Избыточный шум эпитаксиальных пленок YBa₂Cu₃O₇ и микроболометры антенного типа на их основе

© А.В. Бобыль, М.Э. Гаевский, А.И. Дедоборец*, С.Ф. Карманенко**, В.Н. Леонов***, А.В. Лунев, А.А. Семенов**, Р.А. Сурис, И.А. Хребтов***

Физико-технический институт Российской академии наук,

194021 Санкт-Петербург, Россия

* Государственный агроуниверситет,

320027 Днепропетровск, Украина

** Электротехнический университет, 197376 Санкт-Петербург, Россия

*** Государственный оптический институт,

199034 Санкт-Петербург, Россия

E-mail: bobyl@theory.ioffe.rssi.ru

(Поступила в Редакцию 1 марта 1999 г.)

Проведены модельные отжиги эпитаксиальных пленок YBa₂Cu₃O₇ методом Монте-Карло и показано, что для актуальных диапазонов рабочих частот и температур преобладающими источниками их избыточного фликкер-шума являются переходы кислорода вблизи малоугловых границ блоков. Оптимизация технологий пленок и планарных микроструктур позволили достичь рекордно малой величины шумового параметра Хоуге (1.8×10^{-4} при 93 K) на тестовых структурах, из которых могут быть изготовлены высококачественные полосковые микроболометры антенного типа. Расчеты показывают, что за счет достигнутого уменьшения размеров микрополоски до $1 \times 0.7 \,\mu m^2$ и снижения величины фликер-шума возможна регистрация излучения в диапазоне спектра 3 mm–300 μ m (100–1000 GHz при 90 K с наносекундным быстродействием и электрической эквивалентной мощностью шума (NEP), равной 1.5×10^{-12} W/Hz^{1/2} на частотах от 30 до 10^7 Hz, что близко к ограничению на уровне мощности фононного шума.

В последние годы получили развитие микроболометры антенного типа [1–3]. В области высоких частот эквивалентная мощность шума (NEP) приемников такого типа обусловлена фононным шумом теплоотвода в подложку и значительно понижается при уменьшении размеров чувствительного элемента. В области низких частот существенное влияние на NEP оказывает избыточный (1/f) фликер-шум, величину которого принято определять через безразмерный параметр Хоуге (α) [4].

В первой работе по исследованию шумов антенных микроболометров на основе высокотемпературных сверхпроводников (ВТСП) [3] наблюдали большую величину α (> 10⁻³ при 93 K), превышающую на 2–3 порядка величины α таких простых металлов, как Ag, Au [4–6]. Кроме этого, сравнительно большие размеры чувствительного элемента ($20 \times 3 \mu m^2$) не позволили достигнуть низкие конкурентоспособные значения NEP. Следует отметить также, что при большой величине α можно ожидать быстрой деградации достигнутых параметров, поскольку она указывает на значительную концентрацию метастабильных дефектов и на их интенсивную низкотемпературную диффузию [7].

В данной работе проведены исследования возможности достижения конкурентоспособных значений NEP антенных микроболометров на основе эпитаксиальных пленок YBa₂Cu₃O₇. Вначале было проведено компьютерное моделирование методом Монте-Карло температурных отжигов этих пленок и были выявлены преобладающие источники шума на f-T-плоскости. Для уменьшения концентрации источников фликер-шума были исполь-

зованы различные технологии травления (жидкостное, лазерное, ионное) пленок при изготовлении тестовых образцов с размерами не более $1 \times 1 \,\mu m^2$. На основании достигнутых параметров тестовых образцов и тепловой модели микроболометра антенного типа были проведены расчеты величины электрической NEP в диапазоне частот $1-10^9$ Hz.

