотоэлектропреобразования диодов Шоттки на основе GaAs с целью определения механизма фототока в этих структурах. Было обнаружено возрастание фототока с ростом температуры. Это явление было объяснено наличием несовершенств в приповерхностном слое. Совместный анализ температурных и полевых зависимостей квантовой эффективности таких структур, представленный в работе [4], позволил сделать вывод о том, что эти несовершенства проявляются только в фотоэлектрических свойствах структур и не могут быть идентифицированы ни как мелкие, ни как глубокие примесные уровни (заряженные или нет). В электрическом поле слоя объемного заряда они становятся ловушками и захватывают одновременно фотоэлектроны и фотодырки. Зависимость квантовой эффективности фотоэлектропреобразования от температуры описывается в рамках активационной модели: с ростом температуры часть носителей высвобождается из ловушек и дает вклад в фототок.

Настоящая работа продолжает эти исследования. Ее цель состоит в сравнении температурных зависимостей квантовой эффективности p-n- и m-s-фотодетекторов на основе GaAs. Это сравнение показало, что, когда энергия фотона  $h\nu$  больше ширины запрещенной зоны  $E_g$ , фототок в p-n-структурах на основе GaAs не проявляет температурной зависимости. Таким образом, можно заключить, что в фоточувствительном слое вблизи p-n-перехода отсутствуют ловушки фотоносителей, тогда как в m-s-структурах их концентрация очень велика.

Исследуемые солнечные элементы 2. в виле p-n-структур на основе GaAs имели следующую структуру: *n*-GaAs(подложка)–брегговский рефлектор-*n*-GaAs-*p*-GaAs-*p*-AlGaAs. Они изготавливались методом газофазной эпитаксии из металлорганических соединений (МОС-гидридной эпитаксии) при пониженном давлении в горизонтальном реакторе [5]. Слои GaAs n- и p-типа проводимости создавались путем легирования донорами и акцепторами из силана и Cp<sub>2</sub>Mg и имели соответственно толщины d = 1.6, 0.4 мкм и концентрации носителей заряда  $n = 10^{15} \, \mathrm{cm}^{-3}$ ,  $p = 10^{19} \,\mathrm{cm}^{-3}$  при температуре  $T = 300 \,\mathrm{K}$ . Слой *p*-Al<sub>0.8</sub>Ga<sub>0.2</sub>As представлял собой оптическое окно и имел толщину d = 0.05 мкм. Брегговский рефлектор состоял из 12 пар слоев AlAs/GaAs. Плошаль освещаемой поверхности составляла 0.1258 см<sup>2</sup>. Ha рис. 1 представлен спектр квантовой эффективности фотоэлектропреобразования ( $\gamma$ ) этих p-n-структур в интервале  $h\nu = 1.35 \div 3.65$  эВ.

Диоды Шоттки имели структуру  $n^+$ -GaAs (подложка)– n-GaAs–Ni [3]. Подложка  $n^+$ -GaAs имела толщину 200 мкм и была легирована до концентрации электронов ~  $10^{17}$  см<sup>-3</sup> (T = 300 K), слой *n*-GaAs имел толщину ~ 10 мкм и концентрацию электронов  $10^{15}$  см<sup>-3</sup>. Барьерный контакт создавался химическим осаждением никеля на эпитаксиальный *n*-слой. Площадь освещаемой поверхности составляла 0.06 см<sup>2</sup>. На рис. 2 представлен спектр квантовой эффективности фотоэлектропреобразования ( $\gamma$ ) *m*-*s*-структур в интервале  $h\nu = 1 \div 5$  эВ.

Предметом исследования была температурная зависимость квантовой эффективности p-n- и m-s-структур на основе GaAs в температурном интервале  $T = 80 \div 360$  К и в интервале энергий фотонов  $h\nu = 1 \div 5$  эВ. Измерения проводились в режиме фототока короткого замыкания, квантовая эффективность определялась по стандартной формуле  $\gamma = Ih\nu/P$ , где I — фототок (A), P поток падающего света (BT),  $h\nu$  — энергия падающих фотонов (эВ).



**Рис. 1.** Зависимость квантовой эффективности фотоэлектропреобразования *p*-*n*-структур на основе GaAs от энергии фотонов. BR — брэгтовский отражатель, ARC — антиотражающее покрытие.



**Рис. 2.** Зависимость квантовой эффективности фотоэлектропреобразования *m*-*s*-структур на основе GaAs от энергии фотонов.

**3**. Результаты проведенных экспериментов представлены на рис. 3 и 4 и сводятся к следующему.

**3.1**. В области энергий фотонов  $h\nu$ , меньших ширины запрещенной зоны  $E_g$  (для GaAs  $E_g = 1.425$  и 1.5 эВ при 300 и 100 К соответственно), температурные зависимости квантовой эффективности  $\gamma$  для p-n- и

m-s-структур подобны. С ростом температуры квантовая эффективность возрастает, что связано с уменьшением ширины запрещенной зоны  $E_g$  и ростом коэффициента поглощения света.

