## Спектр непрямого магнетоэкситона

© Н.Е. Капуткина, Ю.Е. Лозовик\*

Московский институт стали и сплавов, 117936 Москва, Россия \* Институт спектроскопии Российской академии наук, 142092 Троицк, Россия

(Получена 12 января 1998 г. Принята к печати 5 февраля 1998 г.)

Рассмотрен двумерный экситон с пространственно разделенными электронами и дырками в связанных квантовых ямах и в вертикально связанных квантовых точках в поперечном магнитном поле для широкого диапазона характерных величин задачи — расстояния между ямами или точками d и магнитного поля H. Найдены законы дисперсии  $E_{nm}(P)$  в связанных квантовых ямах при различных d и H (P — сохраняющийся в магнитном поле магнитный импульс вдоль ям). Спектры вычислены с использованием численной диагонализации гамильтониана на различных базисах — кулоновском или Ландау (выбор базиса контролируется величиной эффективного магнитного поля). Асимптотические зависимости энергий (по d, H, P) определены аналитически. С ростом импульса P спектр экситона в слабых фиксированных H перестраивается от кулоновского к магнитному и представляет собой при больших P зоны, примыкающие к уровням Ландау. Рассмотрена также задача о пространственно разделенных электроне и заряженной примеси в связанных квантовых ямах.

#### 1. Введение

В последнее время активно ведутся экспериментальные исследования системы непрямых экситонов (экситонов с пространственно разделенными электронами и дырками) в связанных квантовых ямах (СКЯ), а также в двойных и связанных квантовых точках, в частности, во внешнем поперечном магнитном поле (см. [1–13]).

Анализ физических свойств электронно-дырочных систем в связанных квантовых ямах [14,15], в частности, в поперечном магнитном поле [16-21], обнаруживает весьма интересные коллективные свойства и ряд различных фаз. В частности, интересной возможностью являлось бы прямое наблюдение предсказанной в [14] сверхтекучести непрямых экситонов, проявляющейся как существование незатухающих электрических токов в каждой из квантовых ям (см. также [15,21,22]), а также в интересных квазиджозефсоновских явлениях [23-25]. Возможность наблюдения этих фаз определяется соотношением времени жизни экситона и временем установления равновесия (время жизни должно быть значительно больше времени релаксации). Для электрона и дырки, локализованных в разных квантовых ямах, перекрытие волновых функций мало, что уменьшает вероятность взаимной аннигиляции. Приложение электрического поля, перпендикулярного слоям электронов и дырок, также уменьшает скорость рекомбинации, уменьшая перекрытие волновых функций. Магнитное поле влияет на время жизни, на коэффициент диффузии [4-6] и на спектр фотолюминесценции экситонов (см. [1-13]). Наблюдаемые эффекты трактовались как сверхтекучесть непрямых экситонов.

В этой связи представляется интересным подробно рассмотреть изолированный экситон с пространственно разделенными электронами и дырками (непрямой экситон) в поперечном магнитном поле. Задача о двумерном (2D) экситоне в сильном магнитном поле была рассмотрена в [16] для прямого экситона и в [14,15] для непрямого экситона. Но в вышеуказанных работах рассматривались в основном лишь асимптотические случаи очень сильных магнитных полей, когда кулоновское взаимодействие можно рассматривать как малое возмущение.

Далее мы рассмотрим общую задачу о пространственно разделенном 2D экситоне во внешнем поперечном магнитном поле для широкого диапазона величины магнитного поля H и межъямных расстояний d; найдем законы дисперсии  $E_{nm}(P)$  в СКЯ при различных d и H (P — сохраняющийся в магнитном поле магнитный импульс вдоль ям). С ростом величины эффективного магнитного поля (см. далее) спектр энергий меняется от водородоподобного спектра при H = 0 к эквидистантным уровням Ландау. Отметим, что эффективное магнитное поле увеличивается с ростом не только внешнего поля H, но с ростом и d и P (для  $H \neq 0$ ).

Мы также рассмотрим задачу о пространственно разделенном экситоне в вертикально связанных квантовых точках с параболическим удерживающим потенциалом.

Для расчета мы используем диагонализацию точного гамильтониана на различных базисах.

