Неоднородные магнитострикционные состояния в однооосных ферромагнитных пленках

© Ю.И. Беспятых, И.Е. Дикштейн

Институт радиотехники и электроники Российской академии наук, 141120 Фрязино, Московская обл., Россия E-mail: ied316@ire216.msk.su

(Поступила в Редакцию 21 сентября 1998 г.)

Исследованы поверхностные магнитоупругие волны Лява и неоднородные распределения намагниченности и упругих деформаций в одноосной ферромагнитной пленке на массивной немагнитной подложке в касательном внешнем магнитном поле. Предсказана новая неоднородная фаза с пространственной модуляцией параметра порядка, появление которой вызвано магнитострикционной связью намагниченности с деформациями решетки вблизи границы раздела магнитоупругой и упругой сред. Показано, что при некотором критическом магнитном поле H_c , отличном от поля ориентационного перехода в изолированном образце, магнитоупругая волна Лява с направлением распространения, параллельным вектору намагниченности в плоскости пленки, становится неустойчивой. Частота и групповая скорость волны обращаются в нуль при волновом числе $k = k_c \neq 0$ и волна замораживается, образуя доменную структуру, локализованную в пленке и примыкающей к ней подложке.

Магнитоупругое взаимодействие играет важную роль в формировании статических и динамических свойств магнитоупрорядоченных кристаллов. Помимо известного и широко используемого магнитоакустического резонанса, можно указать на существенное влияние этого взаимодействия на процессы квазистатического перемагничивания, доменную структуру, нелинейную динамику магнетиков и т.п. [1,2]. Хотя в магнитных кристаллах магнитоупругое взаимодействие является относительно слабым, при определенных условиях оно приводит к таким эффектам как аномальное уменьшение упругих модулей и изменение законов дисперсии объемных и поверхностных магнитоупругих волн в окрестности ориентационных фазовый переходов [3-7]. Скорость волны Рэлея вблизи точки перехода уменьшается, а глубина проникновения ее в кристалл растет [6]. Вследствие магнитоупругого взаимодействия возникают новые типы волн. Например, сдвиговая объемная упругая волна в ферромагнитном кристалле с магнитострикцией и дипольным взаимодействием при некоторых направлениях внешнего магнитного поля трансформируется в поверхностную волну [8]. Поверхностные упругие волны Рэлея [9–11], Лява [12,13] и Стоунли [14] из-за связи с магнитной подсистемой могут затухать вследствие излучения спиновых волн в глубь кристалла. В последнее время предсказаны новые типы самолокализованных поверхностных полн в магнетиках [15], существование которых полностью связано с магнитоупругим взаимодействием и нелинейностью магнитной подсистемы. Исследование спектров магнитоупругих волн позволяет определить тип мягкой моды, по которой происходит фазовый переход. Например, в тонких изолированных магнитных пленках мягкой оказывается изгибная мода [16].

В настоящей работе рассмотрен пример аномального поведения магнитоупругих волн Лява в одноосной магнитной пленке, нанесенной на немагнитную подложку. Исследованы неоднородные магнитострикционные состояния системы, образование которых обусловлено возможностью уменьшения энергии дальнодействующих полей магнитоупругих напряжений за счет локализации их вблизи границы пленка-подложка на глубине порядка периода доменной структуры.

Постановка задачи. Основные уравнения

Появление магнитострикционной сверхструктуры вытекает из следующих простых соображений. Если константы магнитоупругого взаимодействия малы, то при определенных условиях можно считать упругие деформации и напряжения в системе малыми, а энергию системы F записать в виде

$$F = F_m + F_e + F_{me} = \int d\nu (f_m + f_e + f_{me}), \quad (1)$$

где F_m — магнитная энергия, F_e — упругая энергия решетки, F_{me} — энергия магнитоупругого взаимодействия; плотность упругой энергии f_e — положительно определенная квадратичная форма

$$F_e \geqslant 0,$$
 (2)

а плотность магнитоупругой энергии f_{me} линейна по деформациям u_{ik} .

В основном в метастабильных состояниях энергия системы F минимальна, поэтому распределение намагниченности **M** и упругих смещений **u** в структуре удовлетворяет уравнениям

$$[\mathbf{M} \times \mathbf{H}_{\text{eff}}] = 0, \quad \delta F / \delta \mathbf{u} = \delta (F_e + F_{me}) / \delta \mathbf{u} = 0, \quad (3)$$

где $\mathbf{H}_{\mathrm{eff}}$ — эффективное магнитное поле

$$\mathbf{H}_{\text{eff}} = -\delta F / \delta \mathbf{M} = -\delta (F_m + F_{me}) / \delta \mathbf{M}.$$
 (4)

Рис. 1. Геометрия слоистой структуры ферромагнитная пленка-немагнитная подложка.

