Электрофизические свойства эпитаксиального арсенида индия и узкозонных твердых растворов на его основе

© Т.И. Воронина, Т.С. Лагунова, К.Д. Моисеев, А.Е. Розов, М.А. Сиповская, М.В. Степанов, В.В. Шерстнев, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 3 декабря 1998 г. Принята к печати 8 декабря 1998 г.)

Исследованы электрические свойства эпитаксиальных слоев InAs и твердых растворов на его основе (InGaAsSb, InAsSbP, InAsGa, InAsP). Показано, что все специально не легированные кристаллы имеют *n*-тип проводимости, который определяется мелкими донорными примесями ($E_1 = 0.002 - 0.003$ эВ) и структурными дефектами ($E_2 = 0.02 - 0.03$ эВ и $E_3 = 0.09 - 0.10$ эВ).

Показано, что выращивание слоев InAs при использовании нейтрального растворителя — свинца, а также редкоземельных элементов позволяет снизить концентрацию электронов почти на порядок (до 3 · 10¹⁵ см⁻³) за счет уменьшения концентрации структурных дефектов.

Интерес к исследованию эпитаксиального арсенида индия и узкозонных твердых растворов, близких ему по составу, обусловлен широким применением этих материалов в оптоэлектронной технике. Приборы, созданные на их основе, перекрывают спектральный диапазон от 2.7 до 6 мкм. Электрические и фотоэлектрические свойства эпитаксиального арсенида индия, во многом отличающиеся от свойств InAs, выращенного методом Чохральского, достаточно хорошо изучены, в том числе и в наших работах [1,2]. Нами был определен его энергетический спектр, выявлены природные структурные дефекты, предложены и осуществлены методы повышения качества кристаллов (уменьшение концентрации структурных дефектов и повышение подвижности носителей тока). Мы также исследовали гальваномагнитные и фотоэлектрические свойства некоторых узкозонных твердых растворов на основе арсенида индия, таких как $In_xGaAsSb$ (x = 0.8-0.9) и $InAsSbP_x$ (x = 0.03 - 0.26) [3-5].

В настоящей работе обобщаются полученные нами результаты как по эпитаксиальному арсениду индия, так и по близким ему твердым растворам, а также исследуются новые узкозонные материалы, для того чтобы найти общие закономерности и предложить пути совершенствования кристаллов.

Результаты исследования эпитаксиального арсенида индия

Изучались эпитаксиальные пленки InAs, выращенные на подложках арсенида индия ($n = 3 \cdot 10^{16} \text{ см}^{-3}$) при температурах 550–650°С. Исследовались их гальваномагнитные свойства (концентрация электронов *n*, коэффициент Холла *R*, электропроводность σ , магнитосопротивление $\Delta \rho / \rho$) и фотопроводимость в интервале температур T = 77-300 К. Эпитаксиальные слои были достаточно толстыми (40–80 мкм), поэтому для электрофизических измерений подложка сошлифовывалась.

Все образцы InAs, выращенные методом жидкофазной эпитаксии, имели *n*-тип проводимости, причем концентрация электронов возрастала, а их подвижность падала с уменьшением температуры выращивания. Электрофизические параметры эпитаксиальных пленок, полученных при разных температурах представлены в табл. 1. В этой же таблице приведены значения параметров для стандартных образцов, выращенных методом Чохральского. Видно, что концентрация электронов в эпитаксиальных пленках всегда приблизительно на порядок выше, чем в кристаллах InAs, полученных методом Чохральского ($t = 940^{\circ}$ C), а подвижность ниже в 2 и более раз. Это обусловлено тем, что в кристаллах арсенида индия, выращенных методом Чохральского, проводимость определяется лишь мелкими фоновыми примесями (S, Se, Te) с энергией активации E = 0.002 эВ (см. табл. 1). В кристаллах, выращенных методами жидкофазной эпитаксии при $t = 650-550^{\circ}$ С, как показало исследование фотопроводимости и зависимости коэффициента Холла от температуры, кроме этого существуют примеси с энергией активации с E₂ = 0.02-0.03 эВ, обусловленные нарушением стехиометрии в растворе-расплаве при понижении температуры роста пленки. В соответствии с диаграммой состояний [6] при таких температурах InAs кристаллизуется в решетку с недостатком As. В результате возникает донорный структурный дефект "вакансия мышьяка + захваченная им примесь" (V_{As} + примесь), которая увеличивает концентрацию электронов в эпитаксиальной пленке. Соотношение As и In, а следовательно, количество структурных дефектов и концентрация электронов в кристалле зависит от температуры выращивания, что подтверждают данные табл. 1.

