Термическое дефектообразование в нелегированных и легированных Cr и Mn кристаллах Bi₁₂SiO₂₀

© Т.В. Панченко, Л.М. Карпова

Днепропетровский государственный университет, 320625 Днепропетровск, Украина E-mail: elf@ff.dsu.dp.ua

(Поступила в окончательном виде 12 ноября 1998 г.)

Исследованы токи термостимулированной деполяризации и температурные зависимости оптического поглощения. Наблюдались процессы взаимодействия дефектов. Предлагается модель ассоциации–диссоциации квазидиполей в виде донорно-акцепторных пар, распределенных по энергии активации и времени релаксации.

Дефекты термического происхождения существенно влияют на свойства фоторефрактивных кристаллов Bi_2SiO_{20} (BMO, где M = Si, Ge, Ti) [1–7]. Отжиг в вакууме приводит к росту темновой и фотопроводимости [1], трансформации спектров оптического поглощения, фотопроводимости, фото- и термолюминесценции [2–4], усилению фотогальванического эффекта [5]. Образующиеся вакансии кислорода связаны с комплексными ионами BiO₇, поскольку отжиг сопровождается диффузией и восстановлением ионов Bi [3,4].

Отжиг в кислороде после отжига в вакууме возвращает свойства к исходным, обратимость их изменения свидетельствует о большей значимости (относительно метаморфозы Ві) процессов образования-исчезновения кислородных вакансий [1,3,6]. Первичный отжиг в кислороде не изменяет свойства ВМО, т.е. они являются насыщенными окислами [1,2].

Кристаллы ВМО чувствительны также к прогреву на воздухе, который вызывает их термообесцвечивание [3,7–9] и переводит в некое "начальное" состояние с воспроизводимыми характеристиками [10,11]. Прогрев с наложенным электрическим полем вызывает резкий рост темновой электропроводимости и увеличение подвижности носителей заряда [12,13].

Многообразие изменений свойств кристаллов ВМО при термообработке обусловливает интерес к природе термоиндуцированных процессов, которая неизвестна.

Цель данной работы — изучение термического дефектообразования в чистых и легированных ионами Cr и Mn кристаллах Bi₁₂SiO₂₀ (BSO, BSO: Cr и BSO: Mn соответственно).

1. Методика экспериментов

Кристаллы BSO, BSO: Cr (0.05 mass.%) и BSO: Mn (0.1 mass.%) были выращены методом Чохральского. Технология легирования описана в [14].

Исследовались температурные спектры I(T) токов термостимулированной дополяризации (ТСД) и влияние температуры на спектры оптического поглощения $\alpha(E, T)$ фотонов с энергией E = (0.5-3.3) eV в области T = (300-700) K.

В экспериментах варьировалась по ТСД температура поляризации T_p = (300-525) К и время $t_b = (30-3.6 \cdot 10^3)$ s выдержки при $T = T_p$ до подачи поляризующего напряжения $U_{\rm p} = 180$ V. Время поляризации ($t_p = 30 \min$) и U_p оставались постоянными (рис. 1). Образцы приготавливались в виде брусков размерами (~ 0.9) $\times 2 \times 10 \, {\rm mm^3}$. Рt-электроды, образующие барьерные контакты [15], наносились катодным распылением на поверхности $2 \times 10 \, \text{mm}^2$, вырезанные в плоскости (010). Ток измерялся при нагреве образцов со скоростью $b_1 = 0.16 \,\mathrm{K} \cdot \mathrm{s}^{-1}$ на автоматизированной с помощью микроЭВМ установке, описанной в [16].

Для оптических измерений образцы приготавливались в виде полированных пластин площадью $8 \times 8 \text{ mm}^2$ (в плоскости (001)) и толщиной d = (0.1-5) mm. Спектры оптического пропускания t(E) измерялись на спектрофотометрах Specord M40 и Specord NIR61. Температура изменялась со скоростью $b_2 = 0.02 \text{ K} \cdot \text{s}^{-1}$. Спектры t(E) сканировались через 10 К в режиме "нагрев-охлаждение". Спектры поглощения $\alpha(E)$ рассчитывались из известных соотношений с учетом отражения и преломления [17,18].

