О механизмах массопереноса при наноиндентировании

© 3.К. Саралидзе, М.В. Галусташвили, Д.Г. Дриаев

Институт физики им. Э. Андроникашвили Академии наук Грузии, 0177 Тбилиси, Грузия

E-mail: maxsvet@yahoo.com

(Поступила в Редакцию 13 сентября 2005 г.)

Рассмотрены микромеханизмы образования отпечатка при индентировании ионных кристаллов и сделан вывод, что участие в массопереносе межузельных атомов и динамических краудинов не может обеспечить погружение индентора с наблюдаемыми на опыте скоростями.

PACS: 62.20.Fe, 62.20.Qp

Метод исследования механических свойств кристаллов, основанный на измерении размера отпечатка, оставленного после внедрения индентора, очень удобен и в некоторых случаях (тонкие пленки, приповерхностные слои) практически незаменим. Развитие методов регистрации физических величин привело к значительному усовершенствованию метода индентирования. Было предложено программное нагружение индентора [1], позволяющее исследовать особенности поведения материала под индентором в экстремально малых объемах кристалла (так называемое наноиндентирование) [2–5]. Сравнительно недавно был предложен метод индентирования [6], позволяющий непрерывно регистрировать кинетику погружения индентора в кристалл и анализировать скорость деформации как функцию мгновенного значения контактных напряжений [7,8]. Тем не менее относительно механизмов вытеснения материала из-под индентора и массопереноса в глубь кристалла до сих пор нет окончательно установившегося мнения. Наряду с традиционными представлениями, что деформация кристалла под воздействием индентора является следствием развития высокоплотной дислокационной структуры [9–11], существует мнение, что массоперенос на начальной стадии индентирования может быть обусловлен точечными дефектами (вакансиями или межузельными атомами); особенно активно обсуждается краудионный механизм массопереноса [6-8,12-14]. Рассмотрим детально каждую из этих возможностей.

Оценим роль обычной диффузии точечных дефектов в процессе формирования отпечатка. Предположим, что нагруженный индентор, вершина которого касается поверхности, мгновенно освобождается и начинает внедряться в кристалл. Обозначим мгновенное значение глубины проникновения индентора через h(t), а мгновенное значение его скорости — через v(t) = dh(t)/dt. Для алмазной пирамиды стандартной формы площадь сечения на расстоянии h(t) от вершины равна $S_0(t) = k_0 h^2(t)$ ($k_0 = 24.5$), суммарная площадь граней, находящихся в контакте с кристаллом, $S(t) = kh^2(t)$ (k = 26.42), объем внедренной в кристалл части индентора $V(t) = (k_0/3)h^3(t)$. Путем простого дифференцирования последнего выражения можно вычислить скорость изменения объема внедренной в кристалл части индентора (скорость выдавливания объема из-под индентора)

 $dV(t)/dt = k_0 h^2(t)v(t)$, откуда при делении на атомный объем ω можно получить число атомов, выдавливаемых индентором за единицу времени,

$$n(t) = (k_0/\omega)h^2(t)v(t).$$
 (1)

Разделив n(t) на контактную площадь S(t), для среднего значения граничной плотности потока атомов на контактной поверхности получим выражение

$$J(t) = \frac{k_0}{k} \frac{v(t)}{\omega}.$$
 (2)

Эксперименты по микроиндентированию, выполненные на ионных кристаллах в работах [7,8], показывают, что v(t) является немонотонной функцией времени, имеет максимум, равный (в случае LiF) $v_m = 1.5 \cdot 10^{-3}$ m/s, и больше половины времени формирования отпечатка ($t \approx 10$ ms) превышает среднее значение $v_A = 0.5 \cdot 10^{-3}$ m/s. Используя значение атомного объема фтористого лития $\omega = 1.6 \cdot 10^{-29}$ m³, для потока $J(v_A)$ получим

$$J(v_A) \approx 3 \cdot 10^{25},\tag{3}$$

что (как показано далее) никак не может быть обеспечено обычной диффузией.

Оценим, каким может быть максимальное граничное значение плотности потока межузельных атомов на контактной поверхности (здесь и далее при оценках не будем учитывать особенности ионных кристаллов, которые, на наш взгляд, могут изменить оценки только в худшую сторону). Энергия образования межузельного атома всегда существенно превосходит энергию образования вакансии и может достигать нескольких электронвольт. Отсутствие независимых надежных данных об активационных параметрах зарождения и миграции межузельных атомов в условиях высокого давления (напряжения) в ионных кристаллах вынуждает нас для получения корректной оценки взять численные значения этих параметров, заведомо меньших истинных. Для определенности выберем $E_0 = 1.5 \,\text{eV}$. На поверхности, находящейся под давлением р, энергия образования межузельного атома уменьшается на величину $\Delta E_0 = p \Delta V$, где ΔV — локальное изменение объема, связанное с внедрением атома в междоузлие. Полагая, что под индентором давление все время поддерживается на уровне, близком к пределу прочности p = 0.1M, где M — модуль упругости, а локальное изменение объема равно атомному объему $\Delta V = \omega$, для ΔE_0 получим величину $\Delta E_0 = 1$ eV. Отсюда для граничного значения относительной концентрации межузельных атомов при комнатной температуре получим оценку $C = \exp[-(E_0 - \Delta E_0)/kT] \approx 2 \cdot 10^{-9}$. Плотность диффузионного потока равна $J_D = D\nabla C/\omega$. Если градиент концентрации межузельных атомов ∇C оценить, полагая, что в слое, отстоящем от граничного на межатомное расстояние *a*, концентрация межузельных атомов равна нулю (максимальная оценка, соответствующая начальному моменту диффузии после приложения давления *p*), то для плотности диффузионного потока получим завышенную оценку