Нами был предложен метод уменьшения концентрации структурных дефектов в эпитаксиальном арсениде индия путем введения в раствор–расплав нейтрального растворителя свинца [1], что позволило менять соотношение концентраций As и In в растворе–расплаве. Экспериментально было установлено (см. табл. 2), что при увеличении концентрации Pb (до 70 мол%) кон-

Метод	Температура	Состав, мол%		$T = 77 \mathrm{K}$		F. 'Ap	Fa pB	Fa aB
получения	роста, °С	In	As	$n imes 10^{-17} \mathrm{cm}^{-3}$	μ , см $^2/{ m B}\cdot{ m c}$	Е₁, Эв	E ₂ , 3D	<i>L</i> ₃ , 3D
Чохральского	940	50	50	0.27	34 500	0.002	Нет	Нет
ЖФЭ	650	91.7	8.3	3.8	15 200	0.001	0.015	Нет
ЖФЭ	600	94.8	5.2	9	6 6 2 0	0.002	0.015	Нет
							0.02	
ЖФЭ	550	95	5	33	6 080	0.002	0.015	0.1
							0.02	0.2

Таблица 1.

N₂	t,°C	Состав ра	аствора-расплав	а, мол%	$T = 77 \mathrm{K}$		
		In	As	Pb	$n imes 10^{-17} { m cm}^{-3}$	$\mu, c M^2 / B \cdot c$	
1	650	91.2	8.22	0	4	13 900	
2		32.9	3.7	63.3	0.49	30 000	
3		7.19	7.19	85.6	0.2	3 930	
4	600	94.8	3.2	0	9	6 6 2 0	
5		31.8	1.8	66.3	1.2	20 600	
6		4.18	4.18	91.6	0.082	4 0 2 0	
7	550	95	5	0	33	6 080	
8		31.8	0.9	67.6	15	6 160	
9		2.5	2.5	95	0.46	390	
10	500	1.4	1.4	97.2	0.2	4 640	

Таблица 2.

центрация электронов падала, подвижность возрастала приблизительно в 2 раза. При концентрации свинца больше чем 80 мол%, при всех температурах выращивания концентрация электронов продолжала уменьшаться, но и подвижность падала. Мы предполагаем, что это может происходить из-за роста степени компенсации, так как при равном количестве As и In в растворе-расплаве при относительно низких температурах появлялась вероятность возникновения акцепторных структурных дефектов, связанных с вакансией индия. В этом случае получались высокоомные пленки, которые находят широкое применение на практике в качестве полуизолирующих подложек. В таких сильно компенсированных образцах на температурной зависимости коэффициента Холла можно было наблюдать наклоны, соответствующие глубоким донорным примесям в InAs с энергией активации $E_3 = 0.09 - 0.1$ эВ. Возможно, это еще один структурный дефект, природа которого пока не ясна.

Можно предположить, что использование свинца в растворе–расплаве при выращивании InAs изменяет концентрацию не только структурных дефектов, но и концентрацию мелких фоновых примесей, образуя с ними такие соединения как PbS, PbTe, PbSe.

Легирование InAs в процессе эпитаксиального выращивания редкоземельными элементами (иттербием и гадолинием) также приводило к уменьшению концентрации носителей тока и сильному повышению подвижности. Возможно, редкоземельные примеси активно связывают фоновые примеси, образуя с ними нейтральные соединения. Конечный результат легирования свинцом и редкоземельными примесями хорошо иллюстрирует рис. 1, на котором представлена теоретическая зависимость подвижности электронов в InAs от их концентрации (штриховая линия), а также результаты для эпитаксиальных пленок арсенида индия, выращенного в присутствии свинца и легированного редкоземельными элементами. Самые чистые образцы с высокой подвижностью (около

Рис. 1. Зависимость подвижности μ от концентрации электронов *n* в InAs: штриховая линия — теория, *1* — образцы, легированные редкоземельными элементами, *2* — образцы, легированные редкоземельными примесями и свинцом, *3* — образцы, легированные свинцом.

Физика и техника полупроводников, 1999, том 33, вып. 7

 $100\,000\,\mathrm{cm^2/B\cdot c}$), близкой к теоретической (кривая *I*), получены при легировании редкоземельными примесями. Присутствие свинца при легировании редкими землями понижает подвижность (кривая *2*), хотя дает образцы с самой низкой концентрацией носителей тока ($n = 3 \cdot 10^{15} \,\mathrm{cm^{-3}}$). Свинец в отсутствие редкоземельных примесей (кривая *3*) может также сильно понизить концентрацию и подвижность кристаллов.