# 2. Пространственно разделенный 2D экситон в поперечном магнитном поле

Рассмотрим пространственно разделенные электрон *е* и дырку *h* на различных плоскостях во внешнем поперечном магнитном поле. Модель справедлива для малых толщин квантовых ям  $D \ll a^*$ , где  $a^* = \frac{\hbar \varepsilon}{2m^* e^2}$  — радиус двумерного экситона на одной плоскости в от-

сутствие поля,  $\varepsilon$  — диэлектрическая проницаемость,<sup>1</sup>  $m^* = \frac{m_e^* m_h^*}{m_e^* + m_h^*}$  — приведенная масса,  $m_{e,h}^*$  — эффективные массы электрона и дырки. Исходя из аксиальной симметрии задачи используем симметричную калибровку векторного потенциала  $\mathbf{A} = \frac{\mathbf{Hr}}{2}$ .

Уравнение Шредингера имеет вид

$$\left[\frac{1}{2m_e^*}\left(-i\hbar\nabla_e + \frac{e}{c}A_e\right)^2 + \frac{1}{2m_h^*}\left(-i\hbar\nabla_h - \frac{e}{c}A_h\right)^2 - \frac{e^2}{\varepsilon\left((\mathbf{r}_e - \mathbf{r}_h)^2 + d^2\right)^{1/2}}\right]\psi = E\psi, \quad (1)$$

где d — расстояние между слоями электронов и дырок (ширина барьерного слоя в связанных квантовых ямах),  $\mathbf{r}_{e,h}$  — координаты электрона и дырки вдоль квантовых ям. Роль двумерного импульса экситона в магнитном поле играет сохраняющаяся величина — магнитный импульс, оператор которого

$$\hat{P} = -i\hbar\nabla_e + \frac{e}{c}(\mathbf{A}_e - \mathbf{A}_h) - \frac{e}{c}[\mathbf{H}, \mathbf{r}_e - \mathbf{r}_h]$$
(2)

 $\hat{P}$  коммутирует с гамильтонианом (см. [16,26,27]). Закон сохранения P связан с инвариантностью системы относительно одновременной трансляции e и h и калибровочного преобразования.

Сделаем замену координат, выделив центр тяжести экситона  $\mathbf{R} = \frac{m_e}{m_e + m_h} \mathbf{r}_e + \frac{m_h}{m_e + m_h} \mathbf{r}_h$  и координату относительного движения электрона и дырки  $\mathbf{r} = \mathbf{r}_e - \mathbf{r}_h$ .

Тогда  $\hat{P} = -i\hbar \nabla_p - \frac{e}{2c} [\mathbf{H}, \mathbf{r}]$ . Собственными функциями для оператора  $\hat{P}$  являются

$$\psi_{p}(\mathbf{r}_{e}\mathbf{r}_{h}) = \psi_{p}(\mathbf{r}, \mathbf{R})$$

$$= \exp\left\{\left(iP + \frac{e}{2c}[\mathbf{H}, \mathbf{r}]\frac{R}{\hbar}\right)\right\}\psi_{p}(\mathbf{r}), \quad (3)$$

$$\hat{P}\psi_{p} = P\psi_{p}.$$

Вводя  $M = m_e^* + m_h^*$  и  $\gamma = \frac{m_h^* - m_e^*}{m_h^* + m_e^*}$ , запишем уравнение для относительного движения электрона и дырки в виде

$$\left\{-\frac{\hbar^2}{2m^*}\nabla\mathbf{r} + \frac{ie\hbar}{2m^*c}\gamma H[\mathbf{r},\nabla\mathbf{r}] + \frac{e^2}{8m^*c^2}[\mathbf{H},\mathbf{r}]^2 + \frac{e^2}{m^*c}[\mathbf{P},\mathbf{H}]r - \frac{e^2}{\varepsilon \left(r^2 + d^2\right)^{1/2}} + \frac{P^2}{2M}\right\}\psi_p(\mathbf{r}) = E\psi_p.$$
(4)

С использованием преобразования (см. [16,27])

$$\psi(\mathbf{r}) = \Phi(\mathbf{r} - \boldsymbol{\rho}_0) \exp\left(\frac{i\gamma \mathbf{r} \mathbf{P}}{2\hbar}\right);$$
  
$$\boldsymbol{\rho}_0 = \frac{c}{eH^2}[\mathbf{H}, \mathbf{P}]; \qquad \boldsymbol{\rho} = \mathbf{r} - \boldsymbol{\rho}_0 \tag{5}$$

