Электронная структура Rh, Pt, In, Sn в системах с промежуточной валентностью $Eu(Rh_{1-x}Pt_x)_2$ и $U(In_{1-x}Sn_x)_3$

© Ю.П. Смирнов, А.Е. Совестнов, В.А. Шабуров, А.В. Тюнис

Петербургский институт ядерной физики им. Б.П. Константинова Российской академии наук, 188350 Гатчина, Ленинградская обл., Россия

(Поступила в Редакцию 25 декабря 1998 г.)

Методом смещений рентгеновских *К*-линий исследована электронная структура Rh, Pt, In, Sn в системах с промежуточной валентностью Eu(Rh_{1-x}Pt_x)₂, U(In_{1-x}Sn_x)₃. Обнаружено, что заселенность 4*d*-оболочки Rh в Eu(Rh_{1-x}Pt_x)₂ выше, чем в металле и растет с уменьшением валентности Eu (увеличением заселенности 4*f*-оболочки). Электронная структура Pt, In и Sn в Eu(Rh_{1-x}Pt_x)₂, U(In_{1-x}Sn_x)₃ не зависит от валентности Eu и U и практически такая же, как в металлах. Эти особенности электронной структуры Rh, Pt, In, Sn в Eu(Rh_{1-x}Pt_x)₂, U(In_{1-x}Sn_x)₃ позволяют предположить, что освобождающийся при электронных $f^n \to f^{n-1} + e$ переходах электрон не уходит в общую зону проводимости, а остается локализованным на атомах Eu и U.

Явление промежуточной валентности (ПВ) широко распространено в соединениях 4f- и 5f-элементов (лантаноидов и актинидов). В его основе лежит энергетическая близость f-уровней к поверхности Ферми, вследствии чего заселенность f-оболочки (валентность f-элемента) чувствительна к влиянию внешних условий — давления, температуры. Помимо давления и температуры существует возможность изменения валентности путем изменения состава соединения. Так, вводя в исходную решетку примеси с меньшим атомным объемом, можно имитировать действие внешнего давления и инициировать полный или частичный переход между близкими по энергии f^n и $f^{n-1} + e$ состояниями (изменение валентности). Системы такого типа широко исследовались как для 4f-, так и для 5f-элементов, однако основное внимание уделялось изучению особенностей самого валентного перехода (непрерывность, скачкообразность, заселенность *f*-оболочки, обратимость перехода и др.). Значительно меньше внимания уделялось изучению электронной структуры замещающего элемента, так как считалось, что его роль сволится в основном к роли простого имитатора давления, не участвующего в электронных превращениях. Такая модель является однако слишком упрощенной. Действительно, в интерметаллических системах с ПВ основной и замещающий элементы образуют единую зону проводимости с общим уровнем Ферми; при этом может происходить перенос заряда от элемента к элементу, перераспределение электронов между подзонами с разными орбитальными квантовыми числами (s, p, d). В результате может меняться электронная структура как основного, так и замещающего элементов. Могут меняться такие параметры как расстояние между уровнем Ферми и f-уровнем, а также плотность состояний на уровне Ферми, непосредственно влияющие на особенность ПВперехода. При ПВ-переходе $(f^n \to f^{n-1} + e)$ освобождается дополнительный свободный электрон, который может уйти в общую зону проводимости к замещающему элементу, либо локализоваться на атомах ПВ-элементов. Этот вопрос остается в настоящее время невыясненным. Таким образом, изучение электронной структуры партнеров ПВ-атома, кроме самостоятельного интереса, может оказаться важным для понимания некоторых неясных вопросов физики состояния ПВ.

В настоящей работе методом смещений рентгеновских *К*-линий (см., например, [1]) исследована электронная структура Rh, Pt, In и Sn в системах с промежуточной валентностью Eu(Rh_{1-x}Pt_x)₂ и U(In_{1-x}Sn_x)₃. Ранее [2,3] нами было определено изменение заселенности *f*-оболочки Δn_f (изменение валентности) Eu и U в этих системах от состава.