Результаты исследования твердых растворов. Нелегированные твердые растворы

С целью расширения оптического диапазона работы приборов в инфракрасной области широко используются тройные и четверные твердые растворы, близкие по составу к арсениду индия, выращенные методом жидкостной эпитаксии при $t = 550-650^{\circ}$ С. Ширина запрещенной зоны в них может быть как меньше, так и больше, чем в InAs ($E_g^{\text{InAs}} = 0.41$ эВ при T = 77 K). Так, в исследованном нами твердом растворе In_xGaAsSb (x = 0.8-0.92) ширина запрещенной $E_g < E_g^{\text{InAs}}$, а в InAsSbP_x (0.03 < x < 0.26), InAsGa_x (x = 0.02-0.03) и InAsP_x (x = 0.022-0.07) $E_g > E_g^{\text{InAs}}$. Остановимся подробнее на каждом из этих твердых растворов.

Твердый раствор In_xGaAsSb

Четверные твердые растворы In_x GaAsSb в широком интервале изменения *x* достаточно давно и широко применяются на практике, поэтому их электрофизические свойства изучались во многих работах [7–9].

Известно, что эти твердые растворы имеют обширную область несмешиваемости в интервале значений 0.2 < x < 0.8. Поэтому они могут быть получены только при малых x (x < 0.2), когда они близки к GaSb, или при больших x (x = 0.8-0.9), когда они близки по составу к InAs.

На рис. 2 приведена теоретическая зависимость ширины запрещенной зоны E_g от x при T = 77 K во всем интервале изменения x для твердого раствора In_xGaAsSb [10] и экспериментальные точки, полученные нами при исследовании фотопроводимости в нем. Видно, что при 0.7 $< x < 0.92 E_g$ изменяется мало и близко по значению к E_g^{InAs} (0.3–0.32 эВ), а при 0 $< x < 0.22 E_g$ падает от 0.78 до 0.56 эВ. Можно заметить, что существует область значений E_g , соответствующая области несмешиваемости твердого раствора, где экспериментальные точки отсутствуют, так как эти твердые растворы методом жидкофазной эпитаксии не могут быть получены.

Узкозонные твердые растворы In_xGaAsSb, близкие по составу к InAs, интересны тем, что на их основе могут быть получены так называемые разъединенные гетеропереходы 2-го типа, обладающие рядом уникальных электрических и фотоэлектрических свойств [11]. Эти

твердые растворы используются для создания оптоэлектронных приборов, актуальных для задач экологии и охраны окружающей среды.

В настоящей работе исследовались гальваномагнитные свойства (коэффициент Холла, электропроводность, подвижность), а также фотопроводимость при T = 77-300 К в твердых растворах InGaAsSb, близких по составу к InAs, полученных методом жидкофазной эпитаксии при $t = 550-650^{\circ}$ С на подложках GaSb и InAs. Все твердые растворы имели *n*-тип проводимости. Толщина образцов составляла 3–6 мкм. Так как подложку в этом случае удалить невозможно, при измерении гальваномагнитных эффектов необходимо было изолировать эпитаксиальный слой от подложки, создавая потенциальный барьер на границе "пленка-подложка", или использовать высокоомные подложки.

Изучались пленки двух типов: изопериодные GaSb и изопериодные InAs. Изопериодные GaSb пленки выращивались на подложке *n*-GaSb: Те или на высокоомном *p*-GaSb, полученном с нейтральным растворителем свинцом. В первом случае на границе существует высокий потенциальный барьер, который позволяет проводить измерения вплоть до T = 300 К. Изопериодные InAs кристаллы выращивались на высокоомном *p*-InAs: Zn (с удельным сопротивлением 100 Ом · см при T = 77 K). В этих образцах при высоких температурах проводимость подложки возрастала из-за перехода к собственной проводимости, поэтому измерения параметров в них были возможны лишь до 200 К.

Для удобства и наглядности результаты измерения электрофизических параметров для всех наиболее типичных исследованных нами нелегированных образцов раз-

Рис. 2. Зависимость ширины запрещенной зоны E_g при T = 77 K от состава твердых растворов In_xGaAsSb и InAsSbP_x. Кривые — теория [10,13], точки: *1, 2* — наши данные, *3* — данные работы [14].