Используя второе из уравнение состояния (3) и учитывая однородность f_e и f_{me} по смещениям, легко получить соотношение

$$2F_e + F_{me} = 0, (5)$$

из которого совместно с (2) вытекают условия

$$F_e + F_{me} = F_{me}/2, \quad F_{me} \leq 0. \tag{6}$$

Знак равенства в (2), (6) достигается только в отсутствие упругих деформаций в системе. Отсюда следует, что при заданном распределении намагниченности в отсутствие внешних упругих напряжений взаимодействие магнитной и упругой подсистем может уменьшить полную энергию системы. Второе из уравнений состояния (3) позволяет при этом однозначно выразить смещения через намагниченность и перейти к эффективной магнитной энергии, зависящей только от намагниченности. Дополнительный вклад в магнитную энергию, связанный с упругой подсистемой, оказывается отрицательным и нелокальным даже тогда, когда используется локальное приближение для упругой и магнитоупругой энергии. Если в случае однородного магнитного состояния деформации и дипольное поле отсутствуют (например, в слоистой системе пленка-подложка, в которой массивная подложка препятствует деформации пленки), магнитоупругий вклад в энергию может привести к неустойчивости однородной фазы и возникновению доменной структуры. Это возможно и в условиях, при которых домены в чисто магнитной системе вообще не существуют.

В качестве примера подобного поведения системы рассмотрим ориентационный фазовый переход и спектр магнитоупругих возбуждений в слоистой структуре ферромагнитная пленка-немагнитная подложка. Пусть магнетик обладает одноосной магнитной симметрией, причем ось симметрии является осью легкого намагничивания и ориентирована параллельно плоскости пленки. Предполагается, что напряжения, вызванные несоответствием постоянных решетки магнитного материала и подложки, сводятся к перенормировке поля анизотропии и упругих, и магнитоупругих модулей. Кроме того, допустим, что подложка достаточно массивна и нижняя сторона ее закреплена. Это позволит нам в дальнейшем считать смещения как в направлении, перпендикулярном невозмущенной поверхности пленки, так и в плоскости пленки малыми. Система помещена в касательное внешнее магнитное поле, перпендикулярное оси анизотропии магнетика. Геометрия структуры представлена на рис. 1.

Энергия системы F равна

$$F = F_{\rm film} + F_{\rm subs},\tag{7}$$

где энергия пленки F_{film} имеет вид (1) с

$$F_m = \int_{V_f} dv \left\{ -\mathbf{H}\mathbf{M} - \frac{1}{2}\mathbf{H}_D \mathbf{M} - \frac{\beta}{2}M_z^2 + \frac{\alpha}{2}\frac{\partial \mathbf{M}}{\partial x_i}\frac{\partial \mathbf{M}}{\partial x_i} \right\}, \quad (8)$$

$$F_e = \frac{1}{2} \int_{V_f} dv C_{ijkl}^{(f)} u_{ij}^{(f)} u_{kl}^{(f)}, \qquad (9)$$

$$F_{me} = B \int_{V_f} dv \Big[M_x^2 u_{xx}^{(f)} + M_y^2 u_{yy}^{(f)} + M_z^2 u_{zz}^{(f)} \Big]$$

$$+ 2 (M_x M_y u_{zy}^{(f)} + M_y M_z u_{yz}^{(f)} + M_x M_z u_{xz}^{(f)})], \quad (10)$$

а энергия подложки F_{subs} является чисто упругой

$$F_{\rm subs} = \frac{1}{2} \int_{V_s} dv C_{ijkl}^{(s)} u_{ij}^{(s)} u_{kl}^{(s)}.$$
 (11)

Здесь **H** || **n**_x — внешнее магнитное поле, **H**_D = grad Φ — дипольное поле, **M** — намагниченность, $\beta > 0$ — константа одноосной анизотропии, α — константа та неоднородного обмана, *B* — константа магнитострикции ферромагнитной пленки; $C_{ijkl}^{(f)}, C_{ijkl}^{(g)}$ — модули упругости, $u_{ik}^{(f)} = (\partial u_i^{(f)}/\partial x_k + \partial u_k^{(f)}/\partial x_i)/2$, $u_{ik}^{(s)} = (\partial u_i^{(s)}/\partial x_k + \partial u_k^{(s)}/\partial x_k)/2$ — тензоры деформации, v_f и v_s — объемы магнитной пленки и подложки, соответственно. Упругие ангармонизмы и нелинейность тензора деформации не учитываются, поскольку они приводят к несущественной перенормировке упругих и магнитоупругих модулей пленки и подложки [4]. Для простоты мы ограничимся изотропным приближением для энергии магнитострикции упругой энергии пленки и подложки.

