Межзонное поглощение света в квазинульмерных полупроводниковых системах

© С.И. Покутний

Украинский государственный морской технический университет, 237025 Николаев, Украина

E-mail: vika@ineco.comcentre.nikolaev.ua

(Поступила в Редакцию 7 августа 1998 г.)

В рамках дипольного приближения теоретически изучено межзонное поглощение света в малом полупроводниковом микрокристалле. Получено выражение для коэффициента поглощения света в условиях, когда поляризационное взаимодействие электрона и дырки с поверхностью микрокристалла играет существенную роль.

Квазинульмерные системы, которые представляют собой полупроводниковые микрокристаллы (ПМ) сферической формы с размерами $a \simeq 1 - 10 \,\mathrm{nm}$, выращенные в прозрачных диэлектрических матрицах [1-5], привлекают внимание в связи с их нелинейными оптическими свойствами и возможными приложениями в оптоэлектронике (в частности, как новые материалы, перспективные для создания элементов, управляющих оптическими сигналами [2]). Поскольку энергетическая щель полупроводника существенно меньше, чем щели диэлектрических матриц, то движение носителей заряда в ПМ ("квантовой точке") будет ограничено его объемом. При этом размеры ПМ а будут сравнимы с характерными размерами квазичастиц в полупроводниках. В этих условиях влияние поверхности раздела ПМ-диэлектрическая матрица может вызвать размерное квантование энергетического спектра электрона и дырки в ПМ, связанное как с чисто пространственным ограничением области квантования [3], так и с поляризационным взаимодействием носителей заряда с поверхностью ПМ [6-10].

В экспериментальных работах [1,2] было обнаружено, что структура спектра межзонного поглощения света малого ПМ определялась размерным квантованием энергетического спектра его квазичастиц.

К настоящему времени межзонное поглощение света малым ПМ является слабо изученным. Развитая в [3] теория межзонного поглощения света в ПМ не учитывала вклад поляризационного взаимодействия носителей заряда с поверхностью ПМ в спектр электрона и дырки в ПМ. В работах [4,5] теоретически изучалось поглощение и люминесценция света несферическими нанокристаллами селенида кадмия. При этом в [4,5], так же как и в [3], не учитывалось влияние поляризационного взаимодействия электрона и дырки с поверхностью малого ПМ на процессы поглощения и люминесценцию света такими ПМ.

Чтобы заполнить такой пробел в теории, в настоящем сообщении учитывается влияние поляризационного взаимодействия электрона и дырки с поверхностью малого ПМ на межзонное поглощение света в ПМ. Получено выражение для коэффициента поглощения света как функции радиуса ПМ *а* и параметров задачи в условиях, когда поляризационное взаимодействие электрона и дырки с поверхностью ПМ играет существенную роль. Показано, что учет поляризационного взаимодействия электрона и дырки с поверхностью ПМ приводит к тому, что порог поглощения в малом ПМ претерпевает сдвиг в коротковолновую сторону. Установлено, что край поглощения малых ПМ формируется двумя сравнимыми по интенсивности переходами с разных уровней размерного квантования дырки на нижний уровень размерного квантования электрона.

Спектр электронно-дырочной пары в малом микрокристалле

В [6–10] изучалась простая модель квазинульмерной структуры: нейтральный сферический ПМ радиуса *a* с диэлектрической проницаемостью (ДП) ε_2 , окруженный средой с ДП ε_1 . В объеме такого ПМ двигались электрон *e* и дырка *h* с эфффективными массами m_e и m_h (r_e и r_h — расстояния электрона и дырки от центра ПМ), причем ДП микрокристалла и диэлектрической матрицы имели сильное отличие ($\varepsilon_1 \ll \varepsilon_2$). Предполагалось также, что зоны электронов и дырок в ПМ имели параболическую форму.