2. Результаты

2.1. Спектры тока ТСД. В спектрах I(T) можно выделить две группы А и В пиков тока ТСД в интервалах $T_1 = (300-600)$ К и $T_2 = (600-800)$ К соответственно. Интенсивность и степень разрешения пиков обеих групп зависит от температуры поляризации T_p. При низких $T_{\rm p}$ пики группы A квазидискретны (BSO:Cr) или слабо структурированы (BSO, BSO: Mn). Пики группы В имеют почти гладкую огибающую, свидетельствующую об их сильном перекрытии. Увеличение T_p до 520 K приводит к исчезновению части пиков группы А (в BSO и BSO:Cr), росту и лучшему разрешению остальных пиков групп А и В. При этом пики группы А в кристаллах BSO: Cr и BSO: Mn образуют характерный пакет с П-образной огибающей и затянутым низкотемпературным склоном (рис. 1). В координатах Аррениуса этот склон изгибается так, что угол наклона (эффективное значение энергии термической активации $E_a^{T^*}$) растет с ростом температуры. Это указывает на квазинепре-

Кристалл	$\Delta E_a^{T^*}, \text{eV}$ $\Delta T, \text{K}$	E_{0a}^{T}, eV $\Delta T, \mathrm{K}$	E_a^T , eV T_m , K	E_a^O , eV	$E_{\rm ass}$, eV ΔT , K	$E_{\rm ass}^*$, eV ΔT , K	$E_{ m dis}$, eV ΔT , K	$E_{ m dis}^*, { m eV}$ $\Delta T, { m K}$
BSO:Cr	0.29	0.82 300–450	1.27 531	1.48–1.73	0.2–0.6, 400–500	0.02–0.28 430–500	0.1–0.3, 300–400	0.14–0.2, 300–350
BSO: Mn	0.26	0.6 300–400	1.25–1.54, 640–700	2.23-2.35	0.1–0.3, 300–470	0.32 470–520	0.3–0.5, 470–560	0.53 520–560
BSO	0.28	0.7, 340–390	0.7, 554 0.9, 599 600	1.4–1.65				

Энергетические характеристики электрически и оптически активных дефектов и процессов их взаимодействия в кристаллах BSO, BSO:Cr и BSO:Mn

Примечание. Значения E_a^T и E_a^O приведены для тех пиков тока ТСД и полос оптического поглощения, для которых исследовались зависимости $I_m(T_{\rm p}), \ Q(T)$ и lpha(T); значения E_a^T рассчитаны по методу "начального наклона", при этом пики тока ТСД выделялись из спектра $I_m(T)$ "термоочисткой" [19,22]; значения E_a^O определены по положению максимумов полос поглощения в спектре $\alpha(E)$; $E_{\rm ass}$ и $E_{\rm dis}$ найдены из зависимостей $I_m(T_{\rm p})$ и $Q(T_{\rm p})$, $E_{\rm ass}^*$ и $E_{\rm dis}^*$ — из зависимостей $\alpha(T)$.

рывность энергетического распределения электрически активных дефектов. Предполагая гауссову форму распределения и следуя [19], мы оценили его ширину: $\Delta E_a^{T^*} = \{ [2KT_1T_2/(T_2 - T_1)] [E_a^T(T_2) - E_a^T(T_1)] \}^{0.5}$ и наиболее вероятное значение энергии термической актива-ции дефектов $E_{0a}^T = (\Delta E_a^T)^2 / 2kT - d(\ln I(T)) / d(1/kT)$ (см. таблицу).

Интересно отметить аналогию общего вида спектров I(T) и $\alpha(E)$, где также выделяются две полосы в интервалах энергий $E_1 = (1.2 - 1.8) \, \text{eV}$ (A) и $E_2 = (1.8 - 3) \, \text{eV}$ (В), при этом А-полоса имеет вид П-образной огибающей [20]. В обоих случаях наблюдается увеличение тока I и поглощения α при переходе от кристаллов BSO к BSO: Мп и BSO: Сг (рис. 1 и [20]), а также по мере увеличения концентрации Сг и Mn [21]. Если за А- и В-полосы спектров I(T) и $\alpha(E)$ ответственны одни и те же дефекты, то значения их энергии термической (E_a^T) и оптической активаций (E_a^O) существенно различны (см. таблицу).