Зависимость намагниченности **M** и упругих смещений $\mathbf{u}^{(f,s)}$ в системе от времени *t* описывается следующими уравнениями:

$$\frac{\partial \mathbf{M}}{\partial t} = -g[\mathbf{M} \times \mathbf{H}_{\text{eff}}],$$

$$\rho^{(f,s)} \frac{\partial^2 u_i^{(f,s)}}{\partial t^2} = \frac{\partial}{\partial x_k} \left(\frac{\delta F}{\delta \sigma_{ik}^{(f,s)}}\right), \quad (12)$$

где g > 0 — гиромагнитное отношение, $\rho^{(f)}$ и $\rho^{(s)}$ плотности пленки и подложки, соответственно. Обозначим $\mathbf{h} = \mathbf{H}/M_0$, $\mathbf{h}_D = \mathbf{H}_D/M_0$, $\mathbf{m} = \mathbf{M}/M_0$, $\varphi = \Phi/M_0$, $\omega_0 = gM_0$. На поверхностях магнитной пленки y = 0 и y = Lнепрерывны потенциал дипольного поля φ и нормальная составляющая магнитной индукции $b_y = h_{Dy} + 4\pi m_y$, а также обращается в нуль производная намагниченности $\partial \mathbf{m}/\partial y$. Кроме этого, на границе ферромагнетик–вакуум y = L

$$\begin{aligned} \sigma_{xy}^{(f)} &= 2C_{44}u_{xy}^{(f)} + BM_0^2 m_x m_y = 0, \\ \sigma_{yy}^{(f)} &= (C_{11} - 2C_{44})(u_{xx}^{(f)} + u_{yy}^{(f)} + u_{zz}^{(f)}) \\ &+ 2C_{44}u_{yy}^{(f)} + BM_0^2 m_y^2 = 0, \\ \sigma_{yz}^{(f)} &= 2C_{44}u_{yz}^{(f)} + BM_0^2 m_y m_z = 0, \end{aligned}$$
(13)

а на границе ферромагнетик-подложка y = 0

$$\begin{aligned} \sigma_{xy}^{(f)} &= 2C_{44}^{(f)}u_{xy}^{(f)} + BM_0^2m_xm_y = 2C_{44}^{(s)}u_{xy}^{(s)} + BM_0^2m_xm_y = \sigma_{xy}^{(s)}, \\ \sigma_{yy}^{(f)} &= (C_{11}^{(f)} - 2C_{44}^{(f)})(u_{xx}^{(f)} + u_{yy}^{(f)} + u_{zz}^{(f)}) \\ &+ 2C_{44}^{(f)}u_{yy}^{(f)} + BM_0^2m_y^2 = (C_{11}^{(s)} - 2C_{44}^{(s)}) \\ &\times (u_{xx}^{(s)} + u_{yy}^{(s)} + u_{zz}^{(s)}) + 2C_{44}^{(s)}u_{yy}^{(s)} = \sigma_{yy}^{(s)}, \\ \sigma_{yz}^{(f)} &= 2C_{44}^{(f)}u_{yz}^{(f)} + BM_0^2m_ym_z = 2C_{44}^{(s)}u_{yz}^{(s)} \\ &+ BM_0^2m_ym_z = \sigma_{yz}^{(s)}, \quad \mathbf{u}^{(f)} = \mathbf{u}^{(s)}. \end{aligned}$$

Проанализируем характер изменения низкочастотной области спектра магнитоупругих волн и основного состояния системы при изменении величины внешнего поля.

2. Спектр низкочастотных магнитоупругих возбуждений и линии потери устойчивости однородных фаз

Прежде всего рассмотрим однородное по координатам x, z состояние системы. При этом намагниченность в пленке и упругие деформации в пленке и подложке могут зависеть только от координаты y. Тогда из уравнений (12)-(14) находим отличные от нуля компоненты тензора деформации пленки

$$u_{xy}^{(f)} = -(h_{me}/2B)m_x m_y, \quad u_{yy}^{(f)} = -(h_{me}/B)m_y^2,$$
$$u_{yz}^{(f)} = -(h_{me}/2B)m_y m_z, \quad (15)$$

где $h_{ne} = B^2 M_0^2 / C_{44}^{(f)}$. После подстановки этих выражений в (9)–(10) сумма упругой энергии и энергии магнитострикции приобретает вид

$$F_e + F_{me} = -\frac{1}{2}M_0^2 h_{me}S \int_0^L dy \left(1 - \frac{C_{11}^{(f)} - C_{44}^{(f)}}{C_{11}^{(f)}} m_y^2\right) m_y^2, \quad (16)$$

S — площадь поверхности структуры в плоскости *xz*. Согласно соотношению (16), связь магнитной и упругой подсистем приводит к эффективной одноосной магнитной анизотропии типа "легкая" ось с направлением оси вдоль нормали к границе раздела сред. В силу малости константы магнитострикции в ферромагнетиках $(h_{me} \ll 4\pi)$ константа эффективной анизотропии мала.

