Антиструктурные дефекты в полупроводниках типа PbTe

© В.Ф. Мастеров , С.И. Бондаревский, Ф.С. Насрединов, Н.П. Серегин, П.П. Серегин

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Получена 17 декабря 1998 г. Принята к печати 22 декабря 1998 г.)

Методом эмиссионной мессбауэровской спектроскопии на изотопе ^{119m}Te(^{119m}Sn) проведена идентификация примесных центров олова в решетках PbTe и PbS. Использование эмиссионного варианта мессбауэревской спектроскопии позволило стабилизировать примесные атомы олова в анионной подрешетке, т.е. получить дефекты типа антиструктурных. Обнаружена зависимость зарядового состояния смещенных из анионной подрешетки примесных атомов олова от положения уровня Ферми.

В настоящей работе приводятся результаты экспериментального наблюдения атомов олова, входящих в состав антиструктурных дефектов в соединениях типа PbTe. Для этой цели используется эмиссионный вариант мессбауэровской спектроскопии на изотопе ^{119m}Te(^{119m}Sn), что позволило стабилизировать примесные атомы олова в несвойственных им положениях после цепочки радиоактивных распадов материнских ядер [1].

Изотоп ^{119m}Те получали по реакции ¹¹⁷Sn(α ,2n)^{119m}Те. Для выделения безносительного препарата ^{119m}Те использовали процедуру анионного обмена. Мессбауэровские источники готовили путем сплавления образцов PbS или PbTe с безносительным препаратом ^{119m}Te, так что концентрация примесных атомов Sb, образующихся после распада ^{119m}Te, не превышала 10¹⁷ см⁻³. Исходные образцы были электронного типа (с избытком свинца, концентрация носителей $n \sim 10^{18}$ см⁻³) и дырочного типа (с избытком халькогена, концентрация носителей $p \sim 10^{18}$ см⁻³).

Мессбауэровские спектры ^{119m}Te(^{119m}Sn) измерялись на промышленном спектрометре CM-2201 при 80 K с поглотителем CaSnO₃ (поверхностная плотность по олову 5 мг · см⁻²). Спектр с таким поглотителем и источником Ca^{119m}SnO₃ представлял собой одиночную линию с шириной на полувысоте $\Gamma = 0.79 \pm 0.01$ мм/с, которая принималась за аппаратурную ширину спектральной линии. Типичные спектры образцов PbS: ^{119m}Te и Pb^{119m}Te приведены на рис. 1 и 2, а результаты их обработки сведены в таблицу.

Видно, что экспериментальные спектры образцов *n*типа проводимости представляют собой наложение двух линий: интенсивной (спектр I, изомерный сдвиг отвечает ^{119m}Sn⁰) и менее интенсивной (спектр II, изомерный сдвиг отвечает ^{119m}Sn²⁺). Эмиссионные спектры образцов *p*-типа проводимости также представляют собой наложение двух линий. Для *p*-PbTe экспериментальный спектр аналогичен спектру для *n*-PbTe, тогда как спектр *p*-PbS наряду с интенсивной линией I содержит и менее интенсивную линию III (изомерный сдвиг отвечает ^{119m}Sn⁴⁺).

Источником мессбауэровских γ -квантов при измерении этих спектров является ядро ^{119m}Sn, образующееся после электронного захвата (EC) вначале в ядре ^{119m}Te,

а затем в ядре ¹¹⁹Sb (см. вставку на рис. 1). В результате захвата электрона из внутренней оболочки материнского атома образуется возбужденный дочерний атом. Его возбуждение снимается либо путем радиационных переходов, либо путем эмиссии оже-электронов, и в результате возникает спектр зарядов дочерних ионов олова. Ионизованный атом может сместиться из нормального узла решетки, а испускание антинейтрино в процессе электронного захвата сообщает атому энергию отдачи, что также способствует появлению смещенных атомов олова.