Физика и техника полупроводников, 1998, том 32, № 11

уравнение для относительного движения электрона и дырки принимает вид

$$\left\{-\frac{\hbar^2}{2m^*}\nabla\rho + \frac{ie\hbar}{2m^*c}\gamma H[\rho\nabla] + \frac{e^2}{8m^*c^2}H^2\rho^2 - \frac{e^2}{8m^*c^2}H^2\rho^2 - \frac{e^2}{8m^*c^2}H^2\rho^2 - \frac{e^2}{\varepsilon\left((\boldsymbol{\rho}+\boldsymbol{\rho}_0)+d^2\right)^{1/2}}\right\}\Phi(\boldsymbol{\rho}) = E\Phi(\boldsymbol{\rho}). \quad (6)$$

Введем следующие единицы энергии, длины, циклотронной частоты и магнитного поля

$$E_{0} = \frac{2m^{*}e^{4}}{\varepsilon^{2}\hbar^{2}}; \qquad r_{0} = \frac{\hbar^{2}\varepsilon}{2m^{*}e^{2}};$$
$$\omega_{c_{0}} = \frac{2m^{*}e^{4}}{\varepsilon^{2}\hbar^{3}}; \qquad H_{0} = \frac{2(m^{*})^{2}e^{3}}{\varepsilon^{2}\hbar^{3}}c \qquad (7)$$

(единицы измерения энергии и длины отвечают энергии связи и радиусу двумерного экситона). Проводя обезразмеривание, представим вышеприведенное уравнение в виде

$$\left[\Delta\rho - i\gamma\omega_L\frac{\partial}{\partial\Theta} - \frac{\omega_L^2}{4}\rho^2 + \left(\left(\frac{1}{\rho + \rho_0}\right)^2 + d^2\right)^{1/2} + E\right]\Phi(\rho) = 0, \quad (8)$$

где  $\omega_L = \frac{\omega_c}{2}$  — ларморова частота. В наших единицах магнитная длина есть  $r_H = \sqrt{\frac{1}{\omega_L}}$ .

Данное уравнение может быть решено численно разложением по подходящему базису функций, дающему быструю сходимость при заданном соотношении параметров задачи. В эффективно слабом магнитном поле при одновременно весьма малых параметрах H (или  $\omega_L$ ), d, P (или  $\rho_0$ ), т.е. малой величине  $\omega_L(d^2 + \rho_0^2 + 1)$ , подходящим базисом будет базис водородоподобных (для 2D случая — двумерных) функций. В эффективно сильном магнитном поле (при больших величинах  $H(\omega_L)$ , либо d, либо  $\rho_0$ ) подходящим базисом будет базис функций, формально совпадающих с волновыми функциями заряженной частицы в магнитном поле. Реально такой базис подходит для промежуточных магнитных полей, а особенно хорошо — для эффективно связанных. В пределе сверхсильных магнитных полей и при d = 0наши результаты совпадают с результатами работы [16].

Для слабых магнитных полей подходящим базисом будет базис функций, близких к собственным функциям уравнения

$$\left[\Delta \rho + E_{0_{nm}} + \frac{1}{\left((\boldsymbol{\rho} + \boldsymbol{\rho}_0)^2 + d^2\right)^{1/2}}\right] f_{nm}(\boldsymbol{\rho}) = 0. \quad (9)$$

Сделаем замену

$$f_{nm}(\boldsymbol{\rho}) = \chi_{nm}(\boldsymbol{\rho} + \boldsymbol{\rho}_0) = \chi_{nm}(\mathbf{r}). \tag{10}$$

<sup>&</sup>lt;sup>1</sup> Мы полагаем одинаковыми диэлектрические проницаемости слоев с носителями заряда (*e* и *h*) и барьерного слоя. В действительности, для реальных полупроводниковых гетероструктур диэлектрические проницаемости используемых в них материалов близки, но не совпадают.

