06;12

О степени влияния широкозонной части *p*-*n*-гетероперехода на его поле пробоя и коэффициенты размножения носителей

© В.А. Холоднов, Н.Е. Курочкин

Государственный научный центр Российской Федерации Государственное предприятие НПО "Орион", Москва

Поступило в Редакцию 26 декабря 1997 г.

Показано, что, несмотря на резкое уменьшение коэффициентов ударной ионизации электронов α и дырок $\beta = K\alpha$, с ростом ширины запрещенной зоны \mathcal{E}_g -полупроводника при анализе лавинного процесса в p-n-гетеропереходе необходимо, как правило, даже при больших различиях в \mathcal{E}_g -узкозонного (N) и широкозонного (W) слоев учитывать размножение носителей и в W-части области пространственного заряда (ОПЗ) p-n-гетероперехода.

Согласно известному выражению Зи–Гиббонса [1,2], для напряжения лавинного пробоя $V = V_B$ асимметричного (пусть $p-n^+$) перехода его поле пробоя E_B , т. е. отвечающая $V = V_B$ напряженность электрического поля E(x) на металлургической границе (x = 0) $p-n^+$ -перехода, при заданной концентрации легирующей примеси N в p-слое можно определить из условия

$$\Phi(\varepsilon, \mathcal{E}_g, N, E_B) \equiv \left(\frac{5\varepsilon_0\varepsilon}{6q10^6}\right)^4 \left(\frac{1.1}{\mathcal{E}_g}\right)^6 \left(\frac{E_B}{10^5}\right)^8 \frac{1}{N} = 1, \quad (1)$$

где ε — относительная диэлектрическая проницаемость. Здесь и далее приняты удобные для рассматриваемой тематики единицы измерения [2]: энергия — eV; E — V/cm; заряд электрона q — C; постоянная электрическая ε_0 — F/m; α и β — 1/cm; длины пробега электронов λ_e и дырок λ_h между рассеяниями на фононах — cm; концентрации cm⁻³. Соотношение (1) не учитывает размножение носителей в n^+ -слое, что оправдано более быстрым спадом E(x) в глубь n^+ -слоя, чем в глубь p-слоя, и резкими зависимостями $\alpha(E)$ и $\beta(E)$ [1–6]. Учет размножения в обеих частях p-n-перехода проведен в работах [7,8]. От E_B резко зависят коэффициенты размножения электронов M_e и дырок M_n [9], а

9

также при $V \cong V_B$ и межзонный туннельный ток, который может быть существенным даже в структурах с немалым значением \mathcal{E}_g [6,10,11]. Например, это касается широко используемых в технике оптической связи InP/In_{0.53}Ga_{0.47}As гетероструктур [6].

Так как α и β резко зависят и от \mathcal{E}_g [1–6], то поле пробоя $E_B^{(N)}$ p-n-гетероперехода в некотором приближении можно определить, подставив в (1) параметры *N*-слоя¹. Однако степень влияния *W*-слоя на $E_B^{(N)}$, а поэтому и на коэффициенты размножения носителей, до сих пор не анализировалась. В данном сообщении представлены результаты такого анализа.

Физически задача интересна по следующим причинам. 1. При прохождении гетерограницы (x = 0) носители могут приобретать энергию за счет скачка энергии дна зоны проводимости $\Delta \mathcal{E}_c$ или потолка валентной зоны $\Delta \mathcal{E}_v$ (рис. 1). 2. Как правило, $\varepsilon_N > \varepsilon_W$ [12–16], а поэтому $E_W/E_N = \varepsilon_N/\varepsilon_W > 1$, где E_N и E_W — поля на гетерогранице в *N*- и *W*-слоях (рис. 2). 3. На поле пробоя *p*-*n*-гетероперехода должно сказываться и отличие в концентрациях легирующих примесей узкозонного (*N*) и широкозонного (*W*) слоев N_N и N_W .

