Особенности кинетических и магнитных свойств монокристаллов Pb_{0.8}Sn_{0.2}Te высокого структурного совершенства

© М.В. Радченко, Г.В. Лашкарев, Е.И. Слынько, А.П. Малышева

Институт проблем материаловедения Академии наук Украины, 252680 Киев, Украина

(Поступила в Редакцию 29 июля 1998 г. В окончательной редакции 10 января 1999 г.)

В интервале температур 4.2–300 К, в магнитных полях до 4 Т исследованы электрические, термоэлектрические, термомагнитные и магнитные свойства монокристаллов твердого раствора Pb_{0.8}Sn_{0.2}Te. Показано, что улучшение его структурного совершенства приводит к появлению второго структурного фазового перехода (СФП), а также к увеличению температуры первого СФП.

Твердые растворы теллуридов свинца и олова представляют значительный интерес для инфракрасной оптоэлектроники. Эффективность работы приборов на основе этих соединений в значительной мере зависит от их химической однородности и структурного совершенства. Последнее определяется плотностью дислокаций, количеством малоугловых границ и т.д.

Известно, что в узкозонных полупроводниках $Pb_{1-x}Sn_xTe$ в интервале составов $0.2 \le x \le 1.0$ и температур 4.2 < T < 300 К наблюдается нестабильность кристаллической решетки, которая приводит при понижении температуры к сегнетоэлектрическому структурному фазовому переходу (СФП) II рода типа смещения из кубической (O_h) в ромбоэдрическую (C_{3v}) фазу [1,2]. В работе [3] с помощью рентгеноструктурного анализа авторами обнаружено существование трех СФП, причем в двух из них происходит изменение симметрии кристаллической решетки. Свободные носители тока и структурные дефекты кристаллической решетки оказывают существенное влияние на фазовый переход. Сильное рассеяние носителей тока при СФП [4] вызвано локальными флуктуациями поляризации, связанными с наличием неоднородностей и с флуктуациями параметра порядка в критической точке.

В настоящей работе приводятся результаты исследования коэффициента Холла R, удельного сопротивления, термоэдс α , магнитной восприимчивости (MB) χ в интервале температур 4.2–300 К и шубниковских осцилляций α в магнитных полях H до 4 Т.

Коэффициент Холла, удельное сопротивление и термоэдс изменялись компенсационным методом на постоянном токе. Измерения температуры образца и его градиента (~ 2 K/cm) проводились термопарой медь–золото (легированное железом). В области температур жидкого гелия и водорода учитывали абсолютную термоэдс меди. МВ измерялась относительным методом Фарадея с помощью электронных микровесов с автоматической компенсацией [5].

Монокристаллы Pb_{0.8}Sn_{0.2}Te диаметром 40 mm получены из паровой фазы. При синтезе использовались свинец чистоты 99.9999%, олово и теллур — 99.999999%. для понижения концентрации носителей тока образцы подвергались изотермическому отжигу в парах, содержащих избыток металла. Образцы вырезались в плоскости (100). Удаление нарушенного механической полировкой слоя поверхности образца проводилось электрохимическим полированием и химической обработкой в смеси Br + HBr.

Исследования структуры кристаллов Pb_{0.8}Sn_{0.2}Te показали, что плотность дислокаций не превышает $2 \cdot 10^4$ cm⁻², а малоугловые границы отсутствуют. Контроль однородности образцов проводился с помощью измерения термоэдс в магнитном поле по методике, описанной в [6]. Все исследованные образцы имели дырочный тип проводимости.

На рис. 1 представлена температурная зависимость термоэдс на одном из образцов с холловской концентрацией дырок $p = 2.12 \cdot 10^{17} \text{ cm}^{-3}$ и подвижностью $\mu = 5.2 \cdot 10^5 \text{ cm}^2/\text{V} \cdot \text{s}$. На том же рисунке показана зависимость $\alpha(T)$ образца РbTe ($p = 3 \cdot 10^{18} \text{ cm}^{-3}$), в котором, как известно [1], СФП отсутствует. В области температур 6 < T < 35 K термоэдс кристаллов Pb_{0.8}Sn_{0.2}Te линейна и обнаруживает излом при $T_{c1} = 35 \text{ K}$. Зависимость $\alpha(T)$ при $\mu H/c \gg 1$ (α_{∞}) также имеет излом при той же температуре, что и α_0 . Этот факт указывает на то, что процессы рассеяния носителей тока не принимают участия в формировании этого излома. Такую особенность α мы наблюдали ранее при T = 20 K для кристаллов с близкой концентрацией носителей тока,

Рис. 1. Температурная зависимость термоэдс образца 3 (1) и PbTe (2).

Рис. 2. Температурная зависимость МВ (образец 3).