			-						
Твердый		Полложка	77 K		300 H	$F_{1} \rightarrow \mathbf{B}$	$F_{2} \rightarrow \mathbf{B}$	E. pB	
раствор	л	Подложни	$n \times 10^{-17}$, cm ⁻³	μ , см 2 /В · с	$n \times 10^{-17}$, cm ⁻³	μ , см $^2/B \cdot c$	ы, эр	L ₂ , 5D	£3, 3£
In _x GaAsSb	0.85	n-GaSb:Te	6	8750	74	3400	0.002	0.02	0.09
	0.85	n-GaSb:Te	6	8000	1.5	7300	0.003	0.025	0.08
	0.8	p-InAs:Zn	0.2	8900	_	_	_	_	_
	0.79	p-InAs:Zn	0.5	6300	_	_	_	_	_
InAsSbP _x	0.03	p-InAs:Zn	0.9	29 000	—	_	_	_	_
	0.16	p-InAs:Zn	8	14 000	_	_	_	_	_
	0.26	p-InAs:Zn	0.18	13 000	_	_	0.002	0.02	0.9–0.1
InAsGa _x	0.02	p-InAs:Zn	0.53	2600	_	_	0.002	0.015	0.07
	0.03	p-InAs:Zn	1.0	2500	6.6	650	0.001	0.033	0.2
	0.05	p-InAs:Zn	10	4000	5.2	3400	0.002	0.018	0.07
InAsP _x	0.02	p-InAs:Zn	2	2500	19	1200	0.002	0.035	0.2
	0.038	p-InAs:Zn	10	4300	14	3900	0.001	0.03	-
	0.053	p-InAs:Zn	14	3100	17	3200	0.002	0.03	-
	0.073	p-InAs:Zn	5.8	3000	11	2500	0.002	0.03	—

Таблица 3.

личного состава, выращенных на подложках двух типов, сведены в табл. 3. Рассмотрим результаты, относящиеся к InGaAsSb. Из таблицы видно, что в InGaAsSb на подложке *n*-GaSb: Те концентрация электронов на порядок больше, чем в образцах, выращенных на *p*-InAs: Zn. Это можно объяснить диффузией из подложки в эпитаксиальную пленку примесей теллура или цинка. Диффузия теллура имела место и в случае выращивания на таких подложках твердых растворов, близких по составу к GaSb и имевших *p*-тип проводимости [7]. В них теллур создавал акцепторный структурный дефект (V_{Ga} + Te). В данном твердом растворе Те, видимо, проявляет себя просто как мелкий донор, так как значительного снижения подвижности, свойственного наличию дефектов, не наблюдается. Цинк же как акцептор при диффузии из подложки в эпитаксиальную пленку повышает степень компенсации электронов в ней, снижая их концентрацию и уменьшая подвижность.

Энергии активации электронов, приведенные в табл. 3, определялись из температурной зависимости коэффициента Холла (рис. 3). На кривой для твердого раствора In_{0.85}GaAsSb наблюдаются 3 наклона, соответствующие энергиям активации: $E_1 = 0.002$ эВ, $E_2 = 0.02-0.03$ эВ и $E_3 = 0.09-0.1$ эВ. Самый глубокий донорный уровень E_3 был обнаружен и при исследовании фотопроводимости. Легко заметить, что такие же энергии активации были обнаружены и в эпитаксиальных пленках арсенида индия: как уже говорилось, E_1 определялась мелкими неконтролируемыми примесями, а E_2 и E_3 соответствовали структурным дефектам.

Твердый раствор InAsSbP_x

В работе [12] было показано, что в системе InAsSbP_x выращиваемой на подложке InAs методом жидкофазной эпитаксии, может быть получен непрерывный ряд твер-

дых растворов с 0 < x < 0.39, ширина запрещенной зоны которых частично перекрывает спектральный диапазон области несмешиваемости InGaAsSb, что повышает интерес к этим твердым растворам. На рис. 2 штриховая кривая представляет собой расчетную зависимость ширины запрещенной зоны в InAsSbP_x от состава [13], а точки — экспериментальные результаты, полученные нами и другими авторами [14].

Мы исследовали электрические и фотоэлектрические свойства твердых растворов $InAsSbP_x$ в широком диапазоне содержания фосфора (0.03 < x < 0.26). Цель работы состояла в определении параметров и изучении энергетического спектра этого материала.