2.2. Зависимость ТСД от условий поляризации. Анализировались зависимости $I_m(T_p)$ и $Q(T_{p})$, где I_{m} — величина тока деполяризации в максимуме, $Q = \int I(t) dt$ — величина высвобождаемого заряда, *t*₁, *t*₂ — моменты времени.

При малом времени выдержки $(0 < t_b \leq 30 \,\mathrm{s})$ зависимости $I_m(T_p)$ для А-пиков и $Q(T_p)$ для В-пиков в кристаллах BSO и BSO: Сг проходят через максимум, а их низко- и высокотемпературные склоны описываются выражениями I_m , $Q \sim (1/T_p) \exp(-E_a^T/kT)$ и I_m , $Q \sim (1/T_p)$ соответственно (рис. 2, *a*, *b*), т.е. они близки к модельным для дипольной поляризации [19,22].

По мере роста $t_h > 30$ s для кристаллов BSO: Cr наблюдается изменение типа экстремальности этих зависимостей — они проходят через минимум при $T_{\rm p}\approx 420\,{\rm K}$ с экспоненциальными низко- и высокотемпературными склонами (рис. 2, b). Для нелегированного BSO наблюдается размытие максимума зависимости $Q(T_{\rm p})$ (В-пики) (рис. 2, *a*).

Зависимости $Q(T_p)$ для A и B пиков в кристаллах BSO: Mn, как правило, имеют два экстремума при $T_{\rm p1} \approx 370$ и $T_{\rm p2} \approx 420\,{\rm K}$, которые для малых и больших tb являются температурами либо максимума, либо минимума кривых $Q(T_p)$. Для промежуточных значений t_b наблюдаются зависимости $Q(T_p)$, характерные для дипольной поляризации (рис. 2, c).

Выявленный факт значительного влияния на зависимости $I_m(T_p)$ и $Q(T_p)$ времени выдержки t_b указывает на взаимодействие диполей. Прохождение кривых $I_m(T_p)$ и $Q(T_{\rm p})$ через максимумы или минимумы с экспоненциальными склонами свидетельствует об ассоциационнодиссоциационном типе взаимодействия диполей в кристаллах BSO: Cr и BSO: Mn [19,23]. При этом энергия диссоциации E_{dis} отлична от энергии ассоциации E_{ass} (см. таблицу).

Рис. 1. Спектры токов ТСД I(T) для кристаллов BSO (1, 1'), BSO: Mn (2, 2'), BSO: Cr (3, 3'). Условия поляризации: $T_p = 373 (1, 1', 2, 2')$ и 473 K (3, 3'), $t_b = 300$ s. На вставке эпюры зависимостей $U_p(T)$ и $T_p(T)$.

1594

Рис. 2. Влияние времени выдержки t_b на зависимости высвобождаемого заряда в области А- (a, b) и В-пиков (c) тока ТСД от температуры поляризации $Q(T_p)$ для кристаллов BSO (a), BSO: Cr (b) и BSO: Mn (c): $t_b = 30$ s (a, b, c, кривые 1), $1.8 \cdot 10^2$ s (a, b, c, кривые 2) и $3.6 \cdot 10^2$ s (a, b, c, кривые 3). Температурные зависимости оптического поглощения $\alpha(T)$ для кристаллов BSO (d), BSO: Cr (e), BSO: Mn (f), полученные при нагреве (d, 1, 3; e, 1, 3; f, 1, 3, 5) и охлаждении (d, 2, 4; e, 2, 4; f, 2, 4, 6) для различных энергий фотона: d - E = 1.65 (1, 2) и 2.23 eV (3, 4); e - E = 1.487 (3, 4) и E = 1.735 eV (1, 2); f - E = 2.23 (1, 2), 2.35 (3, 4) и 2.54 eV (5, 6).