Исходя из симметрии задачи положим  $\chi_{nm}(\mathbf{r}) = e^{im\Theta} \times \Phi_{nm}(r) A_{nm}$ , где

$$\frac{\partial^2 \Phi_{nm}}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi_{nm}}{\partial r} + \left( E_{0_{mm}} - \frac{m^2}{r^2} + \frac{1}{(r^2 + d^2)^{1/2}} \right) \Phi_{nm} = 0.$$
(11)

В случае больших межслоевых расстояний  $d \gg 1$  задача сводится к осцилляторной задаче. Собственные функции имеют тот же вид, что и магнитные функции:

$$\Phi_{nm}(r) = A_{nm}L_n^{|m|} \left(\frac{\omega_d}{2}r^2\right) e^{-\frac{\omega_d}{2}\frac{r^2}{2}}r^{|m|};$$
$$A_{nm} = \left(\frac{1}{\pi}\frac{n!}{(n+|m|)!} \left(\frac{\omega_d}{2}\right)^{\frac{|m|+1}{2}}\right)^{1/2}, \qquad (12)$$

где  $\omega_d = \sqrt{\omega_L^2 + 2/d^3}.$ 

Собственные энергии

$$E_{nm_0} = 2\omega_d \left( n + \frac{|m|+1}{2} \right) - \gamma m \omega_L - 1/d.$$
(13)

Данный результат справедлив не только для эффективно слабых магнитных полей (когда  $\omega_L^2 \ll 1/d^3$  и  $\omega_d \sim \sqrt{1/2d^3}$ ), но и для произвольных магнитных полей (в приближении  $d \gg 1$  — см. далее).

При малых *d* поле дольше остается эффективно слабым. Для вычислений используется разложение по базису водородоподобных функций.

Система собственных функций

$$\Phi_{mn}(r) = C_{nm} e^{-\sqrt{|E_{0_n}|r}} \left(\sqrt{|E_n|}\right)^{|m|+1/2} r^{|m|} \\ \times \sum_{s=0}^{n-|m|} A_s \sqrt{|E_{0_n}|^s} r^s,$$
(14)

где  $A_0 = 1$ ,  $A_s = A_{s-1} \frac{2(S+|m|-n-1)}{S(S+2|m|)}$ , S > 0;  $C_{nm}$  — нормировочный коэффициент.

Собственные значения энергии:

$$E_{0_n} = -\frac{1}{4(S+|m|+1/2)^2} = -\frac{1}{4(n+1/2)^2},$$
 (15)

где n = S + |m| = 0, 1, 2...

Энергия зависит от единственного квантового числа n = S + |m|.

Рассмотрим влияние слабого магнитного поля — эффект Зеемана для 2D экситона. В 1-м порядке теории возмущений по  $V_{00} = \frac{\omega_c^2}{4} \left(r^2 + \rho_0^2 - 2r\rho_0 \cos\Theta\right)$  имеем  $\langle 00|V_{00}|00\rangle = \left(\frac{\omega_c}{2}\right)^2 2\rho_0$ . При  $\rho_0 = 0$  (P = 0) поправка обращается в нуль.

Первая поправка к уровню с квантовыми числами m = 0 n = 0  $(n_1 = 1)$  имеет минимум по  $\rho_0$ , т.е. по магнитному импульсу P, при  $\rho_0 = 0$  (минимум при  $\rho_0 = 0$  имеет место для основного состояния и для сильных

полей). В слабых магнитных полях поправка к водородоподобным уровням энергии  $\langle nm|V_{00}|nm\rangle \sim a_1\omega_c^2 + a_2P\omega_c$ , т. е. для малых импульсов энергии квадратичны по магнитному полю  $\omega_c$ , а для больших — линейны.

Численный диагонализацией гамильтониана на базе двумерных водородоподобных функций, отвечающих кулоновскому взаимодействию электрона и дырки, определяется с высокой точностью спектр энергии экситона в слабом магнитном поле *H*. Результатам расчета отвечает левая часть (рис. 1), соответствующая не очень большим *P*.

С ростом *d* при фиксированном *H* магнитное поле становится эффективно более сильным (по сравнению с взаимодействием *e* и *h*) и удобнее использовать базис частиц в магнитном поле. Магнитное поле становится эффективно более сильным и при больших магнитных импульсах  $P(\rho_0)$  из-за возрастания среднего расстояния *e* и *h* вдоль слоя  $\rho_{eh} \sim P$ .

В случае эффективно сильных магнитных полей (а также, как показывают численные расчеты, и в случае промежуточных магнитных полей) подходящим оказывается базис собственных функций, определяемых уравнением

$$\left[\Delta_{\rho} + E_{0_{nm}} - i\gamma\omega_L\frac{\partial}{\partial\Theta} - \frac{\omega_L^2}{4}\rho^2\right]f_{nm}(\boldsymbol{\rho}) = 0, \quad (16)$$

где  $\omega_L$  — ларморова частота.

