О функции спектрального распределения частот трансляционных колебаний гцк-решетки фуллерита C₆₀

© В.П. Михальченко, В.В. Моцкин

Институт термоэлектричества Национальной академии наук Украины и Министерства образования Украины, 58002 Черновцы, Украина

E-mail: vimot@bk.ru

(Поступила в Редакцию 26 июля 2005 г.)

Методом суперпозиции получена функция спектрального распределения частот $g(\omega)$ трансляционных колебаний решетки гцк-фазы фуллерита C_{60} при T = 300 К. Рассчитанные с помощью $g(\omega)$ вклад трансляционных колебаний в теплоемкость C_V фуллерита C_{60} и рентгеновская характеристическая температура Θ_R , фигурирующая в показателе экспоненциала фактора Дебая–Уоллера, находятся в хорошем согласии с экспериментом. Отмечается, что либрационные и внутримолекулярные колебания решетки фуллерита C_{60} не вносят заметного вклада в температурное ослабление интенсивностей рентгеновских интерференций при T = 300 К. Рассчитанная по рентгенографическим данным величина параметра Грюнайзена γ_{mod} согласуется с термодинамической γ_{lat} при $T \leq 80$ К, но существенно превосходит γ_{lat} при $T \approx 300$ К. Предложена постановка новых рентген-дифрактометрических экспериментов, обеспечивающих независимое определение аномально высоких отрицательных значений γ_0 — ориентационного аналога параметра Грюнайзена.

PACS: 63.20.Dj, 63.22.+m, 81.05.Tp

1. Введение

При анализе термодинамических свойств кристаллических твердых тел, обусловленных колебаниями решетки в широких интервалах температур и давлений, подробная информация о колебаниях, содержащаяся в законах дисперсии $\omega(\mathbf{q})$ (ω — частота, \mathbf{q} — волновой вектор), не является строго необходимой: достаточно знать лишь распределение колебаний по частотам, т.е. их спектральную плотность $g(\omega)$ (см. [1,2]).

Развитый в [3] метод восстановления функции $g(\omega)$ кристаллических решеток кубической симметрии путем суперпозиции дебаевского и эйнштейновского спектров и ее использование в расчетах физических свойств кристаллов, прямо или косвенно зависящих от спектра, показали хорошее согласие с экспериментом. Несколько позже в [3] было показано, что с помощью $g(\omega)$, рассчитанной по [3], может быть определена с приемлемой точностью корреляционная функция, фигурирующая в выражении для дважды дифференцированного сечения рассеяния тепловых нейтронов на колебаниях решетки.

Таким образом, представляется актуальным модифицировать метод суперпозиции [3] применительно к новому классу молекулярных кристаллов-фуллеритов, в решетке которых расположены гигантские куполообразные углеродные молекулы общей формулы C_{2n} (10 $\leq n \leq 120$).

В настоящее время установлено (см., например, [5]), что межмолекулярное вазимодействие в наиболее изученных и стабильных фуллеритах C_{60} характеризуется в основном слабыми центральными силами Ван-дер-Ваальса с небольшой "примесью" ковалентности, а при T = 260 К наблюдается переход из плотноупакованной гцк-фазы Fm3m в простую кубическую $Pa\bar{3}$ и при $T \sim 90 \,\mathrm{K}$ — переход в состояние ориентационного стекла.

При образовании кристаллов фуллерита внутренняя структура молекул фактически не изменяется и межмолекулярные расстояния примерно на порядок больше межатомных. Как и в обычных молекулярных кристаллах, энергия связи молекул в фуллерите C_{60} намного меньше внутримолекулярной, вследствие чего частоты трансляций, либраций и вращений в решетке фуллерита существенно ниже частот внутренних колебаний атомов углерода в молекуле C_{60} .

Вместе с тем фуллериты уникальны в том отношении, что допускают легирование не только атомами любых размеров (от водорода до урана), но также и соединениями (например, хлороформом и бромоформом [6]). Именно поэтому фуллериты являются основой перспективных материалов для нового поколения приборов и устройств микро- и наноэлектроники, сверхпроводящей электроники, термоэлектрического приборостроения [7], прецизионной измерительной техники и т.п.

