Изменение концентрации *U*⁻-центров в халькогенидных стеклообразных полупроводниках системы Se–As при легировании металлами и галогенами

© Л.П. Казакова, К.Д. Цэндин

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 28 декабря 1998 г. Принята к печати 30 декабря 1998 г.)

Исследованы температурные зависимости дрейфовой подвижности электронов и дырок в халькогенидном стеклообразном полупроводнике состава Se₉₅As₅ без примесей и с примесями Ag и Br. Полученные данные указывают на то, что локализованными состояниями, контролирующими перенос носителей заряда, являются U^- -центры и изменение величины дрейфовой подвижности при легировании обусловлено изменениями концентрации этих центров. Проведенная оценка концентраций положительно и отрицательно заряженных собственных дефектов показала, что их значения близки и составляют $\sim 10^{16}$ см⁻³ в стеклах состава Se₉₅As₅ без примесей и изменяются в интервале $10^{13} \div 10^{17}$ см⁻³ при легировании Ag, Br и Cl. Установлено, что наиболее сильно (на 2÷3 порядка) изменяют концентрацию U^- центров примеси галогенов. Анализ полученных данных показал, что количество электрически активных атомов примесей Br и Cl в Se₉₅As₅ составляет 1%, а примеси Ag — 10^{-2} %.

Введение

В настоящее время можно считать установленным, что преобладающим типом собственных дефектов в халькогенидных стеклообразных полупроводниках (ХСП) являются дефекты с отрицательной эффективной энергией корреляции (U^- -центры) [1–7]. В основном состоянии U^- -центры существуют в виде заряженных точечных дефектов D^+ и D^- . Именно поэтому их концентрация может быть изменена при введении в ХСП примеси, способной образовывать заряженные состояния [3–5]. Влияя на концентрацию U^- -центров, можно управлять такими важнейшими свойствами ХСП, как электропроводность, фотопроводимость, люминесценция [1–7].

Вопрос об изменении концентрации U⁻-центров в последнее время приобрел еще и другое важное значение. Сегодня в литературе обсуждается возможность существования сверхпроводящего состояния в системе биполяронов малого радиуса (БМР) [8-12]. Два заряженных состояния U^- -центра (D^+ и D^-) являются по своей сути классическими представителями БМР. Возможность сверхпроводящего перехода в системе БМР в сильнейшей степени зависит от их концентрации. В отличие от других материалов (например, материалов с высокотемпературной сверхпроводимостью), в которых само существование БМР не установлено однозначно, в XCП наличие U⁻-центров, т.е. БМР, не вызывает сомнений. Поэтому возможность управления концентрацией U⁻-центров с помощью легирования позволяет надеяться на создание на базе ХСП модельного материала для исследования проблемы перехода в сверхпроводящее состояние в системе биполяронов малого радиуса.

В данной работе с целью определения концентрации U^- -центров и их энергетического положения в ХСП системы Se–As проводились измерения дрейфовой подвижности носителей заряда в стеклах состава Se₉₅As₅ в широком интервале температур $T = 290 \div 360$ K.

Методика эксперимента

Выбор объекта для исследований обусловлен тем, что в ХСП состава Se₉₅As₅ подвижными носителями заряда являются как дырки, так и электроны [13–16].

В качестве примесей использовались Ag (электроположительная примесь) и Br, Cl (электроотрицательная примесь). Примесь вводилась в материал в процессе синтеза, ее концентрация находилась в пределах $10^{16} \div 10^{21}$ см⁻³.

Образцы для измерений имели структуру типа "сэндвич" и представляли собой слои толщиной $\sim 1.5 \div 2.2$ мкм, приготовленные термическим испарением в вакууме при остаточном давлении 10^{-6} мм рт. ст. В качестве подложек использовались полированные стеклянные пластинки, на которые предварительно наносился нижний электрод из алюминия или In_2O_3 . Верхним электродом служила полупрозрачная пленка алюминия, напыленная в вакууме на слой исследуемого материала. Концентрация примеси в пленках принималась равной содержанию ее в навеске. Температура образцов контролировалась с помощью термопары.

Для исследования дрейфовой подвижности использовался метод измерения времени пролета [17]. Инжекция носителей заряда в образец осуществлялась импульсом сильно поглощаемого излучения с длиной волны 0.33 мкм и длительностью ~ 8 нс, получаемым от лазера ЛГИ-21.