Выразим компоненты нормированной намагниченности **m** через полярный ϑ и азимутальный ψ углы

 $n_x = \cos \vartheta, \quad m_y = \sin \vartheta \sin \phi, \quad m_z = \sin \vartheta \cos \phi.$ (17)

В новых переменных полная энергия системы равна

$$F = M_0^2 S \int_0^L dy \left\{ -h \cos \vartheta + 2\pi \sin^2 \vartheta \sin^2 \phi - \frac{\beta}{2} \sin^2 \vartheta \cos^2 \phi + \frac{\alpha}{2} \left[\left(\frac{d\vartheta}{dy} \right)^2 + \sin^2 \vartheta \left(\frac{d\phi}{dy} \right)^2 \right] - \frac{h_{me}}{2} \left[1 + \frac{(C_{44}^{(f)} - C_{11}^{(f)})}{C_{11}^{(f)}} \sin^2 \vartheta \sin^2 \phi \right] \sin^2 \vartheta \sin^2 \phi \right\}.$$
(18)

Минимизируя энергию (18) по ϑ и ϕ и решая уравнения состояния, получаем следующие однородные фазы системы: коллинеарная фаза **m** || **H** и две угловых фазы с намагниченностью, параллельной плоскости пленки ($\phi = 0$)

$$\vartheta = \vartheta_0 = \begin{cases} 0, & h > \beta, \\ \operatorname{Arccos}(h/\beta), & 0 < h < \beta. \end{cases}$$
(19)

Упругие деформации для всех этих состояний отсутствуют.

Для определения области устойчивости коллинеарной фазы относительно малых магнитоупругих возмущений найдем спектр низкочастотных возбуждений в системе. Вначале рассмотрим распространение магнитоупругих волн в направлении, параллельном внешнему полю $(k_z = 0)$. Поскольку формирующиеся доменные границы для этого случая магнитно не заряжены и дипольное поле в них отсутствует, такие возбуждения обладают наивысшим порогом неустойчивости по полю **H** и самой сильной магнитоупругой связью.

Пусть переменные составляющие намагниченности $\tilde{\mathbf{m}}$ и смещений $\tilde{\mathbf{u}}^{(f)}$ зависят от координат и времени как $\exp[i(k_x x + k_y y - \omega t)]$. Когда из уравнений движения (12) следует связь между фурье-амплитудами $\tilde{\mathbf{m}}$ и $\tilde{\mathbf{u}}^{(f)}$ (индексы **k** и ω у амплитуд здесь и далее опущены)

$$\varphi = \frac{4\pi i k_y}{k^2} \tilde{m}_y, \quad \tilde{u}_z^{(f)} = \frac{i k_x B M_0^2 \tilde{m}_z}{(C_{44}^{(f)} k^2 - \rho^{(f)} \omega^2)},$$
$$\tilde{m}_z = i \Omega \tilde{m}_y \left\{ \alpha k^2 + h - \beta - \frac{k_x^2 B^2 M_0^2}{(C_{44}^{(f)} k^2 - \rho^{(f)} \omega^2)} \right\}^{-1},$$
$$\tilde{u}_x^{(f)} = \frac{i k_y B M_0^2 [C_{11}^{(f)} (k_y^2 - k_x^2) + 2C_{44}^{(f)} k_x^2 - \rho^{(f)} \omega^2]}{(C_{11}^{(f)} k^2 - \rho^{(f)} \omega^2) (C_{44}^{(f)} k^2 - \rho^{(f)} \omega^2)} \tilde{m}_y,$$
$$\tilde{u}_y^{(f)} = \frac{i k_x B M_0^2 [C_{11}^{(f)} (k_x^2 - k_y^2) + 2C_{44}^{(f)} k_y^2 - \rho^{(f)} \omega^2]}{(C_{11}^{(f)} k^2 - \rho^{(f)} \omega^2) (C_{44}^{(f)} k^2 - \rho^{(f)} \omega^2)} \tilde{m}_y, \quad (20)$$

где $k^2 = k_x^2 + k_y^2$, $\Omega = \omega/\omega_0$. Подставляя выражения (20) во второе уравнение системы (12), освобождаясь

от знаменателя и приравнивая нулю коэффициент при \tilde{m}_y , получаем дисперсионное соотношение для магнитоупругих волн с $\mathbf{k} \perp \mathbf{n}_z$ в бесконечной ферромагнитной пленке

$$\begin{split} \left[(\alpha k^{2} + h + 4\pi k_{y}^{2}/k^{2})(\alpha k^{2} + h - \beta) - \Omega^{2} \right] \\ \times (k^{2} S_{l}^{(f)^{2}} \omega^{2})(k^{2} S_{t}^{(f)^{2}} - \omega^{2})^{2} = h_{me} S_{t}^{(f)^{2}} \left\{ k_{x}^{2} (\alpha k^{2} + h + 4\pi k_{y}^{2}/k^{2})(k^{2} S_{l}^{(f)^{2}} - \omega^{2})(k^{2} S_{t}^{(f)^{2}} - \omega^{2}) + \left[(\alpha k^{2} + h - \beta)(k^{2} S_{t}^{(f)^{2}} - \omega^{2}) - h_{me} k_{x}^{2} S_{t}^{(f)^{2}} \right] \\ \times \left[(k_{x}^{2} - k_{y}^{2})^{2} S_{l}^{(f)^{2}} + 4k_{x}^{2} k_{y}^{2} S_{t}^{(f)^{2}} - \omega^{2} k^{2} \right] \right\}, \quad (21)$$