Цель настоящей работы — рассчитать методом суперпозиции [3] функцию спектрального распределения частот трансляционных колебаний $g(\omega)$ молекулярной решетки гцк-фазы фуллерита C₆₀ при T = 300 К. Насколько нам известно, к настоящему времени $g(\omega)$ еще не определена.

2. Расчет $g(\omega)$ и обсуждение результатов ее применения

Следуя методике, описанной в [3], функцию $g(\omega)$ трансляционных колебаний одноатомных решеток кубической симметрии можно представить в виде суперпози-

Спектральное распределение $g(\omega)$ частот трансляционных колебаний решетки гцк-фазы фуллерита C₆₀ при $T \approx 300$ K.

ции дебаевского и эйнштейновского спектров

$$g(\omega) = 3N \left[\frac{3\omega^2}{\omega_D^3} + \frac{N_E}{N} \,\delta(\omega - \omega_E) \right], \tag{1}$$

где ω_D , ω_E — частоты Дебая и Эйнштейна, N_E — число колебаний с частотой ω_E , $\delta(\omega - \omega_E)$ — дельта-функция Дирака.

В комбинированном спектре предельная частота ω_D параболического распределения должна быть заменена решеточной $\omega_L < \omega_D$ с учетом условия сохранения числа трансляционных колебаний, равного 3N.¹

Неизвестные параметры комбинированного спектра $g(\omega)$, а именно ω_L , ω_E и N_E/N , определяются из условия нормировки и равенства четных положительных моментов $\langle \omega^n \rangle$ (n = 2, 4, ...) функции $g(\omega)$ величинам, получаемым из теории решетки, учитывающей явно кристаллическую структуру.

Применительно к гцк-решеткам с центральным взаимодействием в первой и второй координационных сферах задача восстановления $g(\omega)$ сводится к решению алгебраических уравнений десятой, пятой и третьей степени [3]. После несложных преобразований соответствующее уравнение десятой степени относительно $x = \omega_L/\omega_D$ можно представить в виде

$$\frac{12}{175}x^{10} - \frac{3}{7}x^7 + \frac{6}{5}\frac{\langle\omega^2\rangle}{\omega_D^2}x^5 - \frac{\langle\omega^4\rangle}{\omega_D^4}x^3 = \frac{\langle\omega^2\rangle^2}{\omega_D^4} - \frac{\langle\omega^4\rangle}{\omega_D^4},$$
(2)

где

$$\langle \omega^2 \rangle = \frac{1}{m} (4f_1 + 2f_2),$$

$$\omega^4 \rangle = \frac{1}{m^2} (20f_1^2 + 6f_2^2 + 16f_1f_2), \qquad (3)$$

m — масса атома (молекулы), f_1 , f_2 — силовые константы взаимодействия между ближайшими и вторыми по близости соседями в гцк-решетке, которые

Физика твердого тела, 2006, том 48, вып. 7

выражаются через упругие постоянные С_{іі}

$$f_1 = aC_{44},$$

$$g_2 = \frac{1}{4}a(C_{11} - C_{12} - C_{44}), \qquad (4)$$

а — период решетки.

Относительное число колебаний с частотой Эйнштейна N_E/N и частота ω_E определяются из уравнений

$$N_E/N = 1 - x^3,$$
 (5)

$$\frac{3}{5}x^5 + \frac{N_E}{N}\left(\frac{\omega_E}{\omega_D}\right)^2 = \frac{\langle\omega^2\rangle}{\omega_D^2}.$$
 (6)

Применительно к гцк-фазе фуллерита C₆₀ величины, фигурирующие в (2)–(4), рассчитаны из литературных данных, а именно $m = 1.195 \cdot 10^{-21}$ g, a = 14.156 Å при $T \approx 300$ K из [5], значения C_{ij} (в GPa) и ω_D (rad · s⁻¹) из данных [8]: $C_{11} = 14.9$, $C_{12} = 8.6$, $C_{44} = 6.6$ и $\omega_D = 86.41$.

