Особенности фотолюминесценции и транспортных свойств многослойных InAs/GaAs структур с квантовыми точками

© В.А. Кульбачинский, В.Г. Кытин, Р.А. Лунин, А.В. Голиков, И.Г. Малкина, Б.Н. Звонков, Ю.Н. Сафьянов

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

(Поступила 15 апреля 1998 г. Принята к печати 28 июля 1998 г.)

1. Введение

Свойства электронов в одномерных (квантовые нити) и нульмерных (квантовые точки) структурах привлекают большой интерес как ввиду возможных применений [1,2], так и ввиду интересных фундаментальных проблем, связанных с ними [3,4]. Эффективным способом получения квантовых точек, в которых движение электронов и дырок квантовано по всем трем направлениям, является вызванное упругими напряжениями формирование однородных островков InAs в процессе гетероэпитаксиального роста на поверхности GaAs [5-8]. Оптические свойства таких структур с квантовыми точками интенсивно исследуются в настоящее время, что связано с их применением в приборах [1,2]. Менее изучены транспортные свойства этих структур. В настоящей работе приводятся результаты исследования низкотемпературных транспортных свойств и спектры фотолюминесценции вдоль плоскости слоев квантовых точек InAs/GaAs.

2. Методика измерений и образцы

Структуры выращивались методом МОС-гидридной эпитаксии при температурах 600 ÷ 650°C в реакторе атмосферного давления из триметилиндия, триметилгаллия и мышьяка на полуизолирующих GaAs-подложках, отклоненных на угол 3° от плоскости (001) к направлению [110]. Образцы содержали от 10 до 20 слоев квантовых точек InAs, разделенных барьерами GaAs толщиной 0.1 мкм. Образцы *п*-типа специально не легировались, образцы *р*-типа содержали *б*-слой углерода в барьерах. Толщина спейсера составляла 5÷6 нм. Сверху структуры закрывались слоем GaAs толщиной 0.1 мкм. Некоторые параметры образцов приведены в таблице. Образование квантовых точек начинается, когда количество InAs на поверхности роста превышает 0.8 монослоя [9]. Спектры фотолюминесценции измерялись при температурах T = 300 и 77 К с возбуждением Не-Ne-лазером. Уровень возбуждения составлял 10^{21} фотон/см²с. Транспортные измерения проводились как на квадратных образцах со сторонами вдоль направлений [110] и [110], так и на образцах в виде двойных холловских мостиков двух различных ориентаций. Температурные зависимости сопротивления были измерены в диапазоне температур 1.6÷300 К, эффект Шубниковаде-Гааза, магнитосопротивление $\Delta \rho(B)$ и коэффициент Холла R_H измерялись в магнитных полях *B* до 10 Tл, создаваемых сверхпроводящим соленоидом.

3. Результаты измерений и их обсуждение

3.1. Оптические свойства структур

Размер квантовых точек составлял 5÷7 нм и определен по максимуму спектра фотолюминесценции по теории, развитой, в работах [3,8]. Спектры фотолюминесценции в этих работах рассчитаны для пустой изолированной точки. В исследованных образцах состояния в точках заполнены носителями заряда, поэтому полученные размеры — только грубая оценка. Взаимодействие соседних точек может привести к уширению уровней и формированию двумерной (2D) зоны. В модели сильной связи уширение равно 2NI, где N — число ближайших соседей, $I = \int \varphi^*(\mathbf{r} + \mathbf{h}) V(\mathbf{r}) \varphi(\mathbf{r}) d\mathbf{r}$ — интеграл перекрытия, φ — электронная (дырочная) волновая функция одиночной квантовой точки, **h** — вектор трансляций [10]. Для оценки интеграла перекрытия I можно заменить V(r) величиной разрыва зоны проводимости ΔE_c для электронов или валентной зоны ΔE_{ν} для дырок. Для двух касающихся основаниями квантовых точек перекрытие волновых функций электронов составляет менее 2%, а волновых функций дырок — менее 1.5% [8]. Таким образом интеграл перекрытия составляет менее $0.02\Delta E_c$ для электронов и менее $0.015\Delta E_{\nu}$ для дырок. Отсюда уширения уровня составляют 138 мэВ для электронов и 30 мэВ для дырок, т.е. сдвиг максимума спектра фотолюминесценции не превышает 90 мэВ, что сравнимо с наблюдающимся экспериментально. Сдвиг спектров фотолюминесценции из-за кулоновского взаимодействия еще меньше, так как в легированных структурах уровни электронов и дырок сдвигаются в одном направлении. Таким образом оценка размеров квантовых точек, приведенная в начале параграфа, вполне допустима. Такие же размеры квантовых точек и их упорядочение вдоль террас получены на исследованных структурах прямыми измерениями с помощью туннельного атомно-силового микроскопа.1