1. Моделирование методом Монте-Карло и источники шума на *f*-*T*-плоскости

Распределение атомов кислорода по двум подрешеткам плоскости CuO рассчитывалось методом Монте-Карло в рамках модели ANNN [7-10]. Процесс отжига начинался при высокой температуре и с хаотического распределения атомов кислорода по подрешеткам, а заканчивался при низкой температуре образованием упорядоченной фазы. Как показано в [6], даже наиболее качественные эпитаксиальные пленки YBa₂Cu₃O₇ состоят из малоугловых блоков, через границы которых проходят основные потоки кислорода при проведении послеростовых отжигов или при хранении [11-13]. Обеднение кислородом границ блоков учитывалось следующим образом. На квадрате 44 × 44 узлов рабрасывалось 860 атомов. При понижении температуры после каждых четырех Монте-Карло-шагов на атом (МКША) из расчетов исключались атомы, которые попали в узлы с координатами x = 0 и -1, y = -22-22, отмеченные на рис. 1, a

Рис. 1. Моделирование методом Монте-Карло межблочной границы в пленках $YBa_2Cu_3O_7$. Пространственное распределение атомов кислорода по плоскости CuO (*a*) и соответствующее пространственное распределение энергий барьеров переходов атомов кислорода между ближайшими позициями этой плоскости (*b*) после 10^3 МКША. Отмечено положение межблочной границы. Кружки и точки на (*a*) — атомы кислорода и меди соответственное

темной полосой. Там же показано распределение атомов по завершению отжига. Высота барьера E перехода атома в соседний пустой узел рассчитывалась в приближении гармонического потенциала ямы узла [7] и усреднялась по 8 соседним узлам. Полученное пространственное распределение величины E показано на рис. 1, b. Видно, что атомы кислорода, расположенные вблизи границы блока, вблизи дефектов цепочек и в упорядоченной фазе, имеют энергии барьера < 0.5, 0.5–1.4 и > 1.4 eV соответственно. Используя эти значения, а также известное соотношение для величины энергии, которую атом может получить термоактивационным путем за время 1/f при температуре T [4]

$$E = kT \ln(2\pi f \tau_D), \tag{1}$$

где τ_D^{-1} — дебаевская частота ($\approx 10^{-13} \, {
m s}^{-1}$), можно показать, что в области актуальных для приборов частот ($f > 1 \, {
m Hz}$), работающих вблизи критической температуры T_c , основными источниками шума являются атомы кислорода, расположенные вблизи границы блоков.

Таким образом, на основании компьютерного моделирования методом Монте-Карло можно сделать вывод о необходимости разработки специальных технологических процедур, стабилизирующих кислородный состав пленок YBa₂Cu₃O₇ вблизи границ блоков и других двумерных микродефектов.

2. Технология пленок, тестовых образцов и шумовые измерения

Эпитаксиальные пленки YBa2Cu3O7 выращивались методом магнетронного распыления на подложках MgO, LaAlO₃, SrTiO₃ и NdGaO₃. Ориентация пленок и катионный состав определялись рентгеноструктурным анализом и рентгеноспектральным микроанализом соответственно. Содержание кислорода определялось по величине термоэдс и по величине сопротивления нормальной фазы при 300 К. Величины внутренних микронапряжений, прецессий с-оси блоков и толщины пленок определялись по угловой зависимости ширины пиков трехкристальной рентгенодифракции [6]. Измерения спектральной плотности шума напряжения S_V проводились на частотах $f = 1 - 10^5$ Hz. Параметр Хоуге рассчитывался из выражения

$$\alpha(E) = f N_e \frac{S_V}{V^2}.$$
 (2)

где $N_e = nv$ — число свободных носителей в образце объемом v, концентрация свободных носителей заряда в котором принималась равной $n = 10^{21} \,\mathrm{cm}^{-3}$ [6,7]; соответствующие результаты показаны на рис. 2.

Как будет видно далее, лучшие параметры имеют болометры антенного типа с микронными размерами чувствительных элементов. Поэтому были проведены поиски способов и режимов травления, обеспечивающих заданные микронные размеры образца при величине подтравливания края эпитаксиальной пленки не

Рис. 2. Температурные зависимости параметра Хоуге микрополосок YBa₂Cu₃O₇ на подложках LaAlO₃. Кривые *1-3* — для образцов, полученных по технологиям лазерного, жидкостного и ионного травлений соответственно. Темная полоса отмечает область лучших результатов, достигнутых до настоящей работы.

более 0.1 µm. Принципиально важным было наличие текущего контроля интенсивности фликер-шума этих микрополосок.