Результаты расчета $g(\omega)$ представлены в табл. 1 и на рисунке. Из данных табл. 1 и рисунка легко увидеть, что выполняется неравенство $\omega_E < \omega_L < \omega_D$. Согласно интерпретации [3], это означает, что влияние дисперсии трансляционных колебаний решетки фуллерита С₆₀ на параметры спектра $g(\omega)$ является доминирующим по сравнению с анизотропией колебаний: для фуллерита C₆₀, согласно [8], $A = 2C_{44}/(C_{11} - C_{12}) = 2.09$, т.е. не слишком отличается от A = 1 для упруго изотропных кубических кристаллов и несколько ниже (A = 2.4)среднего значения для гцк-решеток [9]. Представляется, однако, что интерпретацию [3] такого влияния нельзя признать строго обоснованной, поскольку компоненты тензора С_{іі} определяются акустической асимптотикой фононного спектра $\omega(\mathbf{q})$, которая по своей природе бездисперсионна.

Таблица 1. Параметры спектрального распределения $g(\omega)$ (ω в ед. 10¹¹ гаd · s⁻¹, $\Theta = \hbar \omega / k$, K) при $T \approx 300$ K

N_E/N	ω_E	ω_L	ω_D	Θ_E	Θ_L	Θ_D
0.28	42.50	77.30	86.41	32.50	59.0	66.0

Вместе с тем полученная методом суперпозиции функция $g(\omega)$ удобна в прикладном смысле в отличие от $g(\omega)$, получаемой непосредственным расчетом из дисперсионных кривых $\omega(\mathbf{q})$: первая в отличие от второй (более информативной в отношении тонкой структуры типа особенностей Ван-Хова и др.) не требует интегрирования по спектру при количественном анализе многих термодинамических свойств.

2.1. Теплоемкость. По соотношению (1) и данным табл. 1 температурная зависимость теплоемкости $C_V^L(T)$, обусловленная вкладом трансляционных колеба-

¹ Может оказаться, что $\omega_L > \omega_D$, для кристалла с высоким значением фактора упругой анизотропии $A = 2C_{44}/(C_{11} - C_{12}) > 3$, где C_{ij} — упругие постоянные в обозначении В. Фойгта.

<i>Т</i> ,К	40	50	60	100	150	200	240	290
$C_V^L(T)$	5.47	5.59	5.66	5.86	5.91	5.93	5.94	5.95
расчет $C_V^L(T)$ эксперимент	5.65*	5.60	5.49**	5.90	5.92	5.94	5.95	5.96

Таблица 2. Теплоемкость $C_{V}^{L}(T)$ фуллерита (в cal/mole · K), обусловленная трансляционными колебаниями молекул C₆₀

* Согласуется с рассчитанной при $T = 60 \, \text{K}$,

** Согласуется с рассчитанной при $T = 40 \, \text{K}$.

ний, определяется как

$$C_{V}^{L}(T) = 3Nk \left[\left(1 - \frac{N_{E}}{N} \right) D \left(\frac{\Theta_{L}}{T} \right) + \frac{N_{E}}{N} P \left(\frac{\Theta_{E}}{T} \right) \right],$$
(7)

где $\Theta_L = \hbar \omega_L / k$, $\Theta_E = \hbar \omega_E / k$, $D\left(\frac{\Theta_L}{T}\right)$, $P\left(\frac{\Theta_E}{T}\right)$ — функции Дебая и Планка–Эйнштейна соответственно.

В табл. 2 представлена зависимость $C_V^L(T)$, рассчитанная по (7) с использованием табулированных значений $D(\frac{\Theta_L}{T})$ и $P(\frac{\Theta_E}{T})$ [10], и экспериментальная зависимость $C_V^L(T)$, полученная нами из данных табл. 2 работы [11]: $C_V^L(T) = C_V^{ex}(T) - C_V^{rot}(T) - C_V^{in}(T)$ в интервале 40–290 К, где $C_V^{rot}(T)$ и $C_V^{in}(T)$ — вклады вращательных и внутримолекулярных степеней свободы в общую $C_V^{ex}(T)$.