Теоретически ширина террасы на вицинальной поверхности с углом разориентации 3° в случае GaAs составляет d = 5.6 нм. Практически существует распределение по ширине, которое исследовалось в работах [11,12], в зависимости от угла разориентации. Всегда в образцах есть террасы бо́льшего размера, что и приводит к появлению квантовых точек с размером, бо́льшим теоретического значения d.

¹ Измерения проведены Д.О. Филатовым.

Рис. 1. *а* — схема измерения спектров фотолюминесценции; *b* — зависимость интенсивности фотолюминесценции I_{pl} при T = 77 К от энергии фотона $h\nu$ в структуре с квантовой ямой $In_{0.2}Ga_{0.8}As$ шириной W = 5 нм и слоем квантовых точек с эффективной толщиной в 3 монослоя InAs. Сплошная линия — интенсивность света в направлении [110] с поляризацией $\mathbf{E} \perp [001]$, пунктирная линия — то же для $\mathbf{E} \parallel [001]$. Стрелками отмечены энергии излучения квантовых точек (QD) и квантовой ямы (QW).

Π	араметр	ы образц	OB
---	---------	----------	----

Номер образца	Тип прово- димости	N_p	$h u_{ m max},$ $ m o B$	Количество InAs в слое, MC	N _{QD} , 10 ¹¹ см ⁻²	$ ho_{\perp},$ Om/ \Box	$ ho_{\perp}/ ho_{\parallel}$	$n_{ m H},$ $10^{11}{ m cm}^{-2}$	$n_{\rm SH},$ $10^{11} {\rm cm}^{-2}$
1		12	1.38	2.35	7.4	_	-	0.58	_
2		10	1.36	2.5	6.8	1270	2.18	2.7	_
3	р	20	1.34	4.6	30	954	-	2.4	2.6
4		10	1.415	2.25	10	1057	1.19	5.3	4.8
5		20	1 345	43	30	41000	15	0.30	_
6		12	1.343	2.1	83	8290	1.89	0.36	_
7		10	1.37	3.0	10	2120	6.87	1.08	1.9
8	п	10	1.41	2.4	9.5	385	2.08	1.20	1.5
9		15	1.28	4.7	11	7800	5.3	1.60	2.2
10		10	1.38	2.3	7.3	574	3.42	1.91	2.6

Примечание. N_p — число периодов в структурах, $h\nu_{\text{max}}$ — энергия максимума в спектре фотолюминесценции при T = 77 K, MC = 0.325 нм — толщина монослоя InAs, N_{QD} — концентрация квантовых точек в расчете на один слой, ρ_{\perp} , ρ_{\parallel} — сопротивление в направлении [110] и [110] при T = 4.2 K; n_{H} — холловская концентрация носителей тока в расчете на один слой, n_{SH} — концентрация носителей тока, определенная по эффекту Шубникова-де-Гааза.