В изучаемой модели в рамках вышеизложенных приближений, а также в адиабатическом приближении $(m_e \ll m_h)$ и в приближении эффективной массы при использовании только первого порядка теории возмущений на электронных волновых функциях Ψ_{n_e,l_e,m_e} (r_e, Θ, φ) (где Θ, φ — азимутальный и полярный углы) сферической потенциальной ямы бесконечной глубины был получен спектр электронно-дырочной пары [6–9]

$$E_{n_e,l_e=m_e=0}^{n_h,l_h,m_h}(S) = E_g + (\pi^2 n_e^2 / S^2)(m_h/m_e) + S^{-1}(Z_{n_e,0} + P_{n_e,0} + \varepsilon_2/\varepsilon_1) + \omega_0(S, n_e)(t_h + 3/2),$$
(1)

$$Z_{n_e,0} = 2 \int_0^1 dx \sin^2(\pi n_e x) / (1 - x^2).$$
$$P_{n_e,0} = 2 \operatorname{Ci}(2\pi n_e) - 2 \ln(2\pi n_e) - 2\gamma + (\varepsilon_2/\varepsilon_1) - 1, \quad (2)$$

$$\omega_0(S, n_e) = 2(1 + 2/3\pi^2 n_e^2)^{1/2} S^{-3/2}$$
(3)

в ПМ радиусом

$$(a_0/a_h) \ll 1 < S \le (a_e/a_h) \approx (a_{\rm ex}/a_h)$$
 (4)

в состоянии $(n_e, l_e = m_e = 0; n_h, l_h, m_h)$, где $n_e, l_e, m_e; n_h, l_h, m_h -$ радиальные, орбитальные и азимутальные квантовые числа электрона и дырки, $t_h = 2n_h + l_h -$ главное квантовое число дырки, $S = a/a_h -$ безразмерный радиус ПМ, $a_e = \varepsilon_2 \hbar^2/m_e e^2$, $a_h = \varepsilon_2 \hbar^2/m_h e^2$, $a_{ex} = \varepsilon_2 \hbar^2/\mu e^2 -$ боровские радиусы электрона, дырки и экситона в полупроводнике с ДП ε_2 , $\mu = m_e m_h/(m_e + m_h)$ — приведенная масса экситона, a_0 — характерный размер порядка межатомного [11]. В спектре электронно-дырочной пары (1) энергия измеряется в единицах Ry = $\hbar^2/2m_h a_h^2$, E_g — ширина запрещенной зоны в полупроводнике с ДП ε_2 , Ci(y) — интегральный косинус, $\gamma = 0.577$ — постоянная Эйлера.

Выполнение условия (4) приводит к тому, что вклад поляризационного взаимодействия электрона и дырки с поверхностью ПМ ($\simeq e^2/\varepsilon_2 a$) (два последних члена в (1)) в спектр электронно-дырочной пары (1) будет сравним по порядку величины с энергией связи экситона ($E_b = \hbar^2/2\mu a_{\rm ex}^2$) в ПМ. Последний член в спектре электронно-дырочной пары (1), представлял собой спектр тяжелой дырки, совершающей осцилляторные колебания с частотой $\omega_0(S, n_e)$ (3) в адиабатическом электронном потенциале в ПМ [8]. При этом волновая функция дырки выражается через нечетные полиномы Эрмита [12].

2. Межзонное поглощение света в малом микрокристалле

В рамках вышеизложенных приближений, используя простую модель квазинульмерной структуры [6–9], изучим межзонное поглощение света в ПМ, радиус которого *S* удовлетворяет условию (4). При этом используем дипольное приближение, в котором длина поглощения велика по сравнению с размером ПМ. Относительная интенсивность оптических межзонных переходов в ПМ с дипольно разрешенными переходами определяется квадратом интеграла перекрытия электронных $\Psi_{n_e,l_e,m_e}(\mathbf{r}_e)$ и дырочных $\chi_{n_b,l_e,m_h}^{n_e,l_e,m_e}(\mathbf{r}_h)$ волновых функций [13]

$$K(S,\omega) = A \sum_{\substack{n_e n_h \\ l_e l_h \\ m_e m_h}} \left| \int \Psi_{n_e,l_e,m_e}(\mathbf{r}_e) \chi_{n_h,l_h,m_h}^{n_e,l_e,m_e}(\mathbf{r}_h) \right| \\ \times \delta(r_e - r_h) dr_e dr_h \left|^2 \delta\left(\Delta - E_{n_e,l_e,m_e}^{n_h,l_h,m_h}(S)\right), \quad (5)$$

где $\Delta = \hbar \omega - E_g$, ω — частота падающего света, а *А* является величиной, пропорциональной квадрату модуля матричного элемента дипольного момента, взятого на блоховских функциях.