Как видно из табл. 2, согласие рассчитанных и экспериментальных величин $C_V^L(T)$ вполне удовлетворительное, за исключением T = 40 и 60 K, что может быть обусловлено неточностью оценки вкладов в общую $C_V^{ex}(T)$ соответствующих C_V^{rot} и C_V^{in} [11], вследствие чего возникает нереальная ситуация: $C_V^L(60) < C_V^L(40)$ (см. вторую строку табл. 2).

Естественно, что при сравнении рассчитанных $C_V^L(T)$ с экспериментальными значениями мы по понятным причинам избегали аномалий $C_V^{\text{ex}}(T)$ в окрестности температур фазовых переходов при $T \approx 90$ и ≈ 260 K.

Используя рассчитанную в табл. 2 величину $C_V^L(T)$ при T = 290 K, можно определить высокотемпературное предельное значение температуры Дебая $\Theta_{\infty}^2 = \left(\frac{\hbar}{k}\right)^2 \langle \omega^2 \rangle$, фигурирующей в известном разложении Тирринга в области $T > \Theta_{\infty}/2\pi$ [3],

$$C_V = 3Nk \left(1 - \frac{1}{12} \left(\frac{\Theta_{\infty}}{T} \right)^2 + \frac{1}{240} \left(\frac{\Theta_{\infty}}{T} \right)^4 - \dots \right).$$
(8)

В результате получаем $\Theta_{\infty} = 43.7 \text{ K}$, что находится в хорошем согласии с величиной $\Theta_D = 45.0 \text{ K}$ при T = 290 K, определенной в [11] из данных скоростей распространения продольных и поперечных ультразвуковых волн в поликристаллическом компакте фуллерита C₆₀.

С другой стороны, полученная в качестве одного из параметров спектра $g(\omega)$ величина характеристической температуры Эйнштейна $\Theta_E = 32.5 \text{ K}$ при $T \approx 300 \text{ K}$

(табл. 1) заметно отличается от $\Theta_E = 39$ K, определенной в [12] путем оценки либрационного вклада в термическое расширение монокристаллического фуллерита C₆₀ при T = 6-12 K.

Столь существенное различие (~ 20%) величин Θ_E обусловлено влиянием ангармоничности колебаний решетки фуллерита и в первом приближении может быть оценено путем расчета эффективной величины параметра Грюнайзена γ_E .

Действительно,

$$\gamma_E = -\frac{d\ln\omega_E}{d\ln V} = -\frac{d\ln\Theta_E}{d\ln V} = -V\frac{d\ln\Theta_E}{dV},\qquad(9)$$

где Θ_E является только функцией объема и зависит от температуры неявно. Считая γ_E постоянной и интегрируя (9) в пределах от 0 до T = 293 K, получим

$$\left(\frac{\Theta_{E,T}}{\Theta_{E,0}}\right) = \left(\frac{V_0}{V_T}\right)^{\gamma_E},\tag{10}$$

где индекс 0 относится к абсолютному нулю.

Подставляя в (10) значения $V_0(10) = 416.7 \text{ cm}^2/\text{mole}$, $V_T(290) = 425.5 \text{ cm}^3/\text{mole}$, из данных табл. 1 в [11] и соответственно $\Theta_{E,T} = 32.5 \text{ K}$, $\Theta_{E,0} = 39.0 \text{ K}$ эффективная величина $\gamma_E = 7.3$, что существенно превосходит типичное среднее значение $\gamma_a \approx 3$ атомарных криокристаллов и простейших молекулярных кристаллов кубической симметрии [13].

Неравенство $\gamma_E \gg \gamma_a$ не является неожиданным, поскольку γ_E по существу представляет собой модальный параметр Грюнайзена, величина которого может радикально отличаться от термодинамического γ_G

$$\gamma_G = \frac{\beta}{\chi} \frac{V}{C_V} \tag{11}$$

 $(\beta$ — коэффициент объемного расширения, χ — изотермическая сжимаемость) не только по величине, но и по знаку (например, в сегнетоэлектриках типа "порядокбеспорядок" [14]).