Рис. 2. Спектры фотолюминесценции при 77 К для образцов: a - p-типа, b - n-типа. Сплошные линии — интенсивность испущенного света в направлении [110], с поляризацией $\mathbf{E} \perp [001]$, штриховые линии — то же для $\mathbf{E} \parallel [001]$. Свет, испущенный в направлении [001], не поляризован (штрихпунктирная линия для образца 9). Номера у кривых соответствуют номерам образцов в таблице.

На рис. 1, а показана схема измерения фотолюминесценции. Для сравнения излучения квантовых точек с излучением квантовой ямы в один из образцов была добавлена квантовая яма $In_{0.2}Ga_{0.8}As$ шириной W = 5 нм. Спектр фотолюминесценции этого образца приведен на рис. 1, b. Как видно из рисунка, излучение квантовых точек и ямы хорошо разделяются. Поляризация фотолюминесценции квантовой ямы не наблюдается, в то время как фотолюминесценция слоя квантовых точек сильно поляризована в плоскости структур (от отдельной квантовой точки поляризация фотолюминесценции не наблюдается). Этот факт является неожиданным, так как рекомбинация с участием состояний тяжелых дырок, дающая излучение, поляризованное в плоскости структуры, одинаково присуща и квантовым ямам и квантовым точкам. Вероятным объяснением наблюдаемого явления может быть разница в степенях смешивания состояний тяжелых дырок на гетерограницах в слоях с разной структурой [13,14].

На рис. 2 приведены спектры фотолюминесценции при 77 К для образцов *p*-типа 1, 2, 4 (рис. *a*) и для образцов *п*-типа 7, 9, 10 (рис. *b*). Сплошными линиями показана интенсивность испущенного света в плоскости структур в направлении [110], с поляризацией **E** \perp [001], штриховые линии показывают интенсивность испущенного света в том же направлении, но с поляризацией Е || [001]. Свет, испущенный в направлении [001], не поляризован (штрихпунктирная линия для образца 9). Интенсивность фотолюминесценции Ipl с правой стороны от пиков пропорциональна $\exp(-h\nu/kT)$, что соответствует больцмановскому распределению. Полуширина спектров фотолюминесценции, составляющая 20 ÷ 60 мэВ, свидетельствует о разбросе размеров квантовых точек и не зависит от температуры при $T = 77 \div 300 \,\mathrm{K}$ для всех образцов, кроме образца 1. В образце 1 полуширина возрастает с ростом температуры. Вероятно, это связано с тем, что все нуль-мерные состояния электронов в нем заполнены из-за высокой концентрации носителей. Полученные значения энергии пиков фотолюминесценции равны 1.34÷1.41 эВ для образцов *p*-типа и 1.28÷1.41 эВ для образцов *п*-типа.

Структуры были также исследованы с помощью дифракции рентгеновских лучей и получены данные о количестве индия в слое квантовых точек (см. таблицу). Концентрация квантовых точек оценена как $(6.8 \div 30) \cdot 10^{11}$ см⁻² для различных образцов. При таких концентрациях квантовых точек расстояние между ними сравнимо с размером квантовой точки, а в свою очередь размер квантовых точек близок к ширине ступени на разориентированной подложке.

3.2. Транспортные свойства структур

Все образцы можно разделить на две группы в зависимости от концентрации носителей тока при комнатной температуре, полученной из эффекта Холла в слабых полях. У образцов с концентрацией дырок при комнатной температуре меньше $0.6 \cdot 10^{11} \, \mathrm{cm}^{-2}$ или электронов с концентрацией меньше $0.3 \cdot 10^{11} \, \mathrm{cm}^{-2}$ при понижении температуры сопротивление возрастало на несколько порядков и они становились не проводящими (образцы 1 и 5) уже при температуре жидкого азота. Таким образом, существует критическая концентрация при комнатной температуре менее $10^{11} \,\mathrm{cm}^{-2}$, меньше которой все носители тока локализуются при понижении температуры как в образцах *p*-, так и *n*-типа. Эта концентрация не коррелирует с концентрацией квантовых точек (см. таблицу), так как локализация происходит не только в квантовых точках, но и в потенциальном рельефе бо́льшего масштаба, что будет видно из дальнейших результатов.