Анализ многочисленных мессбауэровских исследований пост-эффектов ядерных превращений показывает, что дочерний атом переходит в стабильное зарядовое состояние за время, меньшее нескольких пикосекунд. Иными словами, в эмиссионных мессбауэровских спектрах проявляются лишь конечные формы стабилизации дочерних атомов. Вероятность появления смещенных атомов зависит от соотношения энергии отдачи дочернего ядра E_R и пороговой энергии смещения атомов $E_d \simeq 25$ эВ. Для оценки возможности смещения дочерних атомов из нормальных узлов решетки за счет энергии отдачи мы рассчитали максимальные энергии отдачи для зонда ^{119m}Sn: распад ^{119m}Te \rightarrow ¹¹⁹Sb сопровождается $E_R \simeq 1.4$ эВ, а распад ^{119m}Sn сопровождается $E_R \simeq 24$ эВ. Значительная величина второй из

Параметры эмиссионных мессбауэровских спектров 119m Te(119m Sn) в PbS и PbTe при 80 K

Соединение,	Тип	Центр	IS,	Г,	<i>S</i> ,
тип проводимости	спектра		MM/C	MM/C	%
<i>n</i> -PbS	Ι	119m Sn ⁰	2.35	1.34	85
	II	$^{119m}Sn^{2+}$	3.72	1.45	15
<i>n</i> -PbTe	Ι	$^{119m}\mathrm{Sn}^{0}$	2.31	1.32	90
	II	$^{119m}Sn^{2+}$	3.42	1.41	10
<i>p</i> -PbS	Ι	119m Sn ⁰	2.34	1.36	87
	III	$^{119m}Sn^{4+}$	1.25	1.46	13
<i>p</i> -PbTe	Ι	119m Sn ⁰	2.30	1.33	88
	II	$^{119m}Sn^{2+}$	3.41	1.40	12
Погрешности			± 0.01	± 0.02	± 2

Примечание. IS — изомерный сдвиг относительно CaSnO₃, Γ — ширина спектра на полувысоте, *S* — площадь под спектром.

них позволяет ожидать в эмиссионных мессбауэровских спектрах 119m Te(119m Sn) образцов PbS и PbTe появления как линий, отвечающих атомам 119m Sn в анионных узлах, так и линий, отвечающих атомам 119m Sn, смещенных из этих узлов.

Если исходить из значений изомерных сдвигов, то спектр I отвечает дочерним атомам олова, имеющим в своем ближайшем окружении только атомы металла (свинца), и, значит, его следует приписать центрам 119m Sn⁰, образовавшимся после распада материнских атомов 119m Te²⁻ и оставшимся в узлах теллура. Изомерные сдвиги спектров II и III типичны для халькогенидов двух-и четырехвалентного олова, в которых в ближайшем окружении олова находятся только атомы халькогена, и, следовательно, эти спектры отвечают дочерним атомам олова 119m Sn²⁺ (спектр II) и 119m Sn⁴⁺ (спектр III), возникшим после распада материнских атомов 119m Te²⁻ и сместившимся за счет энергии отдачи из анионных в катионные узлы решетки, образовав при этом изоэлектронные примеси замещения.

Согласно [2], изоэлектронная примесь олова в PbS является электрически активной и играет роль двухэлектронного донора. Это объясняет обнаруженную нами зависимость изомерного сдвига спектра для таких центров от типа проводимости материала: в электронных образцах спектр II отвечает нейтральному состоянию

Рис. 1. Эмиссионные мессбауэровские спектры 119m Te(119m Sn) при 80 K образцов *n*-PbS (*a*) и *n*-PbTe (*b*). Показано разложение экспериментальных спектров на компоненты, отвечающие 119m Sn⁰ и 119m Sn²⁺. На вставке — схема распада изотопов 119m Te и 119 Sb.

Рис. 2. Эмиссионные мессбауэровские спектры 119m Te(119m Sn) при 80 K образцов *p*-PbS (*a*) и *p*-PbTe (*b*). Показано разложение экспериментальных спектров на компоненты, отвечающие 119m Sn⁰, 119m Sn²⁺ и 119m Sn⁴⁺.

донорного центра (119m Sn²⁺), а в дырочных образцах спектр III отвечает двукратно ионизованному состоянию (119m Sn⁴⁺). В решетке РbTе изоэлектронная примесь олова электрически неактивна [2], и это подтверждается наблюдавшейся нами независимостью изомерного сдвига спектра, отвечающего этим центрам, от положения уровня Ферми.

Список литературы

- П.П. Серегин, П.В. Нистирюк. Применение эффекта Мессбауэра и фотоэлектронной спектроскопии в физике аморфных полупроводников (Кишинев, Штиинца, 1991).
- [2] В.Ф. Мастеров, Ф.С. Насрединов, С.А. Немов, П.П. Серегин. ФТП, **31**, 291 (1997).

Редактор Л.В. Шаронова

Antistructural defects in PbTe-type semiconductors

V.F. Masterov, S.I. Bondarevski, F.S. Nasredinov, N.P. Seregin, P.P. Seregin

St. Petersburg State Technical University, 195251 St. Petersburg, Russia