Расчет γ_G фуллерита по (11) при T = 10 K с использованием $\beta = 1.48 \cdot 10^{-5} \text{ K}^{-1}$, $\chi = 0.9 \cdot 10^{-11} \text{ cm}^2/\text{dyn}$, $V = 417 \text{ cm}^3/\text{mole}$ [11] и эйнштейновской теплоемкости $C_V^E = 4.81 \text{ cal/mol} \cdot \text{K} = 20.13 \cdot 10^7 \text{ erg/mole} \cdot \text{K}$ [10] показал, что величина $\gamma_G = 3.41$, т.е. достаточно близка к γ_a криокристаллов.

2.2. Фактор Дебая-Уоллера. Фактор Дебая-Уоллера $\exp[-2M(T)]$ находит широкое применение при анализе данных упругого (и неупругого) рассеяния кристаллами различных ионизирующих излучений и частиц с длинами волн де-Бройля, соизмеримыми с периодом решетки, в широких интервалах температур и давлений. Поэтому использование $g(\omega)$ для расчетов *М*-фактора представляет самостоятельный интерес. Применительно к рассеянию рентгеновских лучей одноатомными решетками кристаллов кубической симметрии величина 2M(T) представляется в виде (см. [15])

$$2M(T) = \frac{12h^2T}{mk\Theta_R^2} \left[\phi\left(\frac{\Theta_R}{T}\right) + \frac{\Theta_R}{4T} \right] \sin^2 \frac{\vartheta}{\lambda^2}$$
$$= \frac{16}{3} \pi^2 \langle u^2 \rangle \frac{\sin^2 \vartheta}{\lambda^2}, \qquad (12)$$

где ϑ , λ — угол скольжения и длина волны соответственно, Θ_R — рентгеновская характеристическая температура, $\langle u^2 \rangle$ — средний квадрат полного смещения атома из положения равновесия, $\phi(\Theta_R/T)$ — функция Дебая–Уоллера, табулированная в [15].

Из (12) следует, что Θ_R^{-2} определяется вторым отрицательным моментом функции $g(\omega)$, т.е. $\Theta_R^{-2} = (k/\hbar^2)^2 \langle \omega^{-2} \rangle$.

Вычислив отношение моментов $\langle \omega^{-2} \rangle_R / \langle \omega^{-2} \rangle_D$ из данных табл. 1 и $g_D(\omega) = (3/\omega_D^3)\omega^2$, получим

$$\langle \omega^{-2} \rangle_R / \langle \omega^{-2} \rangle_D = 1.392$$

и соответственно

$$\Theta_R = 0.847 \Theta_D = 56.1 \,\mathrm{K},$$

т. е. $\Theta_R < \Theta_D = 66 \text{ K } [8]$, что является достаточно общим свойством кристаллических твердых тел (см., например, [16]).

В связи с этим уместно подчеркнуть, что эффективные величины $\Theta_{\rm eff}$ (определенные из данных теплоемкости Θ_C , упругих постоянных Θ_{elast} , рассеяния различных излучений на колебаниях решетки, например, рентгеновского Θ_R , инфракрасного Θ_{IP} , γ -излучения Θ_{γ} , тепловых нейтронов Θ_N , электронов Θ_E и др.) должны отличаться как вследствие используемых типов усреднений по частотному спектру при расчетах Θ_{eff} , так и избирательной чувствительностью соответствующих $\Theta_{\rm eff}$ к различным участкам частотного интервале $[0, \omega_{\text{max}}]$ реальной функции $g(\omega)$, совпадающей с дебаевской $g_D(\omega)$ лишь в начальной низкочастотной области $\omega \leq 0.1 \omega_{\max}$. Образно говоря, различные физические свойства одного и того же кристаллического твердого тела представляются существенно различными величинами Θ_{eff} , которые к тому же зависят от температуры как вследствие дисперсии (в области $T < \Theta_{\text{eff}}$), так и ангармоничности колебаний решетки (в области $T > \Theta_{\text{eff}}$).