Пусть ток *J* через гетеропереход инициируется током втекающих в ОПЗ неосновных носителей (электронов) *n*-слоя J_{ini} (рис. 1). Это допущение, как показывает анализ и следовало ожидать, не влияет, как и в гомопереходах [2–8,17], на поле пробоя. Чаще всего либо приращение энергии $\Delta \mathcal{E}$ при пролете гетерограницы получают носители лишь одного типа, либо для других $\Delta \mathcal{E}$ много меньше пороговой энергии ионизации \mathcal{E}_i [14–16]. Поэтому для определенности примем, что такой скачкообразный дополнительный (не полевой) разогрев происходит только с дырками (рис. 1). Запишем, что

$$J_e^{(N,W)}(x) = J - J_h^{(N,W)}(x), \quad J_h^{(N)}(0) = J_{ion} + J_{bal}(0),$$
(2)

где $J_e^{(N,W)}$ и $J_h^{(N,W)}$ — токи электронов и дырок в *N*- и *W*-слоях; J_{ion} — суммарный ток дырок, совершивших сразу после пересечения гетерограницы ударную ионизацию и возникших в результате нее, при этом их энергия \mathcal{E} близка к $\mathcal{E}_v^{(N)}$; $J_{bal}(0)$ — ток дырок, баллистически влетающих в *N*-слой, которые или сталкиваются с фононами на расстоянии порядка $\lambda_h^{(N)}$, или по мере полевого разогрева производят ударную ионизацию.

¹ Параметры *N*- и *W*-слоев отмечаются индексами "*N*" и "*W*".

Рис. 1. Зависимость отношения $\delta \equiv E_B^{(N)}/E_{BO}^{(N)}$ поле пробоя $E_B^{(N)}$ в узкозонной (*N*) части (*p*-типа) GaAs/Ge и GaP/Ge *p*-*n*-гетеропереходов к значению поля пробоя $E_{BO}^{(N)}$, вычисленному без учета размножения носителей в широкозонной (*W*) части (*n*-типа) гетеропереходов, от концентрации легирующей примеси N_N в *N*-слое в приближении Вольфа (W) и Шокли (Sh) функции распределения носителей по энергиям соответственно. Принято: концентрация легирующей примеси $N_W = 10^{15}$ сm⁻³; длина пробега дырок λ_h между рассеяниями на фононах равна $8 \cdot 10^{-7}$ сm в Ge, $4 \cdot 10^{-7}$ сm в GaAs и $3.5 \cdot 10^{-7}$ сm в GaP [5]; пороговая энергия ионизации для дырок в германии $\mathcal{E}_{ih}^{(N,W)} = 1.3$ eV [5]; скачок $\Delta \mathcal{E}_v$ потолка валентной зоны на металлургической границе (x = 0) равен 0.7 и 1.44 eV для GaAs/Ge и GaP/Ge *p*-*n*-гетеропереходов соответственно [16]; отношение $K = \beta/\alpha$ коэффициентов ударной ионизации дырок β и электронов α равно 2 в Ge [6,22] и 1 в GaAs и GaP [6]. На вставке изображена зонная диаграмма *p*-*n*-гетероперехода в рабочем режиме, где \mathcal{L}_N и \mathcal{L}_W — толщины области пространственного заряда (ОПЗ) в *N*- и *W*-слоях *p*-*n*-гетероперехода

Пусть r — доля тока дырок $J_h^{(W)}(0)$, совершивших за счет скачка \mathcal{E}_v ударную ионизацию в точке x = 0 узкозонной части ОПЗ. Это означает, что

$$J_{ion} = 2rJ_h^{(W)}(0), \quad J_{bal}(0) = (1 - r)J_h^{(W)}(0), \quad J_h^{(N)}(x_1) = \varkappa J_h^{(W)}(0), \quad (3)$$

где $\varkappa = 1 + r + (1 - r)\rho$, $\rho J_{bal}(0) = J_h^{(N)}(x_1) - J_h^{(N)}(0)$ — полное приращение тока $J_h^{(N)}(x)$ за счет ионизации дырками исходного тока $J_{bal}(0)$, достигающееся на расстоянии x_1 от гетерограницы, много меньшем толщины *N*-части ОПЗ, причем максимально возможная энергия, которую могут набрать носители в электрическом поле на длине x_1 , далеко не достаточна для акта ударной ионизации. Поэтому можно записать [2–8,18], что

$$J = M_h^{(N)} J_h^{(N)}(x_1) + M_e^{(N)} J_{ini} = M_e^{(W)} J_e^{(W)}(0),$$
(4)

где $M_{e,h}^{(N,W)}$ — коэффициенты размножения электронов и дырок за счет пролета ими *N*- или *W*-частей ОПЗ. Из соотношений (2)–(4) следует, что поле пробоя определяется уравнением

$$M_e^{(W)} = (M_e^{(W)} - 1) \varkappa M_h^{(N)}.$$
(5)