2.3. Температурные зависимости оптического поглощения. С ростом температуры поглощение спадает в A- и растет в B-полосе (рис. 2, d-f). Спад поглощения происходит либо ступенчато (для BSO и BSO: Мп во всем диапазоне А-полосы, для BSO: Cr — в узком интервале $E = 1.6 - 1.7 \,\text{eV}$), либо с прохождением через минимум (для BSO: Cr при $1.6 \ge E \ge 1.7 \,\mathrm{eV}$). В В-полосе на фоне экспоненциального роста поглощения наблюдаются слабо выраженные ступени (для BSO при $E \ge 2.2 \,\mathrm{eV}$, для BSO: Mn при $E \ge 2.5 \,\mathrm{eV}$) или максимумы (для BSO: Mn, BSO: Cr при E = 2.2 - 2.5 eV) (рис. 2, d, f). Кривые αT характеризуются гистерезисом (рис. 2, *d*, *e*, *f*). Для А- и В-полос кристаллов BSO: Cr и В-полосы кристаллов BSO, BSO: Мп можно выделить граничный интервал $T_c = 420-480 \,\mathrm{K}$, при $T \leqslant T_c$ обратный ход $\alpha(T)$ выше, а при $T \ge T_c$ — ниже прямого. Минимум зависимостей $\alpha(T)$ в А-полосе кристаллов BSO: Сг при охлаждении углубляется (рис. 2, е).

Ступенчатый спад поглощения в А-полосе может быть вызван опустошением электронных ловушек, различие между энергиями E_a^T и E_a^O которых связано с электрон-

фононным взаимодействием и описывается в рамках модели конфигурационных координат [20].

Экстремумы зависимостей $\alpha(T)$ невозможно объяснить "перекачкой" электронов с мелких на более глубокие ловушки. По всей видимости, они, как и в зависимостях $I_m(T_p)$ и $Q(T_p)$, определяются изменением концентрации оптически активных дефектов за счет ассоциационно-диссоциационных процессов, при этом экспоненциальные склоны $\alpha(T)$ дают близкие к найденным из зависимостей $I_m(T_p)$ и $Q(T_p)$ значения энергии активации этих процессов (см. таблицу). Исчезновение максимума $\alpha(T)$ при охлаждении кристаллов BSO: Мп указывает на необратимое изменение диссоциированных дефектов при высоких T.

3. Обсуждение результатов

Высокоомность ($\sim 10^{16}\,\Omega\cdot cm)$ и большая концентрация собственных точечных дефектов ($\sim 10^{18}\,cm^{-1})$ позволяют считать кристаллы BSO:Mn и BSO:Cr

Рис. 3. Нормированные относительно максимальных значений зависимости величины высвобождаемого заряда для А-группы (a, 1, 2; b, 5) и В-группы (a, 3; b, 4) пиков тока ТСД кристаллов ВSO: Cr (a, 1-3), BSO: Mn (b, 5) и BSO (b, 4) от времени выдержки $Q/Q_{\text{max}}(t_b)$. Точки — экспериментальные величины, полученные при $T_p = 525$ (a, 1), 423 (a, 2; b, 2) и 473 K (a, 3; b, 2), линии — расчетные зависимости, полученные для $\tau_i = 10^2 - 5 \cdot 10^3$ s.

компенсированными полупроводниками. В этом случае за дипольный механизм поляризации могут быть ответственны квазидиполи в виде ассоциатов типа "ионизированный донор-ионизированный акцептор", а объемно-зарядовую поляризацию обеспечивают неассоциированные центры.

Кинетику процессов ассоциации и диссоциации донорно-акцепторных пар легко описать следующим образом. Пусть при достижении заданной температуры поляризации T_p в единицу времени возникают пары доноров и акцепторов определенного сорта концентрацией N_{pi} . Во взаимодействие с образованием ассоциатов концентрацией n_i вступают ионизированные доноры и акцепторы, концентрации которых тоже равны n_i . При этом

$$dn_i/dt = N_{pi} - \beta_i n_i^2, \tag{1}$$

где β_i — константа, включающая вероятность ассоциации. Решение (1) имеет вид

$$n_i(t) = (N_{pi}/\beta_i)^{0.5} \Big\{ \Big[\exp(2t/\tau_i) - 1 \Big] / \Big[\exp(2t/\tau_i) + 1 \Big] \Big\},$$
(2)

где τ_i — время релаксации, $n_i = 0$ при $t_0 = 0$. По мере истощения донорных уровней термогенерация пар N_{pi} прекращается, преобладающим стновится процесс диссоциации ассоциатов

$$dn_i/dt = -\beta_i n_i^2. \tag{3}$$

Отсчитывая время с момента $t^* = 0$, для которого $n_i = n_{0i} = (N_{pi}/\beta_i)^{0.5}$ получаем

$$n_i = n_{0i} / (1 + n_{0i} \beta_i t).$$
(4)