Экспериментальная величина Θ_R^{ex} гцк-фазы фуллерита, определенная в [17] при $T \approx 300$ К, весьма близка к рассчитанной $\Theta_R = 56.1$ К, а именно $\Theta_R^{ex} = 53.9$ К. В работе [17] не указана точность измерения Θ_R^{ex} (которая может достигать ~ 2.5%), тем не менее можно утверждать, что вклад в температурное ослабление интенсивностей рентгеновских интерференций фуллерита C₆₀ трансляционных колебаний при $T \approx 300$ К является доминирующим по сравнению с либрационными и внутримолекулярными.

Подчеркнем, что многие молекулярные кристаллы обладают плотноупакованными кубическими решетками, в которых силы межмолекулярного взаимодействия главным образом центральные и короткодействующие. Поэтому зачастую учет взаимодействия только между ближайшими соседями достаточен для адекватной оценки их многих решеточных свойств (см., например, [18]).

С этой точки зрения представляется целесообразным, используя величину Θ_R , рассчитать модальный параметр Грюнайзена

$$\gamma_{\rm mod} = -\frac{d\ln\Theta_R}{d\ln V} = -\frac{1}{2} \frac{d\ln\langle\omega^{-2}\rangle}{d\ln V}$$

применительно к плотноупакованной гцк-фазе фуллерита С₆₀. Следуя [15], для гцк-решеток с центральным взаимодействием ближайших соседей величина γ_{mod} определяется как

$$\gamma_{\rm mod} = -\frac{g\,a}{6\sqrt{2}f} - \frac{1}{3},\tag{13}$$

где силовая константа жесткости связи равна

$$f = 0.1397 \left(\frac{k}{\hbar}\right)^2 m\Theta_R^2, \tag{14}$$

а константа ангармонизма третьего порядка —

$$g = -\frac{4\alpha a f^2}{k\sqrt{2}} - \frac{4f}{a},\tag{15}$$

α — коэффициент термического расширения.

Подставив соответствующие величины в (13)–(15), используя $\alpha = 19.2 \cdot 10^{-6} \,\mathrm{K}^{-1}$ и $a = 14.16 \,\mathrm{\AA}$ [11], получим $\gamma_{\mathrm{mod}} = 8.27$, что заметно превосходит среднее значение $\gamma_G \approx 3$ термодинамического параметра Грюнайзена $\gamma_G = \frac{3\alpha}{\chi} \frac{V}{C_V}$ криокристаллов. Не исключено, что такие различия между γ_{mod} фуллерита и γ_D отвердевших благородных газов могут быть обусловлены "масштабным" фактором Θ_R на шкале температур в интервале от 0 до T_{melt} .

Действительно, для фуллерита C_{60} величина $\Theta_R \ll T_{melt}$, в то время как для криокристаллов с легкими атомами (Ne, Ar) величина $\Theta_R > T_{melt}$, т.е. для них область $T > \Theta$ не реализуется [16].

С другой стороны, вклад вторых по близости соседей может несколько уменьшить величину γ_{mod} , однако этот вклад мал, в чем легко убедиться, оценив величину $f_2/f_1 = -0.11$ по формуле (4) и используя соответствующие C_{ij} .

Рассчитанная $\gamma_{mod} = 8.27$ согласуется с величиной $\gamma_{lat} \approx 8$, полученной в работе [11] (рис. 3) при температурах T < 80 К (при которых вклад внутримолекулярных колебаний фуллерита в C_V еще мал, как подчеркивалось в [11]). Это обстоятельство можно рассматривать как косвенное подтверждение малости вклада либрационных и внутримолекулярных колебаний атомов углерода фуллерита C_{60} в фактор Дебая–Уоллера.