где $S_l^{(f)} = (C_{11}^{(f)} / \rho^{(f)})^{1/2}$ и $S_t^{(f)} = (C_{44}^{(f)} / \rho^{(f)})^{1/2}$ — фазовые скорости продольной и поперечной упругих волн в ферромагнетике, соответственно. В области низких частот уравнение (21) приводится к виду

$$\Omega^2 \left(k^2 S_t^{(f)^2} + h_{me} \frac{\omega_0^2}{k^2 S_t^{(f)^2}} \frac{k_x^2}{k^2} \Delta_R \right) = \Delta_L \Delta_R, \qquad (22)$$

$$\Delta_L = \alpha k^2 + h - \beta - h_{me} \frac{k_x^2}{k^2}, \qquad (23)$$

$$\Delta_{R} = \left\{ \alpha k^{2} + h + \frac{4\pi k_{y}^{2}}{k^{2}} - \frac{h_{me}}{k^{4} S_{l}^{(f)^{2}}} \left[(k_{x}^{2} - k_{y}^{2})^{2} S_{l}^{(f)^{2}} + 4k_{x}^{2} k_{y}^{2} S_{t}^{(f)^{2}} \right] \right\} k^{2} S_{t}^{(f)^{2}}.$$
(24)

При $\omega = 0$ система уравнений (12)–(14) разделяется на две независимые подсистемы; условие $\Delta_t = 0$ является характеристическим уравнением для магнитоупругих возмущений с поляризацией \tilde{m}_z , $\tilde{u}_z^{(f)}$, а условие $\Delta_R = 0$ — характеристическим уравнением для магнитоупругих возмущений с поляризацией \tilde{m}_v , $\tilde{u}_x^{(f)}$, $\tilde{u}_v^{(f)}$, φ .

Рассмотрим подробнее спектр низкочастотных магнитоупругих возбуждений в системе пленка-подложка в случае, когда одноосная анизотропия магнитной пленки достаточно велика $\beta \gg 4\pi$. В области внешних полей $h - \beta \leq h_{me} \ll 4\pi \ll \beta \sim h$ получаем

$$\begin{split} |\tilde{h}_{Dy}| &= 4\pi k_y^2 |\tilde{m}_y| / k^2 \ll h |\tilde{m}_y|, \\ \left| B(k_x \tilde{u}_y^{(f)} + k_y \tilde{u}_x^{(f)}) \right| &\sim h_{me} |\tilde{m}_y| \ll h |\tilde{m}_y|. \end{split}$$
(25)

В этих приближениях

$$\tilde{m}_y \cong -i\Omega \tilde{m}_z/h, \tag{26}$$

следовательно можно положить $\varphi = \tilde{u}_{x,y}^{(f,s)} = 0$. Тогда решение уравнений движения (12), (20), (21), (26) должно удовлетворять лишь граничным условиям

$$\partial \tilde{m}_z / \partial y = 0, \quad \partial \tilde{u}_z^{(f)} / \partial y = 0$$
 при $y = L,$ (27)

$$\partial \tilde{m}_z / \partial y = \mathbf{0}, \quad C_{44}^{(f)} \partial \tilde{u}_z^{(f)} / \partial y = C_{44}^{(s)} \partial \tilde{u}_z^{(s)} / \partial y,$$

 $\tilde{u}_z^{(f)} = \tilde{u}_z^{(s)}$ при $y = \mathbf{0}.$ (28)

Вид его следующий:

$$\tilde{m}_{z} = A[\eta_{1}(y) + \eta_{2}(y)] \exp[i(k_{x}x - \omega t)],$$

$$\tilde{u}_{z}^{(f)} = A[\gamma_{1}(y) + \gamma_{2}(y)] \exp[i(k_{x}x - \omega t)],$$

$$\tilde{u}_{z}^{(s)} = A[\operatorname{ctg}(q_{1}L) + \gamma_{3}\operatorname{ctg}(q_{2}L)] \exp[q_{3}y + i(k_{x}x - \omega t)], \quad (29)$$

где

$$\begin{split} \eta_{1,2}(y) &= -i\gamma_{1,2}(y) \left[-\rho^{(f)}\omega^2 + C_{44}^{(f)}(k_x^2 \pm q_{1,2}^2) \right] / (k_x B M_0^2), \\ \gamma_1 &= \cos[q_1(L-y)] / \sin(q_1 L), \\ \gamma_2 &= \gamma_3 \operatorname{ch}(q_2(L-y)) / \operatorname{sh}(q_2 L), \\ \gamma_3 &= \frac{q_1}{q_2} \frac{S_t^{(f)^2}(k_x^2 + q_1^2) - \omega^2}{S_t^{(f)^2}(k_x^2 - q_2^2) - \omega^2}, \\ q_{1,2}^2 &= \left[(Q_+^2 + 4\alpha^{-1} h_{me} C_{44}^{(f)^2} k_x^2)^{1/2} \pm Q_- \right] / (2C_{44}^{(f)}) \mp k_x^2, \\ Q_\pm &= \rho^{(f)} \omega^2 \pm C_{44}^{(f)} [h(h-\beta) - \Omega^2] / (\alpha h), \\ q_3 &= (k_x^2 - \rho^{(s)} \omega^2 / C_{44}^{(s)})^{1/2}. \end{split}$$