$$J_D = DC/a\omega \approx 3 \cdot 10^{29} D. \tag{4}$$

Сравнивая рассчитанное (4) и полученное из эксперимента (3) значения плотности диффузионного потока, можно убедиться, что они сопоставимы только в том случае, если коэффициент диффузии порядка $10^{-4} \text{ m}^2 \cdot \text{s}^{-1}$, что невозможно; даже при нулевой энергии активации миграции E коэффициент диффузии межузельных атомов значительно меньше: $D(E=0) = D_0 \approx a^2 \nu \approx 10^{-6} \text{ m}^2 \cdot \text{s}^{-1}$ ($\nu \approx 10^{13} \text{ s}^{-1}$ — характерная частота колебаний атомов в кристалле). Если учесть, что градиенты концентраций на самом деле не могут быть такими большими из-за плавного распределения концентрации и из-за того, что движение контактной границы еще уменьшает их, J_D окажется существенно меньше.

Из отмеченного выше однозначно следует, что для объяснения массопереноса при индентировании движением межузельных атомов требуются межузельные атомы с несравненно большими пробегами за время формирования отпечатка, чем обусловленные диффузией, и механизмом образования, не связанным с активационными процессами. Таковыми являются динамические краудионы. Однако следует иметь в виду, что для образования динамического краудиона требуется выполнение некоторых очень жестких условий. Во-первых, атому, порождающему динамический краудион, должна быть передана большая энергия (существенно больше энергии смещения атома из узла решетки, которая сама составляет два-три десятка электронвольт). Во-вторых, импульс, переданный первичному атому, должен составлять малый угол с направлением атомной цепочки, что даже при получении первичным атомом достаточной энергии очень сильно уменьшает вероятность образования динамического краудиона. И наконец, динамический краудион может распространяться вдоль атомных рядов, являющихся почти идеальными. Наличие любого дефекта в цепочке или вблизи нее (даже на достаточно большом расстоянии) вызывает наружение условия фокусировки и прерывание цепочки.

Зная величину нагрузки на индентор mg, можно оценить среднюю энергию, затрачиваемую индентором на выдавливание материала за единицу времени: W(t) = mgv(t). Используя выражение (1) для скорости выдавливания атомов при движении индентора, можно

получить энергию, затрачиваемую на выдавливание одного атома,

$$W_0 = \frac{mg\omega}{k_0 h^2(t)}.$$
(5)

Воспользуемся заведомо большим значением нагрузки на индентор mg = 5 N и оценим W_0 для глубины погружения индентора, составляющей одну десятую часть от максимального значения $h_m \approx 10^{-5}$ m. Эта оценка дает значение $W_0 \approx 20 \, \text{eV}$. Даже если сделать допущение, что вся энергия индентора передается атомам в виде кинетической энергии, то и в этом случае только одна тысячная часть атомов получит энергию более 20 eV, а остальные — энергию, заведомо меньшую этой величины, которая сама по себе далеко не достаточна для порождения динамического краудиона. Следует добавить, что если по каким-то причинам на начальной стадии индентирования динамические краудионы с большой длиной пробега на самом деле образуются, то на последующих стадиях, когда под индентором формируется в высшей степени дефектная структура, условия фокусировки полностью нарушаются, и говорить о массопереносе динамическими краудионами нет смысла.

Из приведенных выше рассуждений следует, что участие в массопереносе межузельных атомов и динамических краудионов не может обеспечить погружение индентора в ионный кристалл с наблюдаемыми на опыте скоростями. Такие большие скорости деформации может обеспечить только скольжение дислокаций, а их зарождение не требует больших энергий в пересчете на один выносимый из-под индентора атом. Наиболее вероятным механизмом массопереноса при индентировании может служить зарожение под индентором межузельных призматических дислокационных петель и их дальнейшее выдавливание в объем кристалла.

Список литературы

- [1] С.И. Булычев, В.П. Алехин, М.Х. Шоршоров, А.П. Терновский. Проблемы прочности **9**, 79 (1976).
- [2] S.V. Hainsworth, T.F. Page. J. Mater. Sci. 29, 21, 5529 (1994).
- [3] W.C. Oliver, G.M. Pharr. J. Mater. Res. 7, 6, 1564 (1992).
- [4] G.N. Pharr, W.C. Oliver, F.R. Brotzen. J. Mater. Res. 7, 3, 613 (1992).
- [5] Yu. Murakami, K. Tanaka, M. Itokazu, A. Shimamoto. Phil. Mag. A 69, 6, 1131 (1992).
- [6] Ю.И. Головин, А.И. Тюрин. Изв. РАН **59**, 10, 49 (1995).
- [7] Ю.И. Головин, А.И. Тюрин. Письма в ЖЭТФ 60, 10, 722 (1994).
- [8] Ю.И. Головин, А.И. Тюрин. ФТТ 38, 6, 1812 (1996).
- [9] М.П. Шаскольская, Ван Ян-Вень, Гу Шу-Чжао. Кристаллография 5, 2, 277 (1961).
- [10] А.А. Предводителев, В.Н. Рожанский, В.М. Степанов. Кристаллография 7, 3, 418 (1962).
- [11] Ю.С. Боярская. Деформирование кристаллов при испытаниях на микротвердость. Штиинца, Кишинев (1972). С. 235.
- [12] В.Л. Инденбом. Письма в ЖЭТФ 12, 526 (1970).
- [13] В.Л. Инденбом, А.Н. Орлов. ФММ 43, 3, 469 (1977).
- [14] Ю.И. Головин, А.И. Тюрин. ФТТ 42, 10, 1818 (2000).