Используемые поликристаллические образцы (те же, что и в [2,3]) приготовлялись методом электродуговой плавки, были практически монофазны и имели параметры решетки, соответствующие литературным [4,5]. Схема опыта, процедура измерений и обработки подробно описаны ранее (см., например, [1]).

Экспериментальные смещения *К*-линий Rh, Pt в Eu(Rh_{1-x}Pt_x)₂ и In, Sn в U(In_{1-x}Sn_x)₃ приведены в табл. 1 и 2 соответственно. Все смещения измерены относительно металлических Rh, Pt, In, Sn. В последних столбцах табл. 1 и 2 приведены полученные нами ранее [2,3] изменения заселенности *f*-оболочек Δn_f Eu и U в этих системах от состава. Величины Δn_f определялись как разность заселенностей *f*-оболочки между состоянием с меньшей (f^n) и большей ($f^{n-1} + e$) валентностью. Очевидно, что Δn_f равно числу освободившихся при $f^n \to f^{n-1} + e$ переходе дополнительных электронов.

1) Еu(Rh_{1-x}Pt_x)₂. Как видно из табл. 1, для всех исследованных составов наблюдаются положительные смещения K_{α_1} и K_{β_1} -линий Rh, которые плавно увеличиваются с ростом x (замена Rh на Pt). Смещения K_{α_2} -линии Pt для двух крайних точек (x = 0.25 и 1.0) оказались близкими к нулевым в пределах экспериментальных ошибок.

Ненулевые смещения K_{α_1} -, K_{β_1} -линий Rh свидетельствуют о том, что его электронная структура (заселенность внешних 5*s*-, 4*d*-оболочек) в Eu(Rh_{1-x}Pt_x)₂ отличается от таковой в металле. Количественно оценить это отличие можно, сравнивая экспериментальные смещения со смещениями, вычисленными в рамках самосогласованных расчетов типа Дирака–Фока.

x	$\Delta E, \mathrm{meV}$			$\Delta u^{(1)}$	$\Delta u^{2)}$	Δ ra ^{Eu}
	$K^{ m Rh}_{lpha_1}$	$K^{ m Rh}_{eta_1}$	$K^{ m Pt}_{lpha_2}$	Δn_d	Δn_d	Δn_{4f}
0	$+29\pm4$	$+50\pm10$	_	0.21 ± 0.02	0.17 ± 0.02	0.77 ± 0.04
0.25	$+36\pm4$	$+32\pm8$	$+25\pm18$	0.22 ± 0.02	0.18 ± 0.02	0.52 ± 0.04
0.50	$+48\pm4$	$+60\pm10$	—	0.32 ± 0.02	0.26 ± 0.02	0.20 ± 0.03
0.75	$+59\pm4$	$+71\pm16$	—	0.39 ± 0.03	0.32 ± 0.03	0
1.0	—	—	$+1 \pm 12$	_	—	0.06 ± 0.04

Таблица 1. Экспериментальные смещения (ΔE) *К*-линий Rh и Pt в Eu(Rh_{1-x}Pt_x)₂ в зависимости от состава *x*; Δn_d^1 и Δn_d^2 — увеличение заселенности 4*d*-оболочки Rh в Eu(Rh_{1-x}Pt_x)₂ по сравнению с Rh_{met} для двух различных механизмов (см. текст).

Примечание. В последнем столбце — изменение заселенности 4f-оболочки $Eu\Delta n_{4f}^{Eu}$ из работы [2].

Как показано нами ранее [6], смещения K_{α_1} , K_{β_1} -линий тяжелых элементов при удалении из атома валентных *s*- и *d*-электронов противоположны по знаку (удаление *s*-электрона приводит к положительным смещениям, удаление *d*-электрона к отрицательным) и мало отличаются по абсолютной величине.