Исходные пленки с нанесенными контактами покрывались фоторезистом. В качестве жидкостного травителя использовался этилен-диамин-татраацетат. Для лазерного травления использовалась установка ретуши фотошаблона МЭ 5551Б на базе азотного лазера ЛГИ 505. Для ионного травления применялся специальный ионный источник дуопигатронного типа [14], в котором низкотемпературная плазма создавалась газоразрядными эмиттерами с плотностью тока ионов до 10 A/cm². Технология ионного травления позволяла получать тестовые образцы в виде микрополосок размером менее $1 \times 1 \, \mu m^2$ и с подтравом края пленки не более $1 \, \mu m$. Для жидкостного и лазерного травлений величина подтрава была не менее 0.5 и 5 μm соответственно.

Из рис. 2 видно, что максимальное уменьшение шума было достигнуто именно вблизи T_c , где основными источниками шума являются дефекты-флуктуаторы расположенные вблизи границ блоков с энергиями барьеров < 0.5 eV. Уровень шума микрополоски, полученной жидкостным травлением, хотя и был в 3 раза меньше по сравнению с полоской, полученной ионным травлением, однако первая имела неровные края и в течение нескольких суток ее величина α повышалась до уровня 1.8×10^{-4} . Наличие этого эффекта указывает на возможность дальнейшего уменьшения шума микрополосок, имеющих размеры менее $1 \times 1 \mu m^2$, вплоть

Рис. 3. Расчетные частотные зависимости электрической NEP болометров при использовании в качестве чувствительных элементов пленок YBa₂Cu₃O₇ с размерами $6.0 \times 3.0 \times 0.3 \,\mu\text{m}^3$ (*1*, *2*) и $1.0 \times 0.7 \times 0.2 \,\mu\text{m}^3$, при этом в качестве антенн использованы пленки Ag (*1*, *3*) и YBa₂Cu₃O₇ (*2*, *4*). Расчеты кривых проведены на основании рекордно низких уровней фликер-шума, показанных на рис. 2.

до уровня $\alpha = 6 \times 10^{-5}$. Это может быть достигнуто путем проведения таких температурных отжигов, которые уменьшают количество дефектов-флуктуаторов, возникающих в результате имплантации ионов.

3. NEP микроболометров антенного типа

Возможность использования микроболометров антенного типа при приеме инфракрасного излучения с целью увеличения NEP впервые была рассмотрена в работе [1]. Основная идея состоит в том, что величина поглощенной мощности регистрируемого излучения длиной волны λ определяется площадью антенны, а теплопотери — малой площадью чувствительного элемента, который имеет высокую вольт-ваттную чувствительность (S). Оказывается, что для квадратной антенны с длиной стороны *а*, в оптимальной ситуации $a \approx \lambda$, и квадратного чувствительного элемента с длиной стороны b величина NEP приемника за счет антенны уменьшается в λ/b раз, например, в 100 раз для $\lambda = 100 \,\mu\text{m}, \, b = 1 \,\mu\text{m}$. Если пренебречь шумами усилителя, NEP микроболометра для единичной полосы пропускания усилителя на частоте f определяется следующим соотношением [2]:

NEP =
$$\left(P_b^2 + P_T^2 + P_D^2 + P_{1/f}^2\right)^{1/2}$$
, (3)

где P_b , P_T , P_R и $P_{1/f}$ — флуктуации мощности излучения фона, теплообмена приемника с окружающей средой, джонсоновского шума сопротивления и фликкер-шума чувствительного элемента соответственно ($P_{1/f} = (\alpha/N_e f)^{1/2} IR/S$, где I и R — ток, про-