Рис. 3. Зависимость термоэдс в продольном (1) и поперечном (2) магнитных полях при T = 5.1 К (образец 3).

испытывающих структурный фазовый переход [2,7,8]. При $T_{c2} = 115$ К обнаружена особенность, которую мы связываем со вторым СФП, причем в температурном диапазоне $T_{c1} < T < T_{c2}$ термоэдс описывает петлю гистерезиса малой площади, что, по нашему мнению, подтверждает структурную неустойчивость кристалла в этом температурном диапазоне. Наблюдение петли гистерезиса термоэдс при СФП типа смещения осуществлено, насколько нам известно, впервые. Наличие максимума $\alpha(T)$ при $T \approx 180$ К и дальнейшее уменьшение α с температурой связано с наступлением собственной проводимости.

Отметим, что при T_{c1} , когда электронный газ находится в вырожденном состоянии, наблюдается излом линейной зависимости $\alpha(T)$, в то время как при T_{c2} , где вырождение снято, особенность $\alpha(T)$ имеет характер перегиба. Подобные закономерности уже отмечались нами ранее, для образцов Pb_{0.8}Sn_{0.2}Te [2] и Pb_{0.94}Ge_{0.06}Te [8], что является дополнительным аргументом в пользу того, что мы действительно наблюдаем СФП.

Температура первого СФП в образцах $Pb_{0.8}Sn_{0.2}$ Те, полученных нами из паровой фазы, существенно выше, чем в случае кристаллов, выращенных методом Бриджмена (~ 25 K). Это согласуется с данными работы [9], где показано, что дефекты кристаллов понижают температуру фазового перехода.

Изменения коэффициента Холла в исследованных образцах показали, что R практически не зависит от температуры и не имеет особенности при СФП, так как концентрация дырок мала и уровень Ферми в интервале температур 4.2–120 К находится в зоне легких дырок и не проникает в тяжелую зону [10], что приводит к неизменности их концентраций легких дырок при фазовом переходе.

Ранее для SnTe, $Pb_{0.18}Sn_{0.82}$ Te и $Pb_{1-x}Sn_x$ Te [2,7,8] нами было показано, что при СФП MB имеет особенность с минимумом. Температурная зависимость MB образцов, изученных в данной работе, имеет две особенности в виде уменьшения парамагнетизма на диамагнитном фоне (рис. 2). Температура проявления первой особенности близка к величине T_{c1} , определенной из температурной зависимости термоэдс. Поэтому мы связываем ее с СФП, как это делалось ранее [2,7,8]. Действительно, при

Рис. 4. a — квантовые осцилляции термоэдс в продольном магнитном поле при T = 5.1 K (образец 3); b — температурная зависимость амплитуды осцилляций термоэдс в продольном магнитном поле. Номера прямых соответствуют номерам пиков осцилляций.

Образцы	$p \cdot 10^{-7} \mathrm{cm}^{-3}$, из коэф. Холла	$p \cdot 10^{-7} { m cm}^{-3},$ из шубниковск. осцилл. $lpha$	$\mu \cdot 10^5$, cm ² /V·s	$m^*/m_0\cdot 10^2$	K	<i>T</i> _c , K	γ
1	2.03	1.8	1.5	1.83	10	20	2.3
2	3.11	2.5	2.0	1.82	10	22	2.0
3	2.12	1.9	5.8	1.76	10.5	35	2.5
4	3.81	3,5	5.2	1.75	10.4	36	2.4

Характеристики образцов при T = 4.2 K

Примечание. Образцы 1, 2 получены по методу Бриджмена; образцы 3, 4 получены из паровой фазы; γ определено из выражения $\mu \sim T^{-\gamma}$.

СФП возникает зависящая от температуры поправка к ширине запрещенной зоны E_g . В связи с малостью E_g в узкощелевом Pb_{0.8}Sn_{0.2}Te перенормировка зонного спектра должна приводить к изменениям его магнитных и кинетических свойств: появляется поправка к MB, обязанная флуктуациям параметра порядка в области СФП [11]. Температура проявления на MB второго ФП ($T_{c2} \sim 140$ K) выше температуры особенности $\alpha(T)$, что, по-видимому, связано с другой природой этого ФП.

На рис. 3 приведены экспериментальные зависимости α в продольном (α_{\parallel}) и поперечном (α_{\perp}) относительно градиента температуры магнитном поле при температуре T = 5.1 К. Используя методику расчета [12], был определен коэффициент анизотропии эффективных масс $K = m_{\parallel}^*/m_{\perp}^*$ (m_{\parallel}^* — продольная, m_{\perp}^* — поперечная эффективные массы носителей тока соответственно).