Наблюдаемые положительные смещения K_{α_1} -, K_{β_1} -линий Rh могут быть объяснены двумя возможными механизмами: 1) переносом заряда от Еи к Rh; так как плотность состояний в 4d-подзоне Rh примерно на порядок превышает плотность состояний в 5s-подзоне, то при перетекании заряда от Еи к Rh заполняется преимущественно 4*d*-подзона, и наблюдаемые смещения в основном объясняются изменением заселенности 4*d*-подзоны Rh Δn_d , а влиянием заполнения 5*s*-подзоны на смещения К-линий Rh можно пренебречь; 2) перераспределением 5s- и 4d-электронов самого Rh (переход электронов из 5s-подзоны в 4d-подзону Rh также приведет к положительным смещениям K_{α_1} -, K_{β_1} -линий Rh). Очевидно, что при таком механизме $\Delta n_d \equiv -\Delta n_s.$

Сделать выбор между этими двумя механизмами только на основе наших данных затруднительно. Реально, возможно, сосуществуют оба механизма.

Механизм перетекания заряда от Еи к Rh представляется однако более предпочтительным. В его пользу свидетельствует большая положительная разность электроотрицательностей между Rh и Eu ($\Delta x = 0.9$, см., например, [7]). Анализ магнитных данных и данных по теплоемкости интерметаллических соединений редкоземельных элементов (РЗЭ) с 3*d*-, 4*d*-, 5*d*-металлами, проведенный Бушоу [8,9], приводит к выводу о большем заполнении *d*-оболочек этих элементов в интерметаллических соединениях по сравнению с металлами. Наконец, анализ мессбауэровских данных для Ru, Ir, Os (для Rh нет мессбауэровских изотопов) и их интерметаллических соединениях с РЗЭ [10] свидетельствует также об увеличении плотности заряда на ядрах *d*-элементов в этих соединениях по сравнению с металлами.

Сравнивая экспериментальные смещения и смещения, полученные в рамках атомарных расчетов Хартри–Фока, можно определить изменения заселенности 4*d*-подоболочки $\operatorname{Rh}\Delta n_d^{1}$ и Δn_d^{2} для рассмотренных выше механизмов. В данной работе при расчетах использовалась модель Дирака–Фока (Купманса) (ДФ(К)) — релятивистский расчет с полным учетом обмена без релаксации — дающая наилучшее согласие с экспериментом для редкоземельных и 4*d*-элементов [11,12]. Вычислялись смещения K_{α_1} -, K_{β_1} -линий Rh относительно принятой электронной конфигурации металлического Rh (см. далее) $\Delta E_{calc.\alpha(\beta)}^{11}$ (Δn_d^{11} , $\Delta n_s \equiv 0$) — первый механизм и $\Delta E_{calc.\alpha(\beta)}^{22}$ (Δn_d^{21} , $\Delta n_d \equiv -\Delta n_s$) — второй механизм в широком диапазоне изменения Δn_d . Расчетные смещения аппроксимировались полиномом второй степени $P_{\alpha(\beta)}^{1,2}$, и искомые величины Δn_d определялись из решения уравнений

$$P^{1,2}_{\alpha(\beta)} = \Delta E_{\exp er_{\alpha(\beta)}},$$

где $\Delta E_{\exp r_{\alpha(\beta)}}$ — экспериментальные смещения *K*-линий Rh в Eu(Rh_{1-x}Pt_x)₂.

Электронная конфигурация металлического Rh (распределение девяти внешних 4*d*-, 5*s*-электронов сверхзаполненного остова [Kr]–Rh[Kr]4 $d^{9-y}5s^{y}$) известна недостаточно хорошо и была определена нами из сравнения экспериментальных смещений $\Delta E_{K\alpha_1}(\text{Rh}_2\text{O}_3-\text{Rh}_{\text{met}}) = 0\pm5 \text{ meV}, \Delta E_{K\beta_1}(\text{Rh}_2\text{O}_3-\text{Rh}_{\text{met}}) = -1\pm7 \text{ meV}$ с рассчитанными в модели ДФ(К) с учетом

Таблица 2. Экспериментальные смещения (ΔE) K_{α_1} -линий In и Sn в U(In_{1-x}Sn_x)₃ в зависимости от состава x (реперы — металлические In и Sn).

r	ΔE , 1	Δn^{U}	
л	$K^{\mathrm{In}}_{lpha_1}$	$K^{ m Sn}_{lpha_1}$	Δn_{5f}
0	$+27\pm11$		0.20 ± 0.02
0.2	$+25\pm13$	$+5\pm9$	0.18 ± 0.02
0.5	$+30\pm13$	$+1\pm 8$	0.14 ± 0.02
0.65	-5 ± 13		0.09 ± 0.02
0.8	$+45\pm18$		0.05 ± 0.02
0.9	0 ± 14	$+17\pm8$	0.01 ± 0.02
1.0	_	_	0

Примечание. В последнем столбце — изменение заселенности 5f-оболочки $U\Delta n_{5f}^{U}$ из работы [3].