пускаемый через болометр, и его сопротивление соответственно). Все слагаемые выражения (3) пропорциональны площади чувствительного элемента микроболометра. Величина P_{1/f} может быть значительно снижена путем уменьшения величины α и увеличения вольт-ваттной чувствительности S. Используя достигнутый уровень $\alpha = 1.8 \times 10^{-4}$, в рамках тепловой модели [15], учитывающей радиальный теплоотвод в подложку, тепловое граничное сопротивление и тепловое сопротивление, обусловленное теплопроводностью пленки, авторы провели расчеты электрической NEP. (При расчетах последней считается, что коэффициент поглощения антенны равен единице). На рис. 3 приведены результаты расчетов и видно, что только в области частот < 30 Hz электрическая NEP увеличивается из-за избыточного низкочастотного фликер-шума пленок УВа2Си3О7. На более высоких промежуточных частотах вплоть до 30 MHz электрическая NEP обусловлена частотно-независимым фононным шумом и именно здесь достигается уровень $1.5 \times 10^{-12} \, \text{W/Hz}^{1/2}$. На сверхвысоких частотах > 30 MHz, где начинает уменьшаться вольт-ваттная чувствительность, NEP повышается из-за джонсоновского шума. Из рис. 3 также видно, что удается получать заметные преимущества и за счет уменьшения размеров чувствительного элемента микроболометра, и за счет использования в качестве антенны пленок YBa2Cu3O7 по сравнению с пленками Ад. В частности, при уменьшении площади чувствительного элемента в 25 раз электрическая NEP в области промежуточных частот снижается в 5 и 3 раза для антенн из пленок YBa2Cu3O7 и Ag соответственно.

Таким образом, в настоящей работе получены следующие результаты.

1) На основании компьютерного моделирования методом Монте-Карло температурных отжигов эпитаксиальных пленок YBa₂Cu₃O₇ были выявлены преобладающие источники шума на f-T-плоскости. Оказалось, что для актуальных диапазонов рабочих частот и температур таковыми являются переходы кислорода вблизи малоугловых границ блоков и других двумерных микродефектов.

2) Варьируя режимы роста пленок и используя различные технологии травления (жидкостную, лазерную, ионную) пленок при изготовлении планарных микроструктур, удалось в 3 раза уменьшить концентрацию дефектов-флуктуаторов в области энергий 0.2–0.6 eV.

3) Показана возможность значительного снижения величины электрической эквивалентной мощности шума микроболометров антенного типа на основе пленок $YBa_2Cu_3O_7$ за счет уменьшения величины фликер-шума микроструктур с размерами $1 \times 0.7 \, \mu m^2$.

Работа поддерживается Российской программой "Сверхпроводимость" (проект № 98031).

Список литературы

- [1] S.E. Schwarz, B.T. Ulrich. J. Appl. Phys. 48, 1870 (1977).
- [2] В.Н. Леонов, И.А. Хребтов. ПТЭ 7, 11 (1993).
- [3] В.Н. Леонов, И.А. Хребтов. СФХТ 7, 1371 (1991).
- [4] Sh. Kogan. Electronic noise and fluctuations in solids. Cambridge, University press (1996). 354 p.
- [5] J. Pelz, J. Clarke. Phys. Rev. **B36**, 4479 (1987).
- [6] A.V. Bobyl, M.E. Gaevski, S.F. Karmanenko, R.N. Kutt, R.A. Suris, I.A. Khrebtov, A.D. Tkachenko, A.I. Morosov. J. Appl. Phys. 82, 1274 (1997).
- [7] А.А. Берзин, А.В. Бобыль, А.И. Дедоборец, А.И. Морозов, Р.А. Сурис. ФТТ 41, 6, 957 (1999).
- [8] D. Fontaine, L.T. Wille, S.C. Moss. Phys. Rev. B36, 5709 (1987).
- [9] A.G. Khachaturyan, J.W. Morris, jr. Phys. Rev. Lett. 61, 215 (1988).
- [10] M. Goldman, C.P. Burmester, L.T. Wille, R. Gronsky. Phys. Rev. B50, 1337 (1994).
- [11] Д.В. Куликов, Р.А. Сурис, Ю.В. Трушин. ФТТ **36**, 2975 (1994).
- [12] S.J. Rothman, J.L. Routbort, U. Welp, J.E. Baker. Phys. Rev. B44, 2326 (1991).
- [13] A.V. Bobyl, M.E. Gaevskii, S.G. Konnikov, D.V. Shantzev, V.A. Solov'ev, R.A. Suris. Scanning microscopy 10, 679 (1996).
- [14] S.F. Karmanenko, A.I. Dedyk, V.T. Barchenko, R.A. Chakalov, A.V. Lunev, A.A. Semenov, L.T. Ter-Martirosyan. Supercond. Sci. Techn. 11, 284 (1998).
- [15] В.В. Богачев, В.Н. Леонов, И.А. Хребтов. Письма в ЖТФ 10, 10, 89 (1994).