Система собственных функций имеет вид

$$f_{nm}(\boldsymbol{\rho}) = e^{im\Theta} L_n^{|m|} \left(\frac{\omega_L}{2} \rho^2\right) e^{-\frac{\omega_L}{2} \frac{\rho^2}{2}} \rho^{|m|} \\ \times \left(\frac{1}{\pi} \frac{n!}{(n+|m|)!} \left(\frac{\omega_L}{2}\right)^{|m|+1}\right)^{1/2}.$$
(17)

Соответствующие собственные энергии есть

$$E_{0_{nm}} = 2\omega_L \left( n + \frac{|m| - \gamma m + 1}{2} \right), \tag{18}$$

где  $n = 0, 1, 2..., m = 0, \pm 1, \pm 2...$  (при  $\gamma = 1$  они совпадают со спектром Ландау).

Собственные функции задачи формально совпадают с волновыми функциями одной заряженной частицы в магнитном поле, а уровни энергии в отличие от задачи для одной частицы расщепляются (если  $\gamma \neq 1$ ) по квантовому числу *m*. Невозмущенный спектр системы  $f_{nm}$  полностью дискретен, но уровни энергии вырождены по **P** (по  $\rho_0$ ).

При эффективно весьма сильных магнитных полях для оценки энергетического спектра (и волновых функций) можно ограничиться учетом переходов между уровнями с одинаковой симметрией. Тогда энергетические уровни определяются из условия  $\sum_{n} (E_{0)_{nm}} - E) \delta_{nn'} + V_{nn'}^m = 0$ , где

$$V_{nn'}^{m} = -\frac{2}{\pi} \sqrt{\frac{n!n'!}{(n+|m|)!(n'+|m|)!}} \\ \times \sum_{i=0}^{n} \sum_{j=0}^{n'} \frac{(-1)^{i+j}}{i!j!} {n+|m| \choose n-i} {n'+|m| \choose n'-j} \\ \times \int \frac{e^{-t}t^{i+j+|m|}}{\left(d^{2} + \left(\sqrt{t}\sqrt{2/\omega_{L}} + \rho_{0}\right)^{2}\right)^{1/2}} \\ \times K\left(\left(\frac{4\rho_{0}\sqrt{2/\omega_{L}}\sqrt{t}}{d^{2} + \left(\rho_{0} + \sqrt{2\omega_{L}}\sqrt{t}\right)^{2}}\right)^{1/2}\right) dt, \quad (19)$$

где K(x) — полный эллиптический интеграл 1-го рода.

 $V_{nn'}^m$  отвечает возбуждениям с переходами на уровни с одинаковой симметрией — с одинаковым квантовым числом *m*. Отметим, что мы не ограничиваемся первой поправкой по теории возмущений для кулоновского взаимодействия, хотя в пределе сверхсильных полей уже результаты расчета в 1-м порядке теории возмущений дают хорошую точность результатов и верные асимптотические зависимости (при  $d \rightarrow 0$ , см. результаты [16,17]). Мы же можем не пренебрегать переходами между уровнями, что распространяет область применимости используемого метода и на промежуточные магнитные поля.

В общем случае мы должны учеть переходы на уровни с разной симметрией  $m \neq m'$ , которым отвечают матричные элементы

$$V_{nn'}^{mm'} = -\sqrt{\frac{n!n'!}{(n+|m|)!(n'+|m'|)!}} \frac{1}{\pi}$$

$$\times \sum_{i=0}^{n} \sum_{j=0}^{n'} \frac{(-1)^{i+j}}{i!j!} {n+|m| \choose n-i} {n'+|m'| \choose n'-j}$$

$$\times \int_{0}^{\infty} \int_{0}^{2\pi} \frac{e^{-t}t^{i+j+\frac{|m|+|m'|}{2}} dt e^{i(m-m')\Theta} d\Theta}{\left(d^2 + \rho_0^2 + \left(\frac{2}{\omega_L}\right)t + 2\rho_0\left(\sqrt{\frac{2}{\omega_L}}\right)\sqrt{t}\cos\Theta\right)}.$$
 (20)

Таким образом, численной диагонализацией гамильтониана на базе соответствующих магнитных функций  $f_{nm}$  можно получить энергетические спектры пространственно разделенного экситона для широкого диапазона магнитных полей **H** и расстояний *d* между слоями *e* и *h*.