Время пролета носителей заряда через образец t_T определялось из зависимости фототока от времени. Значение дрейфовой подвижности рассчитывалось по формуле $\mu = L/t_T F$, где L — толщина образца, F — напряженность электрического поля.

Если перенос носителей заряда контролируется захватом носителей на дискретный уровень ловушек, расположенный на расстоянии ΔE от края разрешенной зоны,

то выражение для дрейфовой подвижности записывается в виде

$$\mu = \mu_0 (N_c/N_t) \exp(-\Delta E/kT), \qquad (1)$$

где μ_0 — подвижность носителей заряда в разрешенной зоне, N_c и N_t — эффективная плотность состояний в разрешенной зоне и плотность локализованных состояний соответственно [18]. Это выражение может быть использовано для определения концентрации ловушек, контролирующих перенос.

Экспериментальные результаты и их обсуждение

На рис. 1 приведены экспериментальные данные, полученные при исследовании зависимости дрейфовой подвижности от температуры как в материале без примесей, так и в легированных материалах с концентрациями серебра 5.7 ат% и брома 10^{-4} ат%. Из рисунка видно, что значения энергии активации дрейфовой подвижности электронов (ΔE_e) и дырок (ΔE_h) в образцах с примесью серебра и брома близки ($\Delta E_e \simeq \Delta E_h \simeq 0.44 \div 0.46$ эВ) и не отличаются существенно от величин соответствующих энергий активации, установленных в нелегированном материале ($\Delta E_e \simeq \Delta E_h \simeq 0.46 \div 0.48$ эВ). В то же время из полученных данных видно, что величина дрейфовой подвижности носителей заряда изменялась при легировании. Так, при введении 5.7 ат% Ад более чем на порядок возрастала подвижность электронов (μ_e) и приблизительно на столько же уменьшалась подвижность дырок (μ_h). Отметим, что подобный характер изменений подвижности носителей заряда наблюдался и в стеклообразном As₂Se₃ при введении примесей Ag и других металлов [19-21].

Поведение дрейфовых подвижностей, соответствующее возрастанию подвижности носителей заряда одно-

Рис. 1. Зависимость дрейфовой подвижности дырок (1, 3, 5) и электронов (2, 4, 6) от температуры, полученная в стеклах состава Se₉₅As₅ без примесей (1, 2), с примесью 5.7 ат% Ag (3, 4) и 10^{-4} ат% Br (5, 6). Напряженность поля $1 \cdot 10^4$ B/см.

го знака при одновременном уменьшении подвижности носителей заряда другого знака, наблюдалось также и в случае легирования галогенами (Вг и Cl) стекол состава Se₉₅As₅ [22]. Так, при введении примеси Вг на концентрационной зависимости дрейфовой подвижности, начиная с концентрации [Br] $\simeq 10^{-4}$ ат%, имеется участок, на котором происходит увеличение μ_h и уменьшение μ_e .

Установленный в данной работе факт практического совпадения значений энергии активации дрейфовой подвижности носителей заряда в легированных и нелегированных образцах позволяет связать изменения в величине дрейфовой подвижности с изменениями в концентрации контролирующих перенос локализованных состояний и использовать для объяснения экспериментальных данных представления, развитые в рамках модели заряженных собственных дефектов [1–5].

Согласно этой модели, перенос носителей заряда в ХСП контролируется U^- -центрами, представляющими собой заряженные дефекты D^+ и D^- , которые образуются из исходных нейтральных дефектов D^0 по реакции

$$2D^0 \to D^+ + D^-.$$
 (2)

Так как D^+ - и D^- -центры являются ловушками для электронов и дырок, то в соответствии с формулой (1) величина дрейфовой подвижности обратно пропорциональна концентрации этих центров:

$$\mu_e \sim 1/[D^+], \quad \mu_h \sim 1/[D^-].$$
 (3)

Влияние примесей на концентрацию D^+ - и D^- -центров происходит следующим образом. При введении в материал отрицательно (или положительно) заряженной примеси $A^-(A^+)$ должен выполняться закон электронейтральности:

$$[A^{-}] + [D^{-}] = [D^{+}]$$
 или $[A^{+}] + [D^{+}] = [D^{-}].$ (4)