Для ряда полупроводников, например для Ge, Si, InP, In_{0.53}Ga_{0.47}As, GaAs, GaP, справедливо приближенное соотношение между α и β [19]. Оно позволяет вывести аналитические выражения для M_e и M_h [8] в p-n-гомопереходе, находящиеся в количественном согласии с проведенными ранее числовыми расчетами [20] и экспериментальными данными [21–26]. Следуя работе [8], с помощью этого соотношения можно получить, что

$$M_e^{(W)} = \frac{K_W(E_W) - 1}{K_W(E_W) - G_W}, \quad M_h^{(N)} = \frac{K_N(E_N) - 1}{K_N(E_N) - G_N}G_N, \tag{6}$$

где $K_{N,W}(E)$ — отношение β к α в N- и W-слоях, а

$$G_{N,W} = \exp\left\{\Phi\left(\varepsilon_{N,W}; \mathcal{E}_{g}^{(N,W)}; N_{N,W}; E_{N,W}\right)\ln\left(K_{N,W}(E_{N,W})\right)\right\}.$$
 (7)

При определении возможных значений *ж* достаточно ограничиться приближениями Вольфа (W) [27] и Шокли (Sh) [28] для энергетического распределения носителей (предельные случаи сильного и слабого полей [3–6,29]).

W. Рассеяние энергии носителей на фононах несущественно [3–6,27,29], что означает $\rho = 1$, а следовательно, $\varkappa = 2$.

Sh. Так как при $\mathcal{E} > \mathcal{E}_l$ сечение ударной ионизации обычно очень резко растет с увеличением \mathcal{E} [3–6], то дырки при достижении пороговой энергии практически сразу же и совершают ионизации. Это позволяет записать:

$$r = \frac{\sum_{ih}^{(W)} f(\mathcal{E})d\mathcal{E}}{\sum_{ih}^{(W)} - \Delta \mathcal{E}_{v}}, \quad J_{bal}(x) = J_{bal}(0) \exp\left(-\frac{x}{\lambda_{h}^{(N)}}\right) \frac{F(x)}{F(0)}, \quad (8)$$

где

$$(\mathcal{E}) = \exp\left\{-\mathcal{E}/\lambda_{h}^{(W)}E\right\}, \quad F(x) = \int_{0}^{\tilde{\mathcal{E}}(x)} f(\mathcal{E})d\mathcal{E},$$
$$\tilde{\mathcal{E}}(x) = \mathcal{E}_{ih}^{(N)} - \Delta\mathcal{E}_{v} - E_{y}x, \qquad (9)$$

 $\mathcal{E}_{ih}^{(N,W)}$ — пороговые энергии ионизации для дырок в *N*- и *W*-материалах. Во 2-м из соотношений (8) 2 и 3-й множители характеризуют уменьшение баллистического потока дырок за счет рассеяния их на фононах и совершенных ими актами ударной ионизации соответственно. Из выражений (8), (9) и неравенства $f(\mathcal{E}_{ih}^{(N)} - \Delta \mathcal{E}_{v}) \ll f(0)$ можно получить, что

$$r = \exp\left(-\frac{\varepsilon_W}{\varepsilon_N} \frac{\mathcal{E}_{ih}^{(N)} - \Delta \mathcal{E}_v}{q\lambda_h^{(W)} E_N}\right), \quad \rho = -\frac{r - r^a}{a - 1}, \quad a = \frac{\varepsilon_N \lambda_h^{(W)}}{\varepsilon_W \lambda_h^{(N)}}.$$
 (10)

Полученные выше выражения позволяют в явном виде выразить N_N через $E_B^{(N)}$ и тем самым легко определить зависимость $E_B^{(N)}$ от N_N . Из рис. 1 видно, что ошибка в значении $E_B^{(N)}$ за счет пренебрежения размножением носителей в *W*-слое растет, естественно, с увеличением N_N и уже при $N_N = N_W$ составляет примерно 20%. Это приводит к тому, что на основе условия (1) даже по порядку величины нельзя оценить коэффициенты размножения носителей, причем увеличение $\mathcal{E}_g^{(W)}$ может ухудшить (даже на порядки) положение (рис. 2). Аналогичная ситуация имеет место и для туннельных токов в условиях лавинного размножения носителей.