На рис. 1 показана зависимость энергии нижнего уровня от импульса P (закон дисперсии) для слабого магнитного поля H = 0.1 для различных d. С ростом P энергетические уровни стремятся к уровням типа Ландау с магнитном поле (см. (18)). То же происходит и с ростом расстояния d. Итак с ростом поля H, и с ростом расстояния d, и с ростом импульса P происходит перестройка спектра от водородоподобного к магнитному.



**Рис. 1.** Дисперсионные зависимости E(P) основного состояния магнитоэкситона для межслоевых расстояний d = 0.1, 10; при ларморовой частоте магнитного поля  $\omega_L = 0.1, \gamma = 0$ .



**Рис. 2.** Дисперсионные зависимости E(P) для нижних уровней энергетического спектра магнетоэкситона для межслоевых расстояний d = 0.1, 0.5; при ларморовой частоте магнитного поля  $\omega_L = 10, \gamma = 0$ .

Законы дисперсии E(P) для нижних уровней спектра пространственно разделенного экситона в магнитном поле, полученные методом численной диагонализации гамильтониана в сильном магнитном поле H на соответствующем базисе, представлены на рис. 2. Спектр состоит из зон, примыкающих к соответствующему уровню Ландау (n, m) и возникающих при непрерывном изменении магнитного импульса P (величины  $\rho_0$ ). С ростом H энергия растет, с ростом d — стремится к уровням Ландау. С ростом эффективного магнитного поля (с ростом H и (или) d) указанные энергетические зоны сжимаются и все сильнее отделяются друг от друга, и спектр приближается к невозмущенному спектру  $f_{nm}$  системе уровней Ландау (о вырожденных уровнях — см. далее).

Для основного состояния с соответствующими квантовыми числами (n = 0, m = 0) имеется единственный экстремум (минимум) при  $\rho_0 = 0$ . Для уровней энергии,



**Рис. 3.** Дисперсионные зависимости E(P) для энергии первого вырожденного состояния магнетоэкситона для межслоевых расстояний d = 0.1, 0.5, 1; при ларморовой частоте магнитного поля  $\omega_L = 10, \gamma = 0$ . Видно исчезновение "ротонного" минимума с ростом d.



**Рис. 4.** Дисперсионные зависимости E(P) для энергии первого вырожденного состояния магнетоэкситона для межслоевых расстояния d = 0.5, при ларморовой частоте магнитного поля  $\omega_L = 1.2$ , 10,  $\gamma = 0$ . Видно исчезновение "ротонного" минимума с ростом  $\omega_L$ .

отвечающих возбужденным состояниям могут существовать и другие (боковые) экстремумы, в частности минимумы. При *d*, отличном от нуля, с ростом эффективного магнитного поля, т. е. с ростом отношения  $d/r_H = d\sqrt{\omega_L}$ , боковые минимумы и максимумы становятся все более пологими и, наконец, исчезают. Для уровня с квантовыми числами n = 0, m = 1 выполаживание и исчезновение бокового минимума с ростом *d* и с ростом *H* (и, следовательно, с ростом  $d/r_H$ ) представлено на рис. 3 и 4.

Матричные элементы, соответствующие переходам с одинаковой симметрией, дают основной вклад для малых  $\rho_0$  и имеют экстремум при  $\rho_0 = 0$  (P = 0). Поэтому дисперсионные кривые имеют экстремум при  $\rho_0 = 0$  (P = 0).

В случае больших импульсов  $P \gg 1 \ (\rho_0 \gg 1)$  поправка к энергии

$$egin{split} E_{nm}^{(1)} &= V_{nm}^{nm}(P,d) \ &= -\sqrt{\omega_L} \left[ rac{\sqrt{\omega_L}}{P} + rac{\left(\langle 
ho^2 
angle_{nm} - 2d^2
ight) \omega_L}{4} \left(rac{\omega_L}{P}
ight)^3 
ight], \end{split}$$

где характерный размер волновой функции заряженной частицы в магнитном поле  $\langle \rho^2 \rangle_{nm} \sim r_H^2 = \frac{1}{\omega_L}$  для небольших *n* и *m*.