Рис. 3. Температурная зависимость коэффициента Холла *R* для различных твердых растворов.

Физика и техника полупроводников, 1999, том 33, вып. 7

Твердый	Поцножка	Примесь	Коцентрация	$T = 77 \mathrm{K}$		
раствор		TIPHINOOD	примеси, мол%	$n imes 10^{-17}$, см $^{-3}$	μ , см $^2/{ m B}\cdot{ m c}$	
InAsSbP _{0.26}	<i>p</i> -InAs:Zn	-	-	0.18	13 500	
		Te	$2.5\cdot 10^{-4}$	0.6	8 100	
			$5\cdot 10^{-4}$	1.5	6 000	
			$4.6 \cdot 10^{-3}$	25	3 600	
			$9.2 \cdot 10^{-3}$	60	3 000	
		Sn	$1.8\cdot 10^{-2}$	0.12	6 1 5 0	
			$3.2\cdot10^{-2}$	0.31	6 8 5 0	
			$2.5\cdot10^{-1}$	3.3	4 780	
			$6.2\cdot 10^{-1}$	12	3 3 3 0	

Таблица 4.

Эпитаксиальные пленки, изопериодные к подложке InAs, получались методом жидкофазной эпитаксии из исходных компонентов InP, InAs, In, Sb. Температура выращивания t при x < 0.15 была 650°C, толщина пленки около 100 мкм, подложка перед измерениями сошлифовывалась. При x = 0.26 и t = 550°C слои были тонкими (3–5 мкм). В этом случае в качестве подложки использовался сильно компенсированный *p*-InAs: Zn, который был полуизолятором вплоть до 200 K.

Параметры твердых растворов InGaAsP_r при различных значениях х приведены в табл. 3. Можно отметить, что в тонких пленках состава InGaAsP_{0.26}, выращенных на подложках InAs: Zn, концентрация электронов значительно ниже при низкой подвижности электронов, чем в толстых пленках других составов. Можно предположить, что диффундирующий из подложки цинк компенсирует доноры в пленке. Аналогичную картину мы наблюдали и в твердом растворе InGaAsSb. Энергии активации примесей определялись из температурных зависимостей коэффициента Холла и фотопроводимости. На рис. 3 представлена зависимость R(T) для твердого раствора InAsSbP_{0.26}. Отчетливо видны 3 наклона на температурной зависимости, соответствующие энергиям активации $E_1 = 0.002$ эВ, $E_2 = 0.02$ эВ и $E_3 = 0.09 - 0.1$ эВ. Как видим, получены те же значения, что и в арсениде индия и в твердом растворе InGaAsSb.

Тройные твердые растворы $InAsGa_x$ (x = 0.02-0.05), $InAsP_x$ (x = 0.022-0.07)

Эти твердые растворы, очень близкие по составу к арсениду индия, имеют ширину запрещенной зоны немного большую, чем InAs. По расчетам она составляет при T = 77 K для InAsGa_x $E_g = 0.448$ эB, для InAsP_x $E_g = 0.415$ эB. Интерес к этим материалам продиктован поиском кристаллов с меньшим сродством к электрону, чем в InAs, и E_g , близкой к ширине запрещенной зоны арсенида индия, с целью получения структур с разъединенным гетеропереходом 2-го рода, содержащим двумерный электронный канал.

Тройные твердые растворы InAsGa и InAsP выращивались методом жидкофазной эпитаксии при $t = 590^{\circ}$ С на подложках *p*-InAs:Zn, к которому не были изопериодны (несоответствие решеток $\Delta a/a$ составляло от 0.1 до 0.2%). Параметры этих твердых растворов приведены в табл. 3, а температурные зависимости коэффициента Холла показаны на рис. 3. Интересно, что концентрация электронов во всех исследованных кристаллах достаточно высока ($10^{17}-10^{18}$ см⁻³), а подвижность низкая. Энергии активации в этих тройных твердых растворах близки к энергиям активации примесей в InAs и в четверных твердых растворах (рис. 3).

Легирование твердых растворов донорными примесями

Для расширения диапазона концентраций носителей тока в твердых растворах проводилось легирование некоторых из них донорными примесями (Te,Sn).

Твердый раствор In_{0.85}GaAsSb, выращенный на подложке *n*-GaSb:Te, легировался теллуром. Концентрация электронов при этом линейно росла от $2.0 \cdot 10^{17}$ до 10^{19} см⁻³, а подвижность падала от 11 000 до 3000 см²/В · с.