Высокое структурное совершенство исследованных нами кристаллов, большие подвижности и малые эффективные массы носителей тока при наличии вырождения дырочного газа дали нам возможность исследовать шубниковские осцилляции α в образцах Pb_{0.8}Sn_{0.2}Te.

Исследования термоэдс в квантующем продольном магнитном поле проведены на образцах, ориентированных так, чтобы вектор магнитного поля и градиент температуры были параллельны оси высокой симметрии $H \parallel \nabla T \parallel \langle 100 \rangle$ при выполнении условий: $\Omega H/kT > 1$ и $\zeta/kT > 1$ (Ω — циклотронная частота, ζ — уровень химического потенциала).

На рис. 4 представлена зависимость термоэдс от магнитного поля при T = 5.1 К. Наблюдаются ярковыраженные моночастотные осцилляции $\alpha(H)$, в которых положение осцилляций определяется концентрацией носителей тока (энергией Ферми).

Частоту осцилляций F определяли из наклона зависимости $1/H_{\text{extr}}$ от номера уровня Ландау (H_{extr} значение магнитного поля в экстремуме термоэдс). Экстремальная площадь сечения поверхности Ферми S_{extr} плоскостью, перпендикулярной вектору магнитного поля, связана с F соотношением

$$S_{\text{extr}} = (2\pi he/c)F.$$
 (1)

Концентрацию дырок в одном *L*-экстремуме можно вычислить из зависимости периода осцилляций $\Delta = (1/H_{n+1}) - (1/H_n)$ от величины обратного магнитного поля, используя выражение

$$\Delta(1/H) = 3.18 \cdot 10^6 K^{1/2} / p^{2/3}.$$
 (2)

Из анализа температурной зависимости амплитуд осцилляций A определена величина циклотронной эффективной массы на уровне Ферми m_c^* в L-минимуме. Значения m_c^* и концентрации носителей тока, вычисленные из осцилляций термоэдс при t = 5.1 K, приведены в таблице. Видно, что полная концентрация дырок в четырех L-экстремумах с точностью до 10% совпадает с холловской концентрацией носителей тока.

Таким образом, улучшение структурного совершенства монокристаллов твердых растворов Pb_{0.8}Sn_{0.2}Te привело к увеличению температуры первого СФП, появлению второго СФП и гистерезиса термоэдс в температурном интервале между первым и вторым СФП. Обнаружено также увеличение показателя степени γ температурной зависимости подвижности $\mu \sim T^{-\gamma}$ от 2.1–2.3 до 2.5, что свидетельствует об уменьшении рассеяния носителей тока на дефектах решетки.

Авторы благодарят А.В. Бродского и А.Л. Мирца за измерения магнитной восприимчивости.

Список литературы

- K.L.I. Kobayashi, Y. Kato, Y. Katayama, K.F. Komatsubara. Phys. Rev. Lett. 37, 12, 772 (1976).
- [2] G.V. Lashkarev, V.M. Baginsky, R.O. Kikodze, M.V. Radchenko. Inst. Phys. Conf. Ser. 43, ch. 18. Edinburg (1978). P. 597.
- [3] О.В. Александров, К.В. Киселева, Ю.А. Горина. ЖТФ 50, 11, 2473 (1980).
- [4] А.П. Леванюк, В.В. Осипов, Ю.И. Эпифанов, А.С. Сигов. ЖЭТФ 76, 1, 345 (1979).
- [5] G.V. Lashkarev, D.F. Migley, A.D. Shevchenko, K.D. Tovstyuk. Phys. Stat. Sol. (b) 63, 2, 663 (1974).
- [6] G.V. Lashkarev, M.V. Radchenko, Int. Workshop on Semimagnetic Semiconductors. Abstracts. Linz, Johannes Kepler University, Austria (1994). Р. 207. Г.В. Лашкарев, М.В. Радченко, В.В. Асоцкий. Функциональные материалы 1, 2, 67 (1994).
- [7] Г.В. Лашкарев, Р.О. Кикодзе, М.В. Радченко, В.Б. Орлецкий, Е.И. Слинько, И.З. Марчук. ФТП 13, 8, 1548 (1979).
- [8] Г.В. Лашкарев, М.В. Радченко, В.Б. Орлецкий, Е.И. Слинько, Р.М. Старик. ФТП 14, 3, 490 (1980); 21, 10, 1921 (1987).
- [9] W. Jantsch, A. Lopez-Otero. Proc. of the 13th Int. Conf. Phys. Semicond. Roma (1976). P. 148.
- [10] Г.В. Лашкарев, М.В. Радченко. УФЖ 27, 5, 747 (1982).
- [11] V.I. Litvinov, V.K. Dugaev. J. Exper. Theor. Phys. 77, 2, 335 (1979).
- [12] С.А. Немов. ФТП 13, 7, 1439 (1979).