Подставляя выражения (29) в уравнения (27), (28), находим дисперсионное соотношение для магнитоупругих волн в форме

$$\frac{C_{44}^{(f)}}{C_{44}^{(s)}} \left[\frac{q_1}{q_2} - \gamma_3 \left(\frac{q_2}{q_3} + \frac{C_{44}^{(s)}}{C_{44}^{(f)}} \operatorname{ctg}(q_2 L) \right) \right] \operatorname{tg}(q_1 L) = 1. \quad (30)$$

Предположим для простоты, что плотности и упругие модули пленки и подложки одинаковы ($\rho^{(f)} = \rho^{(s)} = \rho$, $C_{11}^{(f)} = C_{11}^{(s)} = C_{11}$, $C_{44}^{(f)} = C_{44}^{(s)} = C_{44}^{(s)} = C_{44}$) и проанализируем решения уравнения (30) для двух предельных частных случаев: толстых $L \gg L^* \equiv a(H_E/H_{me})^{1/2}$ ($H_E = M_0 \sqrt{\alpha}/a$ и $H_{me} = h_{me}M_0$ — обменное и магнитострикционное поля соответственно) и тонких магнитных пленок $L \ll L^*$.

Для толстых пленок $L \gg L^*$ и волновых чисел $k_x \sim k_c \equiv [\pi/(2LL^*)]^{1/2}$ дисперсия низкочастотных волн Лява описывается формулой

$$\omega_m^2 = S_t^2 \left\{ \left[(H - H_A - H_{me}) / (H_{me} + L^{*2} k_x^2] k_x^2 + (2m - 1)^2 \pi^2 / (4L^2) \right\}, \quad (m = 1, 2, 3, \dots), \quad (31)$$

где $H_A = \beta M_0$ — поле анизотропии. Каждая новая мода (новая поверхностная волна Лява) возникает при $q_1 = (2m - 1)\pi/(2L)$. Мода с m = 1 является мягкой. Используя условия

$$\omega = 0, \quad \partial \omega / \partial k_x = 0, \tag{32}$$

определяем критическое поле

$$H_c = H_A + H_{me} - 2H_E a^2 k_c^2, (33)$$

при котором коллинеарная фаза становится неустойчивой относительно малых магнитоупругих возмущений, и

Рис. 2. Качественный вид низкочастотной области спектра магнитоупругих волн в одноосной ферромагнитной пленке на упругой немагнитной подложке при $H \cong H_c$; штриховая прямая соответствует объемной сдвиговой моде.

пространственные масштабы критической моды определяются равенствами

$$d_c = 2\pi/k_c, \ k_c = (\pi/2LL^*)^{1/2},$$

 $q_1 \cong \pi/(2L), \ q_3 \cong k_c, \ q_2 \cong (2L^*)^{-1} \gg k_c.$ (34)

Когда толщина пленки увеличивается, критическое поле H_c стремится к $H_A + H_{me}$, т.е. пленка становится практически свободной, а период суперструктуры d_c и глубина проникновения упругих напряжений в пленку и подложку растут.

Для тонких пленок $L \ll L^*$ и волновых чисел $k_x \sim k_c \equiv L/(2{D^*}^2)$ дисперсионное соотношение низкочастотных волн Лява имеет вид

$$\omega^2 = S_t^2 [H - H_A + H_E a^2 k_x (k_x - 2k_c)] / [H_E a^2 (1 + S_t^2 / V_s^2)],$$

(35)
где $S_1 = (C_{44} / \rho)^{1/2}, V_s = g(\alpha M_0 H)^{1/2}.$

Используя условия (32), находим значения критического поля и параметров критического возмущения

$$H_c = H_A + H_E a^2 k_e^2, \tag{36}$$

$$d_c = 2\pi/k_c = 4\pi L^{*^2}/L,$$

$$q_{1,2} = [L/(2L^{*^3})]^{1/2} [1 \mp 3L/(8L^*)].$$
(37)

Когда толщина пленки уменьшается, поле H_c стремится к полю перехода из коллинеарной в угловую фазу H_A закрепленного образца, т.е. подложка все более препятствует упругой деформации пленки. При этом период d_c и глубина проникновения поверхностного решения в подложку $q_3^{-1} \sim d_c/(2\pi)$ увеличивается. Параметры магнитострикционной сверхструктуры в двумерной ферромагнитной пленке на толстой подложке могут быть получены из (36), (37) посредством замены $L \to a$.

Отметим, что соотношение (30) дает точные значения критического поля и параметров критической моды при любой величине константы анизотропии β , поскольку при $\omega = 0$ переменные системы уравнений (12)–(14) разделяются.