Твердый раствор InAsSbP_{0.26}, выращенный на подложке *p*-InAs:Zn, легировался теллуром и оловом. Результаты приведены в табл. 4, из которой видно, что легирование теллуром повышало концентрацию электронов от $2 \cdot 10^{16}$ до 10^{19} см⁻³ с ростом концентрации теллура от 10^{-4} до 10^{-2} мол%.

В случае легирования InAsSbP оловом эта примесь проявляла свои амфотерные свойства: при малых концентрациях олова в кристалле возрастало число как доноров, так и акцепторов. Поэтому вначале наблюдалось небольшое уменьшение концентрации электронов, а при содержании олова больше чем 0.01 мол% концентрация электронов быстро росла и достигала 10^{18} см⁻³. Как показали измерения температурной зависимости коэффициента Холла и фотопроводимости в легированных Те и Sn образцах, в них сохраняются примеси с энергией активации $E_1 = 0.002 - 0.003$ эВ, а дефект с

Рис. 4. Зависимость подвижности μ от концентрации электронов *n* в твердых растворах: штриховая линия — теоретическая зависимость для арсенида индия, точки — эксперимент: *l* — InGaAsSb на подложке *n*-GaSb:Te, *2* — InGaAsSb на *p*-InAs:Zn, *3* — InGaAsP на *p*-InAs:Zn, *4* — InGaAs на *p*-InAs:Zn, *5* — InAsP на *p*-InAs.

 $E_2 = 0.02 - 0.03$ эВ исчезает, что говорит о возможном залечивании его теллуром и оловом.

Чтобы оценить степень совершенства различных исследованных нами твердых растворов *n*-типа, мы сравнили зависимость подвижности электронов от концентрации в них с теоретической зависимостью $\mu(n)$ для арсенида индия аналогично тому как мы это делали в случае легирования InAs редкоземельными примесями или используя растворитель свинец. На рис. 4 пунктиром приведена теоретическая зависимость для InAs и экспериментальные кривые для всех исследованных нами тройных и четверных твердых растворов *n*-типа, как нелегированных, так и легированных теллуром.

На рисунке видно, что зависимость $\mu(n)$ для твердых растворов значительно отличается от теоретической для InAs. Ближе всего к теоретической зависимость $\mu(n)$ для InGaAsSb, выращенного на подложках n-GaSb: Te (кривая 1), а для того же твердого раствора, выращенного на p-InAs: Zn, она расположена значительно ниже (кривая 2), что говорит о большем несовершенстве этого материала (наличие скоплений примесей и дефектов, так называемых "убийц подвижности" и так далее [8]). Примерно такой же вид эта зависимость имеет для InAsSbP, выращенного на той же подложке (кривая 3). Как показали исследования поперечного и продольного магнитосопротивления в этих кристаллах, действительно существуют скопления примесей, доля которых может достигать в нелегированных образцах 0.47 от всего объема кристалла. Возможно, их возникновение связано с диффузией цинка из подложки в процессе эпитаксиального выращивания.

Учитывая все вышесказанное, можно сделать вывод, что для получения твердых растворов с высокой подвижностью желательно использовать вместо InAs:Zn или высокоомные подложки, легированные свинцом, или GaSb:Te.

Подвижность электронов в нелегированных тройных твердых растворах InAsGa_x и InAsP_x с разными x, выращенных на подложках *p*-InAs: Zn (рис. 4, кривые 4 и 5), значительно ниже, чем в исследованных нами четверных твердых растворах. По нашему мнению, это связано с тем, что эти эпитаксиальные пленки неизопериодны InAs (отношения постоянных решеток $\Delta a/a = 0.1-0.2\%$).

Легирование твердых растворов акцепторными примесями

Для получения твердых растворов *p*-типа обычно используются акцепторные примеси: марганец и цинк. Наиболее перспективным является марганец, так как цинк при легировании сильно диффундирует из растущей пленки в подложку, искажая результаты. Мы исследовали легированный марганцем твердый раствор In_{0.85}GaAsSb, выращенный на подложках *n*-GaSb:Те и *p*-GaSb(Pb). Параметры этих легированных марганцем твердых растворов приведены в табл. 5.