При этом величина $K(S, \omega)$ (5) связывает энергию, поглощаемую ПМ в единицу времени, и средний по времени квадрат электрического поля падающей волны. Кроме того, величина $K(S, \omega)$ (5), умноженная на число ПМ в единице объема диэлектрической матрицы, представляет собой электропроводность изучаемой квазинульмерной системы на частоте поля, связанную обычным образом с коэффициентом поглощения света.

Ортогональность волновых функций электрона $\Psi_{n_e,l_e,m_e}(\mathbf{r}_e)$ и дырки $\chi_{n_h,l_e,m_h}^{n_e,l_e,m_e}(\mathbf{r}_h)$ приводит к тому, что при переходах сохраняются орбитальные $(l_e = l_h)$ квантовые числа электрона и дырки, а азимутальное число $(m_e = -m_h)$ меняет знак. При этом радиальные квантовые числа n_e и n_h могут быть произвольными.

Следует отметить, что учет кулоновского и поляризационного взаимодействия электрона и дырки в малом ПМ приводит к изменению правил отбора для дипольных переходов по сравнению с таковыми правилами, полученными в приближении, в котором не учитывалось кулоновское и поляризационное взаимодействия. В таком приближении сохраняются радиальные и орбитальные квантовые числа электрона и дырки ($n_e = n_h$ и $l_e = l_h$), а азимутальные квантовые числа меняют свой знак ($m_e = -m_h$) [3].

Определим величину $K(S, \omega)$ (5), связанную с оптическими переходами дырки с уровней (t_h) на самый нижний электронный уровень $(n_e = 1, l_e = m_e = 0)$. Для этого случая квадрат интеграла перекрытия электронных $\Psi_{1,0,0}(\mathbf{r}_e)$ и дырочных $\chi_{t_h}^{1,0,0}(\mathbf{r}_h)$ волновых функций был подсчитан в работе [3]

$$L_{n_h}(S) = \left| \int_{0}^{a} \Psi_{1,0,0}(r) \chi_{t_h}^{1,0,0}(r) r^2 dr \right|^2$$
$$= 2\pi^{5/2} \left[\frac{\hbar^2}{m_h \omega_0(S, n_e = 1)a^2} \right]^{3/2} \frac{(n_h + 1)}{2^{2n_h}(n_h!)}.$$
 (6)

Величина $L_{n_h}(S)$ (6) с учетом $\omega_0(S, n_e = 1)$ (3) принимает вид

$$L_{n_h}(S) = \frac{2\pi^{5/2}}{(1+2/3\pi^2)^{3/4}} \frac{(n_h+1)}{2^{2n_h}n_h!} S^{-3/4}.$$
 (7)

Подставляя в формулу (5) выражения (6) и (1), получим величину $K(S, \omega)$ в таком виде

$$K(S,\omega) = A \sum_{n_h} L_{n_h}(S) \delta \left[\Delta - \frac{\pi^2}{S^2} \frac{m_h}{m_e} - \frac{1}{S} \left(Z_{1,0} + P_{1,0} + \frac{\varepsilon_2}{\varepsilon_1} \right) - \omega_0(S, n_e = 1) \left(t_h + \frac{3}{2} \right) \right].$$
(8)

Из формулы (8) следует, что благодаря учету кулоновского и поляризационного взаимодействий электрона и дырки в малом ПМ, радиус которого *S* удовлетворяет условию (4), в спектре межзонного оптического поглощения такого ПМ каждая линия, соответствующая заданным значениям радиального n_e и орбитального l_e квантовых чисел электрона, превращается в серию близко расположенных эквидистантных линий, отвечающих различным значениям главного квантового числа дырки t_h . Причем расстояние между эквидистантной серией линий, согласно формуле $\omega_0(S, n_e)$ (3), зависит как от значения квантового числа n_e , так и от радиуса ПМ *S*. С увеличением значения радиального квантового числа электрона n_e расстояние между эквидистантной серией линий $\omega_0(S, n_e)$ (3) растет ($\omega_0 \sim n_e$), а с увеличением радиуса ПМ *S* такое расстояние уменьшается ($\omega_0 \sim S^{-3/2}$).