Рис. 2. Зависимость коэффициента размножения носителей M в GaAs/Ge и GaP/Ge p-n-гетеропереходах от коэффициента размножения M_0 , вычисленного без учета размножения носителей в широкозонной (W) части (n-типа) гетеропереходов. W и Sh — приближения Вольфа и Шокли функции распределения носителей по энергиям соответственно. Принято: концентрации легирующих примесей в W- и N-слоях равны 10^{15} сm⁻³; значения остальных параметров те же, что и на рис. 1. На вставке изображено распределение напряженности электрического поля E(x) в области пространственного заряда (ОПЗ), где \mathcal{L}_N и \mathcal{L}_W — толщины ОПЗ в N- и W-слоях p-n-гетероперехода соответственно.

Список литературы

- [1] Sze S.M., Gibbons G. // Appl. Phys. Lett. 1966. V. 8. № 5. P. 111-113.
- [2] Зи С.М. Физика полупроводниковых приборов. М.: Мир, 1984. Кн. 1. 455 с.
- [3] Тагер А.С., Вальд-Перлов В.М. Лавинно-пролетные диоды и их применение в технике СВЧ. М.: Сов. радио, 1968. 480 с.
- [4] Stillman G.E., Wolf C.M. Semiconductors and Semimetals / Ed R.K. Willardson, A.C. Beer. N.Y.-San-Franc.-L.: Acad. Pr., 1977. V. 12. P. 291–393.
- [5] Грехов И.В., Сережкин Ю.Н. Лавинный пробой *p*-*n*-перехода в полупроводниках. Л.: Энергия, 1980. 152 с.
- [6] Техника оптической связи. Фотоприемники / Под ред. У. Тсанга. М.: Мир, 1988. 528 с.
- [7] Холоднов В.А. // Письма в ЖТФ. 1988. Т. 14. В. 15. С. 1349–1355.
- [8] Холоднов В.А. // ФТП. 1996. Т. 30. В. 6. С. 1051-1063.
- [9] Холоднов В.А. // Оптический журнал. 1996. № 6. С. 53-55.
- [10] Осипов В.В., Холоднов В.А. // ЖТФ. 1989. Т. 59. В. 1. С. 80–91.
- [11] Холоднов В.А. // Оптический журнал. 1996. № 6. С. 42-48.
- [12] Родо М. Полупроводниковые материалы. М.: Металлургия, 1971. 232 с.
- [13] Смит Р. Полупроводники. М.: Мир, 1982. 600 с.
- [14] Кейси Х., Паниш М. Лазеры на гетероструктурах. М.: Мир, 1981. Т. 2. 366 с.
- [15] Милнс А., Фойхт Д. Гетеропереходы и переходы металл-полупроводник. М.: Мир, 1975. 432 с.
- [16] Шарма Б.Л., Пурохит Р.К. Полупроводниковые гетеропереходы. М.: Сов. радио, 1979. 232 с.
- [17] Осипов В.В., Холоднов В.А. // ФТП. 1987. Т. 21. В. 11. С. 2078–2081.
- [18] Арцис Н.Х., Холоднов В.А. // РиЭ. 1984. Т. 29. № 1. С. 151–159.
- [19] Холоднов В.А. // Письма в ЖТФ. 1988. Т. 14. В. 6. С. 551-556.
- [20] Leguerre R., Urgell J. // Solid. St. Electron. 1976. V. 19. № 10. P. 875-881.
- [21] Miller S.L. // Phys. Rev. 1955. V. 99. № 4. P. 1234-1241.
- [22] Шотов А.П. // ЖТФ. 1958. Т. 28. № 3. С. 437–446.
- [23] Bogdanov S.V., Kravchenko A.B., Plotnicov A.F., Shubin V.E. // Phys. St. Sol. (a). 1986. V. 93. № 1. P. 361–368.
- [24] Stillman G.E., Cook L.W., Tabatanaie N., Bulman G.E., Robbins V.M. // IEEE Trans. on Electron Devices. 1983. V. ED-30. № 4. P. 364–381.
- [25] Baertsch R.D. // J. Appl. Phys. 1967. V. 38. № 11. P. 4267-4274.
- [26] Гаврюшко В.В., Косогов О.В., Лебедев В.Д. // ФТП. 1978. Т. 12. В. 12. С. 2351–2354.
- [27] Wolf P.A. // Phys. Rev. 1954. V. 95. № 6. P. 1415–1420.
- [28] Shockley W. // Solid-State Electron. 1961. V. 2. № 1. P. 35-67.
- [29] Baraff G.A. // Phys. Rev. 1962. V. 128. № 6. P. 2507–2517.