Легирование марганцем приводит сначала к уменьшению концентрации электронов в твердых растворах, а затем к перекомпенсации и получению материала *p*-типа (см. рис. 5 для слоев InGaAsSb, выращенных на *n*-GaSb:Te). Можно было получить твердые растворы с концентрацией $p = 10^{19}$ см⁻³ и подвижностью 50-100 см²/B · с. Интересно отметить, что инверсия

Рис. 5. Зависимость концентрации носителей тока в слоях InGaAsSb от степени легирования марганцем: *1* — на подложке GaAs: Te, *2* — на подложке *p*-GaSb(Pb).

Физика и техника полупроводников, 1999, том 33, вып. 7

Твердый раствор	Подложка	Примесь	Коцентрация	Тип	$T = 77 \mathrm{K}$		
paerbop			примеен молто	проводимоети	$n \times 10^{-17}$, cm ⁻³	μ , cm ² /B · c	
In _{0.85} GaAsSb	p-GaSb:Te	_	-	n	5.6	3700	
		Mn	$6.6\cdot10^{-3}$	n	4	2270	
			$1.9\cdot 10^{-2}$	n	2.2	890	
			$5.7\cdot 10^{-2}$	р	8	20	
			$9.1 \cdot 10^{-2}$	р	13	59	
			$1.9\cdot 10^{-1}$	p	40	60	
			$3.4\cdot10^{-1}$	p	170	50	

Таблица 5.

знака коэффициента Холла (переход проводимости из n- в p-тип) в образцах, выращенных на подложках n-GaSb: Te (рис. 5, кривая 2), происходит позднее, при больших концентрациях марганца, чем в образцах, выращенных на подложках p-GaSb(Pb). Это можно объяснить увеличением концентрации электронов в твердом растворе за счет диффузии теллура из подложки.

Исследование фотопроводимости в легированных марганцем образцах InGaAsSb *р*-типа показало наличие пиков в области примесной проводимости, связанных с возбуждением электронов из валентной зоны на уровни с $E_2 = 0.03-0.04$ эВ и $E_3 = 0.09-0.1$ эВ, независимо от вида подложки, что подтверждает наши выводы о том, что они связаны с природными структурными дефектами в этом твердом растворе. На спектральной зависимости наблюдается также пик, связанный с возбуждением электронов с мелкого акцепторного уровня $E_A = 0.025-0.028$ эВ, который, по-видимому, определяется примесью марганца в этом твердом растворе.

Заключение

Подводя итог сказанному выше, можно сделать следующие выводы.

1. Все эпитаксиальные слои арсенида индия, выращенные при различных температурах эпитаксии (650–550°С), являются кристаллами *n*-типа проводимости. С уменьшением температуры эпитаксии концентрация электронов возрастает почти на 2 порядка по сравнению с концентрацией носителей тока в кристаллах InAs, выращенных методом Чохральского ($2 \cdot 10^{16}$ см⁻³), а подвижность падает почти на порядок.

Если в кристаллах InAs, выращенных методом Чохральского, проводимость определяется мелкими примесями с энергией активации $E_1 = 0.002 - 0.003$ эВ, то в эпитаксиальных слоях она определяется также и структурными дефектами с энергиями активации $E_2 = 0.02 - 0.03$ эВ и $E_3 = 0.09 - 0.1$ эВ, обусловленными отклонениями от стехиометрии в растворе-расплаве в сторону уменьшения концентрации мышьяка почти на порядок.

2. Достигнуто существенное уменьшение концентрации носителей тока (почти на порядок) и увеличение подвижности в эпитаксиальных слоях арсенида индия за счет использования нейтрального растворителя–свинца, который позволяет уменьшить нестехиометрию (варьировать соотношение концентраций In и As в растворе). Достигнуто уменьшение концентрации электронов в эпитаксиальных слоях InAs за счет выращивания из растворов–расплавов, легированных редкоземельными элементами (иттербием и гадолинием), которые, вероятно, связывают фоновые примеси в исходном растворе. Получены эпитаксиальные слои с $n = 6 \cdot 10^{15} \text{ см}^{-3}$ и подвижностью около 100 000 см²/В·с.

3. Все исследованные твердые растворы как с шириной запрещенной зоны, большей E_g арсенида индия (InAsSbP, InGaAs, InAsP), так и твердые растворы (InGaAsSb) с шириной запрещенной зоны, меньшей E_g^{InAs} , имеют *n*-тип проводимости, причем энергетический спектр примесей во всех исследованных кристаллах подобен энергетическому спектру эпитаксиального InAs и состоит из уровней с энергиями $E_1 = 0.002 - 0.003$ эВ, $E_2 = 0.02 - 0.03$ эВ и $E_3 = 0.09 - 0.1$ эВ.