В образцах с бо́льшей исходной концентрацией дырок или электронов сопротивление ρ уменьшается при понижении температуры приблизительно до 50 K и затем возрастает, как это показано на рис. 3 для образца 6. Измерения сопротивления ρ показали анизотропию в

Puc. 3. Зависимости сопротивления ρ_{\perp} в направлении [110] (кривая *I*), ρ_{\parallel} в направлении [$\bar{1}10$] (2) и анизотропии сопротивлений $\rho_{\perp}/\rho_{\parallel}$ (3) образца 6 от температуры. На вставке — зависимости сопротивления ρ для образца 4 от $1/T^{1/2}$, измеренного вдоль [110] (1) и вдоль [$\bar{1}10$] (2).

образцах обоих типов, зависящую от температуры Т: ρ в 3 ÷ 12 раз больше в направлении [110], чем в [110], что можно объяснить формированием квантовых точек в цепочки в направлении [110] вдоль ступенек. Формирование цепочек квантовых точек InAs на фасетированной поверхности GaAs наблюдалось с помощью туннельного микроскопа в похожих структурах в работе [15]. Температурные зависимости сопротивления образца 6 в направлении [110] (кривая 1) и [110] (кривая 2) приведены на рис. 3. На том же рисунке приведена температурная зависимость анизотропии сопротивления (кривая 3). Исходя из этих результатов можно предположить, что в исследованных образцах точки выстраиваются вдоль ступенек. При этом сопротивление поперек ступеней будет больше по сравнению с сопротивлением вдоль ступеней. Подобная анизотропия сопротивлений наблюдалась в структурах GaAs, δ-легированных оловом на вицинальной поверхности [16-18], где олово за счет сегрегации распределялось преимущественно вдоль ступеней, что приводило к анизотропии проводимости. Возможно, что точки расположены не в центре террас, а цепляются за края ступенек, как экспериментально наблюдается для точек Ge на вицинальной поверхности GaAs [19].

В области температур 1.6 < T < 4.2 K зависимость логарифма ρ приблизительно линейна по $T^{-1/2}$. В качестве примера на вставке к рис. З приведены зависимости от $T^{-1/2}$ логарифма сопротивления, измеренного в двух направлениях, для образца 4. Приведенные экспериментальные факты свидетельствуют о локализации носителей тока [20]. Для взаимодействующих двумерных

электронов проводимость $\sigma_{xx} \sim \exp(-T_0/T)^{1/2}$. Из экспериментальных данных величина $T_0 \simeq 0.3$ К для образца 4 и $T_0 = 3.7$ К для образца 2. Такая локализация возможна при захвате электронов флюктуациями потенциальной энергии, возникающими при росте структур.

Для всех образцов при температурах жидкого гелия наблюдалось отрицательное магнитосопротивление (OMC) в слабых магнитных полях. Зависимость ОМС от магнитного поля переходила от квадратичной в логарифмическую. Абсолютное значение отрицательного магнитосопротивления в слабых полях возрастает при понижении температуры от 4.2 до 1.6 К. Отрицательное магнитосопротивление с характерной зависимостью от магнитного поля и температуры может быть объяснено квантовыми поправками к проводимости для двумерного случая [21,22].

В более сильных магнитных полях наблюдаются квантовые осцилляции магнитосопротивления. На рис. 4, *a* в качестве примера приведены осцилляции магнитосопротивления у образца 7 при T = 1.6 К. Изменение частоты осцилляций в наклонном магнитном поле (см. вставку на рис. 4, *a*) показало, что осцилляции определяются двумерными носителями тока, образованными слоем квантовых точек, вставленных в растянутый слой GaAs. Об этом же говорит и наблюдение квантового эффекта Холла в исследованных структурах (рис. 4, *b*). Наличие 2D электронов может быть объяснено перекрытием электронных волновых функций от отдельных квантовых точек, поскольку в исследованных образцах плотность точек высока. Амплитуда осцилляций возрастает при

понижении температуры от 4.2 до 1.6 К. Из периода осцилляций Шубникова-де-Гааза вычислены концентрации двумерных носителей тока, которые несколько превышают холловские концентрации в расчете на один слой (см. таблицу). Значения концентрации носителей тока в расчете на один слой меньше, чем оцененная концентрация квантовых точек.