При температуре T = 300 К величина γ_{lat} фуллерита, обусловленная трансляционными и либрационными колебаниями, согласно [11], равна 2.86, т. е. близка к $\gamma_G \approx 3$

криокристаллов, у которых либрационные колебания вообще отсутствуют.²

Однако гигантские температурные изменения параметра Грюнайзена γ_0 фуллерита C₆₀ обнаружены экспериментально в работе [12], при T = 3.0 К величина $\gamma_0 = -40$, а при понижении температуры всего на 1 К величина $\gamma_0 = -300$. Такие катастрофические аномалии γ_0 находят объяснение в деформировании системы туннельных уровней энергетического спектра фуллерита C₆₀, связанных с концентрацией так называемых гексагонных и пентагонных конфигураций [19]. Однако вопрос о точных количественных расчетах γ_0 (ориентационного аналога термодинамического параметра Грюнайзена), по мнению авторов [19], остается открытым.

По этому поводу заметим, что аномально высокие отрицательные значения γ_G известны и для некоторых немолекулярных кристаллов (см., например, [20]), где $\gamma_G = -42.8$ сверхпроводящего соединения V₃Si при $T_i = 224$ K (температура инверсии интенсивности рентгеновских отражений (440)).

Столь необычная экспериментальная ситуация в разбросах абсолютных значений и знаков параметров Грюнайзена γ , а также их температурных зависимостей для фуллерита C₆₀ стимулирует постановку новых экспериментальных исследований.

По нашему мнению, к таким исследованиям можно отнести следующее.

1) Измерения температурных зависимостей интенсивностей I(T) и сдвига рентгеновских интерференций высоких порядков типа (*hhh*) фуллерита C₆₀ в широких интервалах температур, включая окрестности фазовых переходов при $T \approx 260$ и ≈ 90 K.

2) Измерения барических зависимостей I(P) и периода решетки a(P) при постоянной температуре T < 3 К.

По экспериментальным данным п. 1, при $T > \Theta_R$ могут быть определены

$$\gamma_R = -\frac{d\ln\Theta_R}{d\ln V} = -\frac{1}{2} \frac{d\ln\langle\omega^{-2}\rangle}{d\ln V},$$

константы ангармонизма третьего и четвертого порядков, фигурирующих в разложении решеточного потенциала по степеням смещений, и соответственно γ_{mod} с помощью соотношений, приведенных в [15].

По экспериментальным данным п. 2, могут быть определены непосредственно знак и абсолютное значение ориентационного параметра Грюнайзена γ_0 фуллерита C₆₀. Действительно, согласно [21], барическая зависимость I(P) при постоянной температуре имеет вид $I(P) = I(0) \exp(\gamma \chi P)$, откуда следует, что при $\gamma < 0$ вместо возрастания интенсивности с ростом P, как это наблюдается в обычных гцк-кристаллах, где $\gamma > 0$, обнаружится значительное ослабление интенсивностей с ростом P для фуллерита C₆₀. Принимая численные значения $\gamma_0 = -300$ [12], $\chi = 0.9 \cdot 10^{-11} \text{ cm}^2/\text{dyn}$ [11] при T = 2 K и $P = 10^2 \text{ atm}$ $= 9.81 \cdot 10^7 \text{ dyn/cm}^2$, получим для фуллерита C₆₀

$$I(P)/I(0) \simeq \exp(-0.26) = 0.77,$$

т.е. I(P) может быть легко измерено при столь малых гидростатических давлениях даже фотографическим методом регистрации интенсивностей.

Кроме того, из данных барической зависимости периода решетки a(P) при T = 2.0 К определяются величины $\chi = -1/V(\partial V/\partial P)_T$, $\chi(P) = aP + bP^2$ и параметр Грюнайзена $\gamma_{\rm SL}$ по соотношению Ландау–Слейтера, $\gamma_{\rm SL} = -2/3 + b/a^2$, где *а* и *b* — постоянные Бриджмена первого и второго порядков (см., например, [22].)

Весьма интересным представляется определение γ_G непосредственно из данных измерений поглощенной кристаллом энергии мощного лазерного излучения в импульсном режиме при постоянном объеме (см., например, формулу (1.31) в [23]).