4. Легирование твердых растворов донорными примесями Те и Sn позволяет получить слои с концентрацией носителей тока в интервале значений $10^{16}-10^{19}$ см⁻³ и подвижностью 8000-3000 см²/В·с. При этом в кристаллах, легированных донорными примесями, наблюдается залечивание структурных дефектов с $E_2 = 0.02-0.03$ эВ. Легирование твердых растворов акцепторными примесями (Mn) приводит к перекомпенсации и получению кристаллов *p*-типа проводимости с концентрацией дырок $p = 10^{19}$ см⁻³ и подвижностью 50 см²/В·с.

Список литературы

- А.Н. Баранов, Т.И. Воронина, А.А. Гореленок, Т.С. Лагунова, А.М. Литвак, М.А. Сиповская, С.П. Старосельцева, В.А. Тихомирова, В.В. Шерстнев. ФТП, 26, 1612 (1992).
- [2] А.Н. Баранов, Т.И. Воронина, Т.С. Лагунова, М.А. Сиповская, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 27, 421 (1993).
- [3] Т.И. Воронина, Т.С. Лагунова, М.П. Михайлова, М.А. Сиповская, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 25, 421 (1991).

- [4] Т.И. Воронина, Т.С. Лагунова, К.Д. Моисеев, Н.А. Прокофьева, Т.Б. Попова, М.А. Сиповская, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 25, 1639 (1991).
- [5] Т.И. Воронина, Т.С. Лагунова, К.Д. Моисеев, М.А. Сиповская, И.Н. Тимченко, Ю.П. Яковлев. ФТП, 27, 1777 (1993).
- [6] А.Н. Баранов, А.А. Гореленок, А.М. Литвак, В.В. Шерстнев, Ю.П. Яковлев. ЖНХ, 37, 448 (1992).
- [7] А.Н. Баранов, А.Н. Дахно, Б.Е. Джуртанов, Т.С. Лагунова, М.А. Сиповская, Ю.П. Яковлев. ФТП, 24, 98 (1990).
- [8] А.Н. Баранов, Т.И. Воронина, А.Н. Дахно, Б.Е. Джуртанов, Т.С. Лагунова, М.А. Сиповская, Ю.П. Яковлев. ФТП, 24, 1072 (1990).
- [9] Т.И. Воронина, Б.Е. Джуртанов, Т.С. Лагунова, Ю.П. Яковлев. ФТП, 28, 2001 (1994).
- [10] J.C. De Winter, M.A. Pollack, A.K. Strivastava, J.L. Zyskind. J. Electron. Mater., 4, 729 (1985).
- [11] М.А. Афраилов, А.Н. Баранов, А.П. Дмитриев, М.П. Михайлова, Ю.П. Сморчкова, И.Н. Тимченко, В.В. Шерстнев, Ю.П. Яковлев, И.Н. Яссиевич. ФТП, 24, 1397 (1990).
- [12] А.Н. Баранов, Б.Е. Джуртанов, А.М. Литвак, Н.А. Чариков, А.Г. Чернявский, В.В. Шерстнев, Ю.П. Яковлев. ЖНХ. 35, 3008 (1990).
- [13] E.P. Gertner, D.T. Cheung, A.N. Andrews, J.T. Longo. J. Electron. Mater., 6, 163 (1977).
- [14] T. Fukui, J. Horikoshi. J. Appl. Phys., 20, 587 (1981).

Редактор В.В. Чалдышев

Electrical properties of epitaxial InAs and narrow-gap InAs-based solid solutions

T.I. Voronina, T.S. Lagunova, K.D. Moiseev, A.E. Rosov, M.A. Sipovskaya, M.V. Stepanov, V.V. Sherstnev, Yu.P. Yakovlev

A.F. loffe Physicotechnical Institute Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract The electrical properties of an epitaxial InAs and solid solutions based on it (InGaAsSb, InAsSbP, InAsGa, InAsP) have been investigated. It is shown that all specially undoped crystals have an *n*-type conductivity which is determined by shallow donor impurities ($E_1 = 0.002 - 0.003 \text{ eV}$) and structural defects ($E_2 = 0.02 - 0.03 \text{ eV}$ and $E_3 = 0.09 - 0.10 \text{ eV}$).

It is shown, that the growth of an epitaxial InAs by using neutral solvent Pb and rare-earth elements makes it possible to reduce the electron concentration as low as $3 \cdot 10^{15}$ cm⁻³ due to decreasing the structural defect density.