ионности Rh в Rh₂O₃ по Полингу [13] (i = 0.69). Для металлического Rh получена конфигурация Rh[Kr] $4d^{7.62}5s^{1.38}$.

Полученные описанным выше способом изменения заселенности 4*d*-орбиталей $\mathrm{Rh}\Delta n_d^{1)}$ и $\Delta n_d^{2)}$ для двух рассмотренных механизмов приведены в табл. 1. Видно, что заселенность 4*d*-оболочки Rh в $Eu(Rh_{1-x}Pt_x)_2$ для всех исследованных составов выше, чем в металле. Обращает на себя внимание неожиданная зависимость Δn_d от x (заселенность 4*d*-орбиталей Rh уменьшается с ростом валентности Eu). Можно было ожидать, что дополнительный свободный электрон, появляющийся в системе при $4f^n \rightarrow 4f^{n-1} + e$ переходе (увеличение валентности), уйдет в общую зону проводимости, увеличивая заселенность и 4*d*-орбиталей Rh. Этого однако не происходит, что позволяет предположить, что появляющийся при $4f^n \rightarrow 4f^{n-1} + e$ переходе дополнительный свободный электрон не уходит в общую зону проводимости, а остается локализованным на атомах Еu. К такому же выводу о локализации дополнительного электрона, возникающего при ПВ-переходе на атомах самого ПВэлемента, приходят авторы работы [14] при излучении мессбауэровских изомерных сдвигов Ец, внедренного в решетку ПВ-систем $Sm_{1-x}R_xS$ (R = Ca, Y, La, Gd, Tm). Изомерные сдвиги Еи в этих системах не зависят от числа освобождаемых при ПВ-переходах дополнительных электронов. В пользу такого предположения свидетельствуют также результаты нашей работы [15], в которой обнаружено подавление ПВ-перехода (уменьшение валентности) в Sm_{1-x}Gd_xS при малых концентрациях Sm. Эффект объяснен тем, что при образовании состояния ПВ 4f-электрон гибридизируется только с 6s-, 5d-электронами соседних атомов Sm, а не с электронами зоны проводимости.

Наблюдаемое нами уменьшение заселенности 4*d*-оболочки Rh с ростом валентности Eu может быть следствием уменьшения экранирования электронов проводимости Eu 4*f*-электронами при уменьшении их числа. Это приведет к опусканию 6*s*-, 5*d*- подзоны проводимости Eu и, следовательно, к меньшему перетеканию заряда от Eu к Rh.

Близкие к нулевым смещения K_{α_2} -линии Pt в EuPt₂ и Eu(Rh_{0.75}Pt_{0.25}) могут означать, что электронная структура Pt в них такая же, как в металле. Независимость смещений K_{α_2} -линий Pt от валентности Eu также подтверждает предположение о локализации освобождающегося при ПВ-переходе электрона на атомах Eu.

2) U(In_{1-x}Sn_x)₃. Как видно из табл. 2, смещения K_{α_1} линий In и Sn близки к нулевым в пределах экспериментальных ошибок. Средние значения смещений для всего исследованного диапазона составляют $\overline{\Delta E}_{K_{\alpha_1}}^{\text{In}} = +19 \pm 7$ и $\overline{\Delta E}_{K_{\alpha_1}}^{\text{Sn}} = +8 \pm 5 \text{ meV}$ (ошибки внешние среднеквадратичные). Зоны проводимости In и Sn образованы из 5*s*- и 5*p*-подзон. Как показано нами ранее [6], удаление из атома внешних *s*-, *p*-электронов приводит к положительным

(примерно равным по величине) смещениям K_{α_1} -линий.