Из условия уменьшения концентрации пар вдвое определим $\tau_i = (N_{pi}/\beta_i)^{-0.5}$. Распределение донорноакцепторных пар по времени релаксации проявляется в большой ширине или наличии нескольких экстремумов зависимости $\sum n_i(t_b) \sim Q(t_b)$. Зависимости $\sum n_i(t_b)/n_{0i}$ согласуются с экспериментальными $Q/Q_{\max}(t_b)$ для набора значений $\tau_i = 10^2 - 5 \cdot 10^3$ s (рис. 3).

Подтвердить наличие донорно-акцепторных пар можно путем изучения их излучательной рекомбинации [24], однако отметим, что такие пары привлекались для объяснения повышенной фотогальванической активности в кристаллах BSO, отожженных в вакууме [5].

Список литературы

- О.А. Гудаев, В.А. Детиненко, В.К. Малиновский. ФТТ 23, *1*, 195 (1981).
- [2] О.А. Гудаев, В.А. Гусев, В.А. Детиненко, А.П. Елисеев, В.К. Малиновский. Автометрия 5, 38 (1981).
- [3] В.А. Гусев, В.А. Детиненко, А.П. Соколов. Автометрия 5, 34 (1983).
- [4] В.А. Гусев, В.А. Детиненко, А.П. Седельников. Автометрия 4, 46 (1988).
- [5] А.И. Грачев, М.П. Петров, М.В. Красинькова. ФТТ 28, 5, 1530 (1986).
- [6] В.А. Гусев, С.И. Деменко, В.А. Детиненко, Э.Э. Пауль. Изв. АН СССР. Неорган. материалы 22, 12, 2070 (1986).
- [7] В.К. Малиновский, О.А. Гудаев, В.А. Гусев, С.И. Деменко. Фотоиндуцированные явления в силленитах. Наука, Новосибирск (1990). 159 с.
- [8] I. Foldvari, L.E. Hallilburton, G.I. Edwards, L. Otsi. Solid. State. Commun. 77, 3, 181 (1991).
- [9] J.J. Martin, I. Foldvari, G.A. Hunt. J. Appl. Phys. 70, 12, 7544 (1991).
- [10] А.Я. Волосов, В.Х. Костюк, А.Ю. Кудзин. ФТТ 23, 7, 2187 (1981).
- [11] A. Hamri, M. Secu, V. Topa, B. Briat. Optical materials 4, 197 (1995).
- [12] Е.П. Гуенок, А.Ю. Кудзин, Г.Х. Соколянский. УФЖ 21, 5, 866 (1976).
- [13] А.Ю. Кудзин, Г.Х. Соколянский, А.С. Юдин. ФТТ 33, 3, 981 (1991).
- [14] Т.В. Панченко, А.Ю. Кудзин, В.Х. Костюк. Изв. АН СССР 19, 7, 1144 (1983).
- [15] Т.В. Панченко, Ю.Н. Потапович, Г.В. Снежной. Изв. АН СССР. Сер. физ. 54, 4, 781 (1990).
- [16] Т.В. Панченко, Ю.Н. Потапович, Г.В. Снежной. Измер. техника 7, 54 (1992).
- [17] Ю.И. Уханов. Оптические свойства полупроводников. Наука, М. (1977). 366 с.
- [18] F. Stern. Phys. Rev. 133, 1653 (1979).
- [19] Ю.А. Гороховатский, Г.А. Бордовский. Термоактивационная токовая спектроскопия высокоомных полупроводников и диэлектриков. Наука, М. (1991). 245 с.
- [20] Т.В. Панченко. ФТТ 40, 3, 452 (1998).
- [21] Т.В. Панченко, Н.А. Трусеева. УФЖ 29, 8, 1186 (1984).
- [22] Ю.Ф. Гороховатский. Основы термодеполяризационного анализа. Наука, М. (1981). 176 с.
- [23] A. Kessler, J.C. Caffin. J. Phys. C.: Solid State Phys. 5, 1134 (1972).
- [24] В.Е. Лошкарев, А.В. Любченко, М.К. Шейкман. Неравновесные процессы в фотопроводниках. Наук. думка, Киев (1981). 264 с.