В длинноволновом пределе ($|k_x L| \ll 1$) дисперсия волн Лява описывается выражением

$$\omega = S_t |k_x| (1 - k_x^2 L^2 / 2).$$
(38)

Как и в случае изотропной немагнитной пленки, глубина проникновения волны в подложку равна $q_3^{-1} \sim (k_x^2 L)^{-1}$. Спектр магнитоупругих волн Лява в тонкой одноосной ферромагнитной пленке на упругой подложке во внешнем поле $H \cong H_c$ представлен на рис. 2.

Из дисперсионного соотношения (30) следует, что в предельных случаях свободной ($C_{44}^{(s)} = 0$) и полностью закрепленной ($C_{44}^{(s)} = \infty$) нижней стороны магнитной пленки неоднородное магнитоупругое состояние не возникает.

Статические возмущения с компонентами неоднородной намагниченности \tilde{m}_y и смещений \tilde{u}_x , \tilde{u}_y устойчивы, так как они связаны с вращением намагниченности в "трудной" плоскости.

При распространении магнитоупругих волн перпендикулярно направлению внешнего поля переменные системы уравнений (12)–(14) разделяются. Поверхностная мода с компонентами смещений \tilde{u}_y , \tilde{u}_z оказывается не связанной с намагниченностью и не представляет для нас интереса. Нетрудно убедиться, что при $H = H_c$ частота низкочастотной магнитоупругой волны Лява с ненулевыми значениями $\tilde{m}_y, \tilde{m}_z, \tilde{u}_x, \varphi$ не обращается в нуль. В частности, в случае толстых пленок дисперсионное соотношение для нее имеет вид

$$\omega^{2} \left\{ \frac{1}{\omega_{0}^{2}} + \frac{1}{k^{2} S_{t}^{2}} \left[2\Delta_{L} + h_{me} \left(\alpha k^{2} + h - \beta \frac{k_{y}^{2}}{k^{2}} \right) \right] \right\} = \Delta_{L},$$

$$\Delta_{L} = (\alpha k^{2} + h - \beta + 4\pi - h_{me})(\alpha k^{2} + h)$$

$$- (4\pi - h_{me})\beta(k_{y}^{2}/k^{2}), \quad k_{y} = \pi/2L. \quad (39)$$

Стабилизация волны Лява является следствием роста энергии размагничивающего поля.

Для определения области устойчивости угловых фаз (19) нужно решать полную линеаризованную систему уравнений и граничных условий (12)–(14). Можно доказать, однако, что минимальным порогом неустойчивости обладает магнитоупругая волна Лява с волновым вектором, параллельным направлению намагниченности в угловой фазе, и отличными от нуля неоднородными компонентами намагниченности и смещений $\tilde{m}_x, \tilde{m}_z, \tilde{u}_x, \tilde{u}_z$. Как и волна Лява (29) и (30), она не создает дипольного поля. Поле потери устойчивости угловой фазы H'_c относительно возниковения неоднородного состояния и волновое число критической моды k'_c определяются из

Рис. 3. Фазовая диаграмма одноосной ферромагнитной пленки на упругой немагнитной подложке: сплошная кривая — линия потери устойчивости коллинеарной фазы, штриховая кривая линия потери устойчивости угловой фазы.

следующих соотношений: в случае толстых ферромагнитных пленок ($L \gg L^*$) получаем

$${H_c'}^2 \cong H_A \Big[H_A - H_{me} + 2\pi^2 a^2 H_E / (LL^* \beta^{1/2}) \Big],$$

 ${k_c'}^2 \cong \pi^2 / (LL^*),$ (40)

а в случае тонких ферромагнитных пленок ($L \ll L^*$) —

$${H_c'}^2 \cong H_A (H_A - \pi^2 H_{me} L^2 / {L^*}^2), \quad k_c' \cong 2\pi^2 L / {L^*}^2.$$
 (41)

При $L \to 0$ поле потери устойчивости угловой фазы стремится к полю анизотропии H_A .

Общий вид фазовой диаграммы одноосной ферромагнитной пленки с магнитострикцией на полубесконечной немагнитной подложке в координатах (L, H) представлен на рис. 3. В качественном плане она аналогична фазовой диаграмме изолированной одноосной ферромагнитной пленки с "легкой" осью, перпендикулярной ее развитой поверхности, в отсутствие магнитоупругого взаимодействия [17–19]. Доменная фаза обладает минимальной энергией во всей области полей и толщин пленки на диаграмме левее линии фазовых переходов второго рода $H_c(L)$ из коллинеарной в доменную фазу, а угловые фазы метастабильны в интервале от нулевого поля до линии потери устойчивости $H'_c(L)$. Существование доменной структуры в широкой области полей и толщин пленки

При конечной толщине подложки $L_s \gg L$ доменная структура становится энергетически невыгодной, когда размер домена D превышает толщину подложки $(D > L_s)$. Толщина подложки выполняет роль радиуса экранирования поля упругих деформаций, подобную

лондоновской глубине проникновения поля в одноосной ферромагнитной пленке со сверхпроводящим покрытием [18,19]. В результате для тонких пленок угловая фаза оказывается абсолютно устойчивой, и возможен прямой переход по полю из коллинеарной в угловую фазу.