При межзонном поглощении света малым ПМ, как следует из формулы (8), порогом поглощения является частота света $\bar{\omega}$, равная

$$\begin{split} \hbar\bar{\omega} &= E_g + \frac{\pi^2}{S^2} \frac{m_h}{m_e} + \frac{1}{S} \left(Z_{1,0} + P_{1,0} + \frac{\varepsilon_2}{\varepsilon_1} \right) \\ &+ \frac{3}{2} \omega_0(S, n_e = 1). \end{split}$$
(9)

Формула (9) представляет собой закон, по которому эффективная ширина запрещенной зоны ПМ увеличивается с уменьшением радиуса ПМ *S*. При этом поляризационное взаимодействие (два последних члена в (9)) вносит положительный вклад в (9), который вызывает эффективное увеличение ширины запрещенной зоны малого ПМ. Другими словами, учет поляризационного взаимодействия носителей заряда с поверхностью ПМ приводит к тому, что порог поглощения в малом ПМ $\bar{\omega}(S)$ (9) претерпевает бо́льший сдвиг (по сравнению с аналогичной величиной, полученной в [3] без учета поляризационного взаимодействия) в коротковолновую сторону.

3. Сравнение теории с экспериментами

В экспериментальных работах [14,15] исследовались низкотемпературные ($T \simeq 4.2 \,\mathrm{K}$) спектры межзонного поглощения диспергированных в прозрачной диэлектрической матрице силикатного стекла (с ДП $\varepsilon_1 \approx 1.5$) ПМ сульфида кадмия (с ДП $\varepsilon_2 \approx 9.3$) размером $a \leq a_{\rm ex}$. В области переходов на нижний уровень ($n_e = 1$, $l_e = 0$) размерного квантования электрона была обнаружена структура, состоящая из эквидистантной серии уровней, расстояние между которыми (т.е. величина расщепления) $\Delta E \simeq a^{-3/2}$. Указанная структура обусловлена квантованием энергетического спектра тяжелой дырки в адиабатическом потенциале электрона. Эффективные массы электрона и дырки в CdS соответственно равнялись $m_e = 0.205m_0$ и $m_h = 5m_0$ (т.е. $m_e/m_h \ll 1$, а m_0 — значение массы электрона в вакууме).

Действительно, движение тяжелой дырки в электронном потенциале [7,8] в области размеров ПМ (4), которая также включает в себя интервал радиусом ПМ, изученных в [14,15], приводит к появлению в энергетическом спектре дырки эквидистантной серии уровней, расстояние между которыми определялось выражением ω_0 (3). Из сравнения формулы (3) (при $n_e = 1$) с экспериментальной зависимостью величины расщепления $\Delta E(a) = \omega_0(S, n_e = 1)$ от размера ПМ *a*, полученной в [14,15], следует, что для ПМ с радиусами $a \leq a_{\rm ex}$ значение расщепления $\omega_0(S, n_e = 1)$ (3) (при a = 25 Å $\omega_0 = 37.6 \text{ meV}$ и при a = 30 Å $\omega_0 = 28.29 \text{ meV}$ находится в хорошем согласии с экспериментальными данными [14,15] (соответственно при a = 25 и 30 Å величина расщепления $\omega_0 = 40.0$ и 30.1 meV), отличаясь от последних лишь незначительно (< 6%). Для тех же условий, в которых были выполнены эксперименты [14,15], с помощью формулы (7) получим значения квадратов интеграла перекрытия ($K(S, \omega)/A$) (8) для переходов дырки с эквидистантной серии уровней $(n_h = 0; l_h = m_h = 0), (n_h = 1; l_h = m_h = 0),$ $(n_h = 2; l_h = m_h = 0)$ и $(n_h = 3; l_h = m_h = 0)$, идущих на нижний уровень размерного квантования электрона $(n_e = 1; l_e = m_e = 0)$

$$K(S,\omega)/A = \sum_{n_h=0}^{3} L_{n_h}(S) = 7.659S^{-3/4}(1+0.5) + 9.4 \cdot 10^{-2} + 1.0 \cdot 10^{-2}).$$
(10)

Из (10) следует, что

$$L_0 = 7.659 S^{-3/4};$$
 $L_1 = 0.5 L_0;$
 $L_2 = 9.4 \cdot 10^{-2} L_0;$ $L_3 = 10^{-2} L_0.$

Значения $L_{n_h}(S)$ (11) (где $n_h = 0, 1, 2, 3$) вместе с величиной ($K(S, \omega)/A$) (10) для ПМ с радиусами $30.43 \le S \le 50.71$ ($30 \le a \le 50$ Å), удовлетворяющими условию (4), приведены в таблице.