3. Выводы

1) Методом суперпозиции дебаевского и эйнштейновского спектров получена функция распределения частот трансляционных колебаний решетки $g(\omega)$ разупорядоченной гцк-фазы фуллерита C₆₀ при T = 30 K.

2) Рассчитанные с помощью $g(\omega)$ вклад трансляционных колебаний решетки фуллерита C₆₀ в теплоемкость $C_V(T)$ в интервале 40–300 К и величина рентгеновской характеристической температуры Θ_R находятся в хорошем согласии с экспериментом.

 Рассмотрены перспективы дальнейших исследований ангармонических свойств фуллеритов методами рентгеновской дифрактометрии в широких интервалах температур и давлений.

Авторы признательны академику НАН Украины Л.И. Анатычуку за поддержку работы и полезные дискуссии.

Список литературы

- [1] А.М. Косевич. Основы механики кристаллической решетки. Наука, М. (1972). 280 с.
- [2] В.П. Михальченко, В.Б. Лотоцкий. ФММ 32, 6, 1300 (1971).
- [3] G. Leibfried, W. Brenig. Zs. Phys. 134, 4, 451 (1953).
- [4] D.W. Weil. Zs. Phys. 233, 2, 178 (1970).
- [5] В.Л. Колесниченко, В.М. Локтев. Энциклопедический словарь "Физика твердого тела", т. 2. Наукова думка, Киев (1998). С. 466.
- [6] E. Koch. Phys. Rev. B 66, 8, 081 401 (2002).
- [7] В.П. Михальченко, В.В. Моцкин. Термоэлектричество 3, 107 (2004).
- [8] Н.П. Кобелев, Р.К. Николаев, Л.М. Сойфер, С.С. Хасанов. ФТТ 40, 1, 173 (1988).
- [9] О. Андерсон. Динамика решетки. Физическая акустика / Под ред. У Мэзона. Мир, М. (1968). С. 62.

 $^{^2}$ Именно по этой причине в отвердевших благородных газах (в отличие от твердых галогенов) отсутствуют какие-либо фазовые переходы от $T\approx 0\,{\rm K}$ до $T_{\rm melt}$ [17].

1323

- [10] Е. Янке, Ф. Эмде, Ф. Леш. Специальные функции. Наука, М. (1968). 334 с.
- [11] Н.А. Аксенова, А.П. Исакина, А.И. Прохватилов, М.А. Стрежемечный. ФНТ 25, 8/9, 964 (1999).
- [12] А.Н. Александровский, А.С. Бакай, А.В. Долбин, В.Б. Эсельсон, Г.Е. Гадд, В.Г. Гаврилко, В.Г. Манжелий, С. Морикка, Б. Сандквист, Б.Г. Удовиченко. ФНТ 29, 4, 432 (2003).
- [13] Р. Джеймс. Оптические принципы дифракции рентгеновских лучей. ИЛ, М. (1950). С. 485.
- [14] L. Shebanovs, J. Maniks, J. Kalnas. J. Cryst. Growth 234, 1, 202 (2002).
- [15] В.П. Михальченко. УФЖ 10, 3, 346 (1965).
- [16] Квантовые кристаллы / Под ред. С.В. Венсовского. Мир, М. (1975). С. 230.
- [17] В.П. Михальченко, С.А. Чорней. УФЖ 20, 7, 1021 (1975).
- [18] И.Г. Каплан. Введение в теорию межмолекулярных взаимодействий. Наука, М. (1972). 213 с.
- [19] В.Д. Нацик, А.В. Подольский. ФНТ 26, 11, 1155 (2000).
- [20] Е.И. Гешко, В.Б. Лотоцкий, В.П. Михальченко. УФЖ 21, 2, 186 (1976).
- [21] В.П. Михальченко, В.А. Меленевский-Грищенко. УФЖ 13, *11*, 1743 (1968).
- [22] K.A. Gshneidner. Solid State Phys. 16, 366 (1964).
- [23] D.C. Wallace. Thermodynamics of Crystals. J. Wiley, N.Y. (1972). P. 484.