Таким образом, из величины и знака экспериментальных смещений можно предположить, что не происходит переноса заряда от U к In и Sn. Независимость смещений K_{α_1} -линий In и Sn от валентности U, т.е. от числа освобождаемых при $5f^n \rightarrow 5f^{n-1} + e$ переходе электронов, не противоречит сделанному выше предположению о локализации этих электронов на атомах самого ПВ-элемента. Более определенное заключение сделать затруднительно, так как изменение заселенности 5f-оболочки U при ПВ-переходе в $U(In_{1-x}Sn_x)_3$ (и, следовательно, число освобождающихся дополнительных электронов) невелико $\Delta n_{5f}^U \approx 0.2$ (см. табл. 2). Увеличение заселенности 5s(p)-оболочек In или Sn на такую величину (т.е. при полном переходе к ним этих электронов) приведет к смещениям их K_{α_1} -линий, как следует из расчетов в модели Д $\Phi(K)$ на величины $\simeq -10 \,\mathrm{meV}$ (в эксперименте наблюдаются небольшие положительные смещения).

В заключение авторы благодарят О.И. Сумбаева за обсуждение и полезные замечания, Е.Г. Андреева за помощь в проведении эксперимента, П.Л. Соколову за помощь в оформлении работы.

Работа выполнена в рамках проекта № 96-02-17811, поддержанного Российским фондом фундаментальных исследований.

Список литературы

- [1] О.И. Сумбаев. УФН 124, 2, 281 (1978).
- [2] М.Н. Грошев, В.И. Петрова, Ю.П. Смирнов, А.Е. Совестнов, А.В. Тюнис, В.А. Шабуров, И.А. Сергеева. ФТТ 29, 4, 1035 (1987).
- [3] А.В. Тюнис, В.А. Шабуров, Ю.П. Смирнов, А.Е. Совестнов. ФТТ 37, 8, 2512 (1995).
- [4] E.R. Bauminger, I. Felner, S. Ofer. J. Magn. Magn. Mater. 7, 1–4, 317 (1978).
- [5] L.W. Zhou, C.L. Lin, J.E. Crow, S. Bloom, R.P. Guertin, S. Foner. Phys. Rev. B34, 1, 483 (1986).
- [6] Е.В. Петрович, Ю.П. Смирнов, В.С. Зыков, А.И. Грушко, О.И. Сумбаев, И.М. Банд, М.Б. Тржасковская. ЖЭТФ 61, 5(11), 1756 (1971).
- [7] С.С. Бацанов. Электроотрицательности элементов и химическая связь. Изд. СО АН СССР, Новосибирск (1962).
- [8] K.H.J. Buschow. Rep. Prog. Phys. 40, 10, 1179 (1977).
- [9] K.H.J. Buschow. Rep. Prog. Phys. 42, 8, 1373 (1979).
- [10] F.E. Wagner, U. Wagner. In: Mössbauer Isomer Shifts / Ed. by G.K. Shenoy and F.E. Wagner. North-Holland Publishing Company, Amsterdam–N.Y.–Oxford (1978). P. 431.
- [11] В.А. Шабуров, А.Е. Совестнов, Ю.П. Смирнов, А.В. Тюнис, Х. Друлис, М. Друлис. ФТТ 40, 8, 1393 (1998).
- [12] Ю.П. Смирнов. А.Е. Совестнов, А.В. Тюнис, В.А. Шабуров. ФТТ 40, 8, 1397 (1998).
- [13] Л. Поулинг. Природа химической связи Госхимиздат, М. (1947).
- [14] J. Nowik. In: Valence Instabilities and Related Narrow–Band Phenomena / Ed. by R.D. Parks. N.Y.–L. (1976). P. 261.
- [15] А.Е. Совестнов, В.А. Шабуров, Ю.П. Смирнов, А.В. Тюнис, А.В. Голубков, И.А. Смирнов. ФТТ **39**, *5*, 1017 (1997).