Количественное соотношение между концентрациями заряженных центров, образующихся по реакции (2), в соответствии с законом действующих масс записывается в виде

$$[D^+] [D^-] = [D^0]^2 = \text{const.}$$
 (5)

Из выражения (5) и уравнения (4) следует, что при возрастании концентрации $[A^-]$ концентрация D^+ -центров должна увеличиваться, а концентрация D^- -центров уменьшаться. При введении положительно заряженной примеси A^+ наблюдается обратная картина: $[D^+]$ уменьшается, а $[D^-]$ возрастает. Согласно формулам (3), такие изменения в концентрации заряженных U^- -центров приведут к соответствующим изменениям в величине дрейфовой подвижности носителей заряда, подобным полученным в эксперименте.

На основании изложенных выше представлений в данной работе была проведена оценка концентрации D^+ - и D^- -центров в слоях ХСП состава Se₉₅As₅, легированных Ag, Br и Cl. Для оценки использовалось выражение (1) в предположении, что $\mu_0 = 10 \text{ см}^2/\text{B}\cdot\text{с}$ и $N_c = 10^{19} \text{ см}^{-3}$.

Рис. 2. Зависимость концентрации отрицательно (1) и положительно (2) заряженных собственных дефектов в стеклах состава Se₉₅As₅ от содержания примеси Br (a) и Cl (b). Точки соответствуют значениям, определенным из экспериментальных данных по формуле (1). Данные о значениях дрейфовой подвижности при концентрациях примеси Br и Cl в интервале $10^{17} \div 10^{19}$ см⁻³ взяты из работы [22]. Штриховые линии — теоретические зависимости: 1 — расчет по формуле (7), 2 — расчет по формуле (8).

В результате получено, что при введении в материал 5.7 ат% Ад концентрация D^- -центров возрастала до ~ 10^{17} см⁻³, а концентрация D^+ -центров уменьшалась до ~ 10^{15} см⁻³. Легирование галогенами приводило к уменьшению $[D^-]$ до ~ 10^{13} см⁻³ и увеличению $[D^+]$ до ~ 10^{17} см⁻³ (рис. 2).

Учитывая, что в Se₉₅As₅ без примесей оценка концентраций D^+ - и D^- -центров дает значения $[D^+] \simeq [D^-] \simeq 10^{16} \text{ см}^{-3}$, из уравнения (5) получаем $[D^+][D^-] \simeq 10^{32} \text{ см}^{-6}$, т.е. $[D^0] \simeq 10^{16} \text{ см}^{-3}$. Результат согласуется с данными, полученными при легировании серебром, поскольку и в этом случае $[D^+][D^-] = [D^0]^2 \simeq 10^{32} \text{ см}^{-6}$.

На основании этих данных можно оценить концентрацию положительно заряженных центров примеси серебра $[A^+]$. Полагая $[A^+] \gg [D^+]$, из уравнения (4) получаем $[A^+] \simeq [D^-] \simeq 10^{17}$ см⁻³ при полной концентрации введенного серебра $\sim 10^{21}$ см⁻³. Таким образом, лишь один из 10⁴ атомов Ад проявляется в Se₉₅As₅ в качестве положительно заряженного центра. Большинство атомов примеси не являются электрически активными и, повидимому, встраиваются в матрицу вещества, удовлетворяя все свои валентные требования по "правилу 8-N", где N — число валентных электронов атома [6,7].

Что касается материала с примесью галогенов, то для оценки концентрации D^+ - и D^- -центров в этом случае использовались значения μ_e и μ_h , полученные как в данной работе, так и в работе [22]. При этом предполагалось, что энергия активации дрейфовой подвижности носителей заряда в образцах с примесью Cl не отличается существенно от установленной в данной работе для образцов, легированных Br. Как видно из рис. 2, в образцах с содержанием брома от $3.7 \cdot 10^{16}$ до $3.7 \cdot 10^{18}$ см⁻³ установлено уменьшение $[D^-]$ от $\sim 10^{15}$ до $\sim 10^{14}$ см⁻³ и увеличение $[D^+]$ от $\sim 10^{15}$ до $\sim 10^{16}$ см⁻³. В этом случае произведение $[D^+][D^-] \simeq 10^{30}$ см⁻⁶, т.е. $[D^0] \simeq 10^{15}$ см⁻³, т.е. на порядок меньше, чем в исходном нелегированном материале. Такое же значение произведения $[D^+][D^-] \simeq 10^{30}$ см⁻⁶ было установлено и в результате анализа экспериментальных данных, полученных на образцах, легированных хлором.