Магнитосопротивление в сильных магнитных полях для образцов *p*- и *n*-типа различно. В образцах *n*-типа после начального отрицательного магнитосопротивления в слабых магнитных полях, осцилляций Шубникова–де-Гааза в промежуточных полях, в сильных магнитных полях наблюдалось резкое увеличение сопротивления. Величина сопротивления в фиксированном магнитном

Рис. 4. Квантовые осцилляции магнитосопротивления ρ_{xx} образца 7 при T = 1.6 K (*a*) и квантовый эффект Холла в образце 10 при T = 4.2 K (*b*). На вставке — зависимость отношения величины магнитного поля B_0 , соответствующего одному из максимумов осцилляций в перпендикулярном поле, к величине магнитного поля B_p , соответствующего тому же максимуму в наклонном магнитном поле, от угла θ отклонения направления поля от вертикали. Точки — экспериментальные данные, сплошная линия — $\cos \theta$.

Рис. 5. Магнитосопротивление образца 6 при двух температурах *T*, K: 4.2 (*a*) и 1.7 (*b*). На вставке — зависимость величины логарифма сопротивления от $T^{-1/2}$ в фиксированном магнитном поле B = 6 Тл.

поле при понижении температуры возрастала пропорционально $T^{-1/2}$. На рис. 5 в качестве примера приведены зависимости сопротивления от магнитного поля при двух температурах для образца 6, а на вставке — зависимость сопротивления от $T^{-1/2}$ для этого же образца в фиксированном магнитном поле 6 Тл. Наблюденные зависимости свидетельствуют о переходе в магнитном поле типа металл-изолятор. В образцах *p*-типа такой переход не наблюдается: в магнитных полях до 10 Тл магнитосопротивление остается положительным и небольшой величины.

4. Заключение

В работе исследованы оптические и транспортные свойства многослойных структур InAs/GaAs с квантовыми точками, выращенных на подложках с небольшим углом разориентации относительно направления [001]. В спектрах фотолюминесценции в плоскости слоев наблюдается область с повышенной поляризацией.

Обнаружено, что квантовые точки InAs в GaAs формируют двумерные электронные или дырочные слои, для которых наблюдается эффект Шубникова-де-Гааза. Низкотемпературная проводимость структур обладает анизотропией: проводимость вдоль направления [110], т. е. вдоль ступенек, больше по сравнению с проводимостью в перпендикулярном направлении [110]. Все эти данные свидетельствуют о том, что точки формируются на профилированной поверхности преимущественно вдоль ступеней. Обнаружена сильная локализация двумерных носителей тока при понижении температуры. В образцах *n*-типа при увеличении магнитного поля при температурах жидкого гелия наблюдается переход металл–изолятор. Работа поддержана программой "Физика твердотельных наноструктур", грант № 97-1089 и Российским фондом фундаментальных исследований, грант № 96-15-96500.