В сильных магнитных полях основной вклад в собственные значения энергий дают уровни с одинаковой симметрией, поскольку  $V_{nn'}^{mm'} \ll V_{nn'}^{mm} \ m \neq m'$ . Соответствующие матричные элементы

$$V^m_{nn'}
ightarrow -rac{\delta_{nn'}}{\sqrt{
ho_0^2+d^2}}$$
 при  $ho_0
eq 0$  или  $d
eq 0.$ 

Роль малого параметра здесь играет магнитная длина  $\frac{1}{\sqrt{\omega_L}} = r_H.$ 

Для основного состояния n = 0, m = 0, если  $\rho_0$  или межслоевое расстояние d существенно превышает магнитную длину  $r_H$ , то поправка к энергии уровня Ландау  $E_{00}^1 \approx V_{00}^{00} \approx -\frac{1}{\sqrt{\rho_0^2 + d^2}} \left(1 - \frac{1}{\rho_0^2 + d^2} r_H^2\right)$ . Если же оба d и  $\rho_0 \ll r_H$ , то поправка к энергии  $E_{00}^1 \approx V_{00}^{00} \approx -\sqrt{\frac{\pi}{2}} \frac{1}{r_H}$ . В случае  $\rho_0 = 0, d = 0$ , энергия  $E_{00} = E_{0,0} + V_{00}^{00} = \omega_L - \sqrt{\pi/2} \sqrt{\omega_L}$ . Хотя абсолютное значение поправки растет с ростом

Хотя абсолютное значение поправки растет с ростом поля как  $\sqrt{\omega_L} \left(\frac{1}{r_H}\right)$ , не его относительная величина  $\frac{|V_{00}^{00}|}{E_{0_{00}}}$  падает как  $\frac{1}{\sqrt{\omega_L}}(r_H)$ .

Для  $d \neq 0$  и  $\rho_0 \neq 0$ , начиная с некоторых значений для ларморовой частоты магнитного поля  $\omega_L$ , таких, что  $r_H \ll \max(d, \rho_0)$ , матричный элемент  $V_{00}^{00} \approx -\frac{1}{\sqrt{\rho_0^2 + d^2}} \left(1 - \frac{1}{\rho_0^2 + d^2} r_H^2\right)$ . Поправка растет с ростом магнитного поля, но ее относительная величина  $\frac{V_{00}^{00}}{E_{000}} = \frac{1}{\sqrt{\rho_0^2 + d^2}} r_H^2 \left(1 - \frac{1}{\rho_0^2 + d^2}\right)$  падает как  $r_H^2$  (как  $\frac{1}{\omega_L}$ ).

С ростом H, так же как и с ростом P или d, падает относительный вклад кулоновского взаимодействия и, соответственно, уровни становятся все ближе к уровням Ландау.

При малых же значениях "магнитных" членов в  $\hat{H}$  по сравнению с кулоновским взаимодействием картина близка к кулоновской задаче — спектр похож на спектр двумерного атома водорода.

При  $\gamma = 0$ , т.е.  $m_e = m_h$ ,

$$E_{0_{nm}}=\frac{\omega_c}{2}(2n+|m|+1)=\omega_L\cdot k,$$

где k = 2n + |m| + 1 k = 1, 2... Энергия  $E_{0_{nm}}$  зависит только от квантового числа k и k-й невозмущенный уровень k-кратно вырожден. Кулоновское взаимодействие снимает это вырождение при ненулевом импульсе  $P \neq 0$  ( $\rho_0 \neq 0$ ). В результате появляются законы дисперсии E(P).



**Рис. 5.** Сравнение дисперсионных зависимостей E(P) для энергии первого вырожденного состояния магнетоэкситона для межслоевого расстояния d = 0.5, при ларморовой частоте магнитного поля  $\omega_L = 1.2$ ,  $\gamma = 0$ , полученных по теории возмущений по кулоновскому взаимодействию (кривые PT) и численной диагонализацией гамильтониана (кривые HD)



**Рис. 6.** Дисперсионные зависимости E(P) для нижних энергетических уровней магнетоэкситона для межслоевого расстояния d = 0.5, при ларморовой частоте магнитного поля  $\omega_L = 1.2, \gamma = 0.$ 