Причина, приводящая к уменьшению концентрации D^0 -центров в материале, легированном галогенами, не совсем ясна. Вероятно, для объяснения этого факта может быть использован механизм залечивания собственных дефектов, предложенный в работе [22]. Возможно также, что на концентрацию собственных дефектов влияют особенности процесса синтеза материала с примесью галогена, который имеет две стадии выдержки расплава при $T_1 = 700^{\circ}$ С и $T_2 = 430^{\circ}$ С в отличие от режима с одной стадией выдержки расплава при $T_1 = 700^{\circ}$ С, используемого для синтеза материала без примесей.

Для расчета зависимости концентрации заряженных U^- -центров от полной концентрации атомов галогенов [A] использовались уравнения (4) и (5) и предполагалось, что

$$[A^{-}] = k[A]. (6)$$

Подставив в уравнение (5) выражение для $[D^+]$ из (4), получаем следующее квадратное уравнение: $[D^-]^2 + [D^-][A^-] - [D^0]^2 = 0$, из которого при использовании (6) следует

$$[D^{-}] = -(k[A]/2) + (k[A]/2) \left\{ 1 + [D^{0}]^{2} / (k[A]/2)^{2} \right\}^{1/2},$$
(7)
$$[D^{+}] = (k[A]/2) + (k[A]/2) \left\{ 1 + [D^{0}]^{2} / (k[A]/2)^{2} \right\}^{1/2}.$$
(8)

На рис. 2 представлены расчетные данные, соответствующие выражениям (7) (кривая 1) и (8) (кривая 2), полученные при k = 0.02. Совпадение теоретических зависимостей (7) и (8) со значениями $[D^-]$ и $[D^+]$, определенными из экспериментальных данных, при k = 0.02свидетельствует о том, что при легировании бромом и хлором 1 из 50 атомов примеси в Se₉₅As₅ становится отрицательно заряженным, т.е. коэффициент k в этом случае на 2 порядка выше установленного ранее для примеси серебра.

Отметим также, что в области высоких концентраций примеси при значениях $[A^-]$, превосходящих $[D^-]$ на $2 \div 3$ порядка ([Br] $\gtrsim 10^{18}$ см⁻³, [Cl] $\gtrsim 10^{19}$ см⁻³), дрейфовая подвижность дырок, по-видимому, начинает ограничиваться захватом на отрицательно заряженные примесные центры, так как величина ее уменьшается по мере увеличения концентрации примесей [22]. Поскольку в этой области концентраций примесей [22]. Поскольку в этой области концентраций примесей [22]. Поскольку в этой области концентраций примесей [22]. Поскольку в этой области концентрации примесей [22]. Поскольку в этой области концентраций примеси величина $\Delta E_h \simeq 0.4$ эВ (что несколько меньше энергии, соответствующей положению уровня D^- -центров, ограничивающих μ_h при $[A] = 10^{16} \div 10^{18}$ см⁻³), а $[A^-] \gg [D^-]$, то можно сделать вывод о значительно меньшей вероятности захвата дырок на отрицательно заряженные примесные центры, чем на D^- -центры.

Заключение

В результате проведенных исследований установлено, что введение примесей Ag, Br и Cl в XCП состава Se₉₅As₅ приводит к значительному изменению величины дрейфовой подвижности электронов и дырок при практически неизменной ее энергии активации. Полученные данные указывают на то, что природа локализованных состояний, контролирующих перенос носителей заряда в XCП системы Se–As, связана с U^- -центрами и изменение величины дрейфовой подвижности при легировании обусловлено изменениями концентрации этих центров.

Приведенная оценка концентрации положительно и отрицательно заряженных собственных дефектов показала, что значения $[D^+]$ и $[D^-]$ близки и составляют $\sim 10^{16}$ см⁻³ в стеклах состава Se₉₅As₅ без примесей и изменяются в интервале $10^{13} \div 10^{17}$ см⁻³ при легировании Ag, Br и Cl. Установлено, что наиболее сильно (на 2 ÷ 3 порядка) изменяют концентрацию U^- -центров примеси галогенов.