3. Обсуждение результатов и выводы

Итак, показано, что магнитоупругое взаимодействие не сводится к перенормировке констант анизотропии магнитной пленки. Дальнодействующий характер магнитоупругих напряжений в слоистой системе ферромагнитная пленка-немагнитная подложка во внешнем магнитном поле приводит к появлению магнитоупругих доменов в области внешних полей, близких к полю перехода из коллинеарной в однородную угловую фазу.

Описанный механизм образования доменов может оказаться существенным даже для магнитных материалов с малой магнитострикцией. Так, для железо-иттриевого граната при комнатной температуре $M_0 = 140 \, \Gamma c$, $\alpha = 3.8 \cdot 10^{-11} \text{ cm}^2$, $\rho = 5.17 \text{ g/cm}^3$, $C_{44} \sim 10^{12} \text{ dyne/cm}^3$, $BM_0^2 \sim 10^7 \, {
m erg/cm^3}$, откуда $h_{me} \sim 2 \cdot 10^{-3}$ и $L^* \sim 10^{-4} \, {
m cm}$. В окрестности точки потери устойчивости коллинеарной фазы $H = H_c$ размер домена $D/2 \sim 150\,\mu{
m m}$ при $L \sim 10^{-5} \, {
m cm}$ и $D/2 \sim 20 \, \mu {
m m}$ при $L \sim 20 \, \mu {
m m}$. Согласно экспериментальным данным, размеры доменов в толстых пленках железо-иттриевого граната на подложках из галлий-гадолиниевого граната в малых касательных внешних полях имеют именно такой порядок величины. Примерно те же значения *h_{me}* получаются для литиевого феррита и железа и на порядок больше для гексагонального кобальта. Разумеется, подобные оценки в случае материалов с кубической и гексагональной симметрией являются лишь качественными. Для количественных оценок необходим специальный анализ.

Приведенные соображения позволяют сделать вывод, что подобные неоднородные состояния могут иметь место и в других материалах с взаимодействием подсистем, например, в антиферромагнитных и сверхпроводящихпленках, выращенных на массивной упругой подложке.

Работа выполнена при поддержке РФФИ (проекты № 96-02-17283а и № 96-02-16082).

Список литературы

- [1] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1031 с.
- [2] В.В. Леманов. Физика магнитных диэлектриков. Наука, Л. (1974). 284 с.
- [3] И.Е. Дикштейн, Е.А. Туров, В.Г. Шавров. В кн.: Динамические и кинетические свойства магнитных систем. М. (1986). 404 с.
- [4] В.И. Ожогин, В.Л. Преображенский. ЖЭТФ 46, 523 (1977);
 УФН 31, 713 (1988); J. Magn. Magn. Mater. 100, 544 (1991).
- [5] Ю.В. Гуляев, И.Е. Дикштейн, В.Г. Шавров. УФН 40, 701 (1997).

- [6] С.В. Герус, В.В. Тарасенко. ФТТ 17, 12, 2247 (1976).
- [7] V.G. Bar'yakhtar, R.A. Turov. In: Spin Waves and Magnetic Excitations 2 / Ed by A.S. Borovik-Romanov and S.K. Sinha. North-Holland, Amsterdam (1988). Chap. 7.
- [8] J.P. Parekh. Electron. Lett. 5, 322 (1969); 5, 540 (1969).
- [9] Б.Н. Филиппов, Л.Г. Оноприенко. ФММ 30, 1121 (1970).
- [10] J.P. Parekh, H.I. Bertoni. Appl. Phys. Lett. 20, 362 (1972).
- [11] R.Q. Scott, D.L. Mills. Phys. Rev. B15, 3545 (1977).
- [12] H. Mattheus, Van De Vaart. Appl. Phys. Lett. 15, 373 (1969).
- [13] R.E. Camley. J. Appl. Phys. 50, 5272 (1979).
- [14] R.E. Camley, A.A. Maradudin. Appl. Phys. Lett. 38, 610 (1981).
- [15] I.E. Dikshtein, Sung-Ho Suck Salk. Phys. Rev. B53, 14957 (1996).
- [16] И.Е. Дикштейн. ФТТ 31, 3, 175 (1989).
- [17] В.Г. Барьяхтар, Б.А. Иванов. ФЭТФ 72, 1504 (1977).
- [18] Ю.И. Беспятых, В. Василевский, Э.Г. Локк, В.Д. Харитонов. ФТТ **40**, *6*, 1068 (1998).
- [19] Yu.I. Bespyatykh, E.H. Lokk, S.A. Nikitov, W. Wasilevski. J. Magn. Magn. Mater. (1998), в печати.