Из результатов, приведенных в таблице, следует, что основной вклад в коэффициент поглощения света $(K(S, \omega)/A)$ (8) малыми ПМ CdS с размерами S (4) вносят спектральные линии дырки с квантовыми числами $(n_h = 0; l_h = m_h = 0)$ и $(n_h = 1; l_h = m_h = 0)$, обладающие максимальными силами осцилляторов переходов. При этом величины вклада высоковозбужденных линий дырки $(n_h \ge 2; l_h = m_h = 0)$ относительно вклада линии $(n_h = 0; l_h = m_h = 0)$ являются пренебрежимо малыми $(\le 9 \cdot 10^{-2})$.

Значения квадратов интеграла перекрытия $L_{n_h}(S)$ ($n_h = 0, 1, 2, 3$) и коэффициента поглощения света ($K(S, \omega)/A$) как функций радиуса S (a — радиус ПМ в ангстремах) малого ПМ CdS

S(a, Å)	L_0	L_1	L_2	L_3	K/A
30.43(30)	0.591	0.295	0.056	0.0059	0.942
35.5 (35)	0.527	0.263	0.05	0.0053	0.845
40.57(40)	0.476	0.238	0.045	0.0048	0.764
45.64(45)	0.436	0.218	0.041	0.0044	0.6994
50.71(50)	0.403	0.202	0.038	0.004	0.647

Таким образом, в рамках данной модели квазинульмерной системы показано, что край поглощения малых ПМ CdS формируется двумя сравнимыми по интенсивности переходами с разных уровенй размерного квантования дырки $(n_h = 0; l_h = m_h = 0)$ и $(n_h = 1; l_h = m_h = 0)$, идущих на нижний уровень размерного квантования электрона $(n_e = 1; l_e = m_e = 0)$.

Работа выполнена при частичной поддержке Международного Фонда "Відродження" (грант МНОП).

Список литературы

- [1] А.И. Екимов, А.А. Онущенко. Письма в ЖЭТФ **40**, 337 (1984).
- [2] Ю.В. Вандышев, В.С. Днепровский, В.И. Климов. ЖЭТФ 101, 270 (1992).
- [3] Ал.Л. Эфрос, А.Л. Эфрос. ФТП 16, 1209 (1982).
- [4] A.L. Efros, A.V. Rodina. Phys. Rev. B47 10005 (1993).
- [5] M. Nirmal, D. Norris, A.L. Efros. Phys. Rev. Lett. 75, 3728 (1995).
- [6] Н.А. Ефремов, С.И. Покутний. ФТТ 27, 48 (1985); ФТТ 32, 1632 (1990).
- [7] С.И. Покутний. ФТП 25, 628 (1991); ФТП 30, 1952 (1996).
- [8] S.I. Pokutnyi. Phys. Lett. A168, 433 (1992).
- [9] С.И. Покутний. ФТТ **38**, 2667 (1996).
- [10] Н.В. Ткач, В.А. Головацкий. ФТТ **32**, 2512 (1990).
- [11] Ю.Е. Лозовик, Д.Р. Мусин. Препринт ИС АН СССР № 20 (1981).
- [12] В.М. Агранович. Теория экситонов. М. (1968).
- [13] Г.Б. Григорян, Э.М. Казарян, Ал.Л. Эфрос. ФТТ 32, 1772 (1990).
- [14] А.И. Екимов, А.А. Онущенко, Ал.Л. Эфрос. Письма в ЖЭТФ 43, 292 (1986).
- [15] D. Chepic, A. Efros, A. Ekimov. J. Lumin. 47, 113 (1990).