Анализ полученных данных показал, что количество электрически активных атомов примесей Br и Cl в Se₉₅As₅ составляет 1%, а примеси Ag — 10⁻²%.

Авторы выражают благодарность Э.А. Лебедеву за ценные замечания при обсуждении работы, а также А.И. Исаеву и В.Н. Князевскому за помощь в приготовлении образцов.

Работа проводилась при поддержке Российского фонда фундаментальных исследований (грант 97-02-18079).

Список литературы

- [1] P.W. Anderson. Phys. Rev. Lett., 37, 953 (1975).
- [2] R.A. Street. N.F. Mott. Phys. Rev. Lett., 35, 1293 (1975).
- [3] N.F. Mott, E.A. Davis, R.A. Street. Phil. Mag. B, **32**, 961 (1975).
- [4] M. Kastner, D. Adler, H. Fritzsche. Phys. Rev. Lett., 37, 1504 (1976).
- [5] H. Fritzsche, M. Kastner. Phil. Mag. B, 37, 285 (1978).
- [6] Н.Ф. Мотт, Э.А. Дэвис. Электронные процессы в некристаллических веществах (М., Мир, 1982).
- [7] Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина (СПб., Наука, 1996).
- [8] B.P. Popov, K.D. Tsendin. Techn. Phys. Lett., 24, 265 (1998).
- [9] A.S. Alexandrov, J. Ranninger. Phys. Rev. B, 23, 1726 (1981).
- [10] N.F. Mott. Physica C, 205, 191 (1993).
- [11] B.K. Chakraverty, J. Ranninger, D. Feinberg. Phys. Rev. Lett., 81, 433 (1998).
- [12] A.S. Alexandrov. Phys. Rev. B, 53, 2863 (1996).
- [13] E. Montrimas, A. Pazera, J. Viscakas. Phys. St. Sol. (a), 3, K199 (1970).
- [14] F.D. Fisher, J.M. Marshall, A.E. Owen. Phil. Mag. B, 33, 261 (1976).
- [15] E.A. Lebedev, L. Toth, L.N. Karpova. Sol. St. Commun., 36, 139 (1980).

Физика и техника полупроводников, 1999, том 33, вып. 7

- [16] Э.А. Лебедев, Л.П. Казакова. В кн.: Электронные явления в халькогенидных стеклообразных полупроводниках, под ред. К.Д. Цэндина (СПб., Наука, 1996) гл. 4, с. 171.
- [17] W.E. Spear. J. Non-Cryst. Sol., 1, 197 (1969).
- [18] А. Роуз. Основы теории фотопроводимости (М., Мир, 1969) с. 140.
- [19] Л.П. Казакова, Э.А. Лебедев. ФТП, 32, 803 (1998).
- [20] G. Pfister, M. Morgan. Phil. Mag. B, 41, 209 (1980).
- [21] В.Л. Аверьянов, Л.П. Казакова, С.С. Лантратова, Э.А. Лебедев, О.Ю. Приходько. ФТП, 17, 928 (1983).
- [22] Л.П. Казакова, Э.А. Лебедев, А.И. Исаев, С.И. Мехтиева, Н.Б. Захарова, И.И. Ятлинко. ФТП, 27, 959 (1993).

Редактор Л.В. Шаронова

Variation of U^- -center density in Se–As chalcogenide glassy semiconductors by doping with metals and halogens

L.P. Kazakova, K.D. Tsendin

A.F.loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract Temperature dependence of electron and hole drift mobilities in a glassy impurity–free semiconductor Se₉₅As₅ and in the same material but doped with Ag and Br has been investigated. The data obtained indicate that localized states, which control the carrier transport, are U^- -centers and the change in the drift mobility level upon doping results from the center density change. The estimations show, that the concentration values of positively (D^+) and negatively (D^-) charged intrinsic defects are of the same order $\sim 10^{16}$ cm⁻³ in the undoped Se₉₅As₅ glass and change in the range $10^{13} \div 10^{17}$ cm⁻³ under doping with Ag, Br and Cl. It has been established that the concentration of U^- -centers is most strougly changed by halogens (2 or 3 orders of magnitude).

The analysis of data obtained indicates that the number of electrically active impurity atoms in $Se_{95}As_5$ is 1% for Br and Cl and 10^{-2} % for Ag.

E-mail: kazakova@ivom.ioffe.rssi.ru