Отметим, что фоточувствительность m-s-структур возникает при меньших энергиях фотонов (1.33 эВ), чем



**Рис. 3.** Зависимость квантовой эффективности фотоэлектропреобразования p-n-структур на основе GaAs от температуры для нескольких энергий фотонов  $h\nu$ , эВ: 1, 1' — 1.36, 2 — 1.42, 3 - 1.54, 4 - 1.77, 5 - 3.00. 1' — правая шкала, остальные левая.



**Рис. 4.** Зависимость квантовой эффективности фотоэлектропреобразования m—s-структур на основе GaAs от температуры для нескольких энергий фотонов  $h\nu$ , эВ: 1 - 1.33, 2 - 1.36, 3 - 1.42, 4 - 1.54, 5 - 1.77.

у p-n-структур (1.36 эВ), что объясняется наличием "фаулеровского" участка фоточувствительности у m-sструктур (эмиссия электронов из металла и переход их в полупроводник).

**3.2**. В области энергий фотонов  $h\nu$ , близких к ширине запрещенной зоны, для обоих типов структур при низких температурах, когда  $E_g > h\nu$ , квантовая эффективность существенно возрастает с ростом температуры. При высоких температурах, когда  $E_g \simeq h\nu$  и  $E_g < h\nu$ , квантовая эффективность практически постоянна.

**3.3.** В области энергий фотонов  $h\nu$ , больших ширины запрещенной зоны  $E_g$ , температурные зависимости квантовой эффективности  $\gamma$  для p-n- и m-s-структур существенно различны.

В случае p-n-структур квантовая эффективность  $\gamma$  практически не зависит от температуры. В случае m-s-структур квантовая эффективность возрастает с ростом температуры. При высоких энергиях фотонов и высокой температуре зависимость  $\gamma = \gamma(T)$  имеет тенденцию к насыщению.

В области  $h\nu > 2.5$  эВ фоточувствительность p-nструктур падает, что связано с сильным поглощением света вблизи поверхности. Вместе с тем, фоточувствительность m-s-структур наблюдается даже при очень высоких энергиях фотонов ( $h\nu \simeq 5$  эВ).

**4**. Главное отличие в температурных зависимостях квантовой эффективности p-n структур и диодов Шоттки на основе GaAs заключается в том, что в области собственного поглощения полупроводника квантовая эффективность не зависит от температуры в случае p-n-структур и возрастает в случае диодов Шоттки.

Мы предполагаем, что это различие связано с несовершенствами, которые всегда имеют место в приповерхностной области полупроводника. В слое объемного заряда, т.е. в присутствии электрического поля, эти несовершенства могу проявлять себя как ловушки носителей заряда, способные захватывать и электроны, и дырки. С ростом температуры носители заряда могут высвобождаться и вносить вклад в фототок.

Поскольку в диодах Шоттки слой объемного заряда находится в приповерхностной области, этот эффект характерен именно для диодов Шоттки. В p-n-структурах слой объемного заряда находится в глубине кристалла, и влияние приповерхностных ловушек невелико. Поэтому квантовая эффективность практически не зависит от температуры.

Таким образом, p-n-структуры на основе GaAs имеют более высокую температурную стабильность по сравнению с m-s-структурами, в то время как диоды Шоттки имеют более высокую фоточувствительность в коротковолновой области спектра по сравнению с p-n-структурами.

## Список литературы

- V.M. Andreev, V.V. Komin, I.V. Kochnev, V.M. Lantratov, M.Z. Shvarts. Proc. 1 st World Conf. on Photovoltaic Energy Conversation (Hawaii, 1994) p. 1824.
- [2] Yu.A. Goldberg, O.V. Konstantinov, E.A. Posse, B.V. Tsarenkov. Sensors and Actuators, A58, 121 (1997).
- [3] Ю.А. Гольдберг, О.В. Константинов, О.И. Оболенский, Е.А. Поссе, Б.В. Царенков. ФТП, **31**, 563 (1997).
- [4] Yu.A. Goldberg, O.V. Konstantinov, O.I. Obolensky, T.V. Petelina, E.A. Posse. J. Phys.: Condens. Matter., 10 (2) (1999).
- [5] M.Z. Shvarts, O.I. Chosta, I.V. Kochnev, V.M. Lantratov. Proc. 5th European Space Power Conf. (ESASP-416) (Tarragona, 1998) p. 513.

Редактор Л.В. Шаронова

## The comparison of temperature dependencies of photoeffect quantum efficiency of GaAs p-n structures and Schottky diodes

Yu.A. Goldberg, O.V. Konstantinov, V.M. Lantratov, O.I. Obolensky, T.V. Petelina, E.A. Posse, M.Z. Shvarts

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194223 St. Petersburg, Russia

**Abstract** The comparison of temperature dependencies of photoeffect quantum efficiency of GaAs p-n and m-s structures is reported. In the photon energy range near the band gap the temperature dependencies of p-n and m-s structures are similar. In the photon energy range above the band gap, the quantum efficiency of the p-n structures does not depend on temperature while the quantum efficiency of m-s structures shows a strong temperature dependence. The qualitative explanation of this phenomenon is given.

E-mail: oleg@rpro.ioffe.rssi.ru