Список литературы

- H. Sakaki, G. Yusa, T. Someya, Y. Ohno, T. Noda, H. Akiyama, Y. Kadoya, H. Noge. Appl. Phys. Lett., 67, 3444 (1995).
- [2] K. Imamura, Y. Sugiyama, Y. Nakata, S. Muto, N. Yokoyama. Jpn. J. Appl. Phys., 34, L1445 (1995).
- [3] J.-Y. Marzin, J.-M. Gerard, A. Izrael, D. Barrier. Phys. Rev. Lett., **73**, 716 (1994).
- [4] H. Drexler, D. Leonard, W. Hansen, J.P. Kotthaus, P.M. Petroff. Phys. Rev. Lett., 73, 2252 (1994).
- [5] T. Noda, M.R. Fahy, T. Matsusue, B.A. Joyce, H. Sakaki. J. of Cryst. Growth, **127**, 783 (1993).
- [6] D. Leonard, M. Krishnamurthy, C.M. Reaves, S.P. Den-Baars, P.M. Petroff. Appl. Phys. Lett., 63, 3203 (1993).
- [7] D. Leonard, K. Pond, P.M. Petroff. Phys. Rev. B, 50, 11687 (1994).
- [8] M. Grundmann, O. Stier, D. Bimberg. Phys. Rev. B, 52, 11969 (1995).
- [9] Б.Н. Звонков, Е.Р. Линькова, И.Г. Малкина, Д.О. Филатов, Ф.Л. Чернов. Письма ЖЭТФ, 63, 418 (1996).
- [10] J.M. Ziman. *Principles of the theory of solids* (Cambridge, University press, 1972).
- [11] J. Ahopello, M. Sopanen, H. Lipsanen et al. Abstracts of the Second Int. Conf. on Low Dimensional Structures and Devices (Lisbon, Portugal, 1997) O21.
- [12] F. Lelarge, Z.Z. Wang, A. Cavanna, F. Laruelle, B. Etienne. Europhys. Lett., 39, 97 (1997).
- [13] E.L. Ivchenko, A.Yu. Kaminskii, U. Rossler. Phys. Rev. B, 54, 5852 (1996).
- [14] I.G. Malkina, V.Ya. Aleshkin, B.N. Zvonkov, Yu.N. Saf'anov. Phys. Low-Dim. Struct., 1/2, 61 (1997).
- [15] Y. Arakawa. Proc. 23rd Int. Conf. on the Physics of Semiconductors (Berlin, 1996) p. 1349.
- [16] А.Д. Виссер, В.И. Кадушкин, В.А. Кульбачинский, В.Г. Кытин, А.П. Сеничкин, Е.Л. Шангина. Письма ЖЭТФ, **59**, 339 (1994).
- [17] В.А. Кульбачинский, В.Г. Кытин, В.И. Кадушкин, А.П. Сеничкин. ФТТ, 37, 2693 (1995).
- [18] V.A. Kulbachinskii, N.B. Brandt, V.G. Kytin, V.I. Kadushkin, A.P. Senichkin, E.L. Shangina. Phys. Low-Dim Struct., 12, 237 (1995).
- [19] Y.-N. Yang, Y.S. Luo, J.H. Weaver. Phys. Rev. B, 46, 15387 (1992).
- [20] I.P. Zvyagin. Phys. St. Sol. (b), 120, 503 (1983).
- [21] B.L. Altshuler, A.G. Aronov. In: *Modern Problems in Condensed Matter Physics*, ed. by A.L. Efros and M. Pollak (Elsevier Science Publishers B.V., 1985) p. 1.
- [22] P.A. Lee, T.V. Ramakrishnan. Rev. Mod. Phys., 57, 287 (1985).

Редактор Т.А. Полянская

Peculiarities of photoluminescence and transport properties of multi-layer InAs/GaAs structures with quantum dots

V.A. Kulbachinskii, V.G. Kytin, R.A. Lunin, A.V. Golikov, I.G. Malkina, B.N. Zvonkov, Yu.N. Safyanov

Moscow State University, 119899 Moscow, Russia

Abstract Transport and optical properties of InAs/GaAs structures with quantum dots (QD) on vicinal surface have been investigated as a function of InAs content. It was found that quantum dots form a 2D holes or electrons layers, from which Shubnikov–de-Haas effect was observed. The temperature dependence of resistance was measured in [110] and [$\bar{1}10$] directions in the temperature range 4.2–300 K and anisotropy of conductivity was found. Strong localization occurs when electrons are trapped in InAs dots. The spectra of in-plane photoluminescence showed strong polarization of QD radiation.