Основной уровень n = 0, |m| = 0 (k = 1) невырожден, а более высокие уровни вырождены. Законы дисперсии при  $\rho_0 \neq 0$  с учетом волнового взаимодействия приведены на рис. 5 и 6. Уровень невозмущенной (в пренебрежении кулоновским взаимодействием) задачи с k = 2 (n = 0, |m| = 1) двукратно вырожден по квантовому числу  $m(m = \pm 1)$ . Для случая сверхсильных магнитных полей оценить расшепление можно, решая секулярное уравнение. Находим  $E_{k=2} = E_{0_{k=2}} \pm E_{1_{k=2}}$ , где  $E_{0_{k=2}} = 2\omega_L + V_{01}^{01}(\rho_0, d)$ ;  $E_{1_{k=2}} = -\frac{1}{(1/2)_2} \int_{0}^{\infty} e^{-t} t \frac{1}{\sqrt{b}} \left( \left( \frac{a}{b} \right)^2 - 1 \right)^{1/4} P_{-1/2}^2 \left( \frac{a/b}{\sqrt{a/b-1}} \right) dt$ ,

где  $P_{-1/2}^2(x)$  — присоединенная функция Лежандра.

С ростом эффективного магнитного поля расщепление уменьшается. При  $P \to \infty$   $(\rho_0 \to \infty)$  или  $d \to \infty$ 

расщепление  $E_{1_{k=2}} 
ightarrow 0$ . При  $ho_0 \ll 1$  имеем

$$E_{1_{k=2}} \approx -\sqrt{\frac{\pi}{2}\omega_L} \cdot \frac{\omega_L}{16} \left[ \left(3 + 6d^2\omega_L + d^4\omega_L^2\right) e^{\frac{d^2\omega_L}{2}} \right] \\ \times \operatorname{erfc}\left(d\sqrt{\frac{\omega_L}{2}}\right) - \frac{2}{\sqrt{\pi}} \left(5 + d^2\omega_L\right) d\sqrt{\frac{\omega_L}{2}} \rho_0^2.$$

Для более высоких уровней законы дисперсии представлены на рис. 6.

Рассмотрим случай бесконечно тяжелой дырки  $\gamma = 1(m_h \gg m_e)$ . При P = 0 имеется совпадение уровней энергии примесного состояния и экситона (для пространственно разделенного случая  $d \neq 0$ , с зарядом примеси +e):

$$E_{0_{nm}}=2\omega_L\left(n+rac{|m|-\gamma m+1}{2}
ight)=\omega_c\left(n+rac{1}{2}+rac{|m|-m}{2}
ight).$$

Уровни энергии  $E_{0_{mm}}$  бесконечно кратно вырождены. Кулоновское взаимодействие снимает вырождение  $P = 0 \rightarrow \rho_0 = 0 \ V_{nm}^{mm'} = 0$  для  $m \neq m'$ . Система уравнений расшепляется на подсистемы. Переходы между уровнями с разной симметрией не дают вклада в энергию. Для P = 0 необходимо учитывать лишь взаимодействие уровней с одинаковой симметрией. Матричный элемент  $V_{00}^m = \left(\frac{\omega_L}{2}\right)^{1+|m|} d^{2|m|} \psi\left(|m|, |m| + 3/2, \frac{d^2\omega_L}{2}\right)$ . Уровень с n = n' = 0 приобретает тонкую структуру из-за расщепления по |m|.

Для эффективно больших расстояний d, таких, что  $\frac{d^2\omega_L}{2} \gg 1$  ( $d \gg r_H$ ), матричный элемент  $V_{00}^m \approx -\frac{1}{d} \left[ 1 - \frac{|m|+1}{d^2\omega_L} \right]$ . Уровень с n = 0 — основной уровень сдвинется вниз на величину  $\frac{1}{d}$ , и тонкая структура уровня растет кверху с ростом |m| эквидистантно  $\left( \approx \frac{|m|}{d^2\omega_L} \right)$ .

Для эффективно малых расстояний d, таких, что  $\frac{d^2\omega_L}{2} \ll 1$  ( $d \ll r_H$ ), получим  $V_{00}^m \approx -\sqrt{\frac{\omega_L}{2}} \frac{|m|-1/2}{|m|!} \left[ |m| - 1/2 - \frac{d^2\omega_L}{4} \right]$ . Тонкая структура сгущается снизу вверх к невозмущенному уровню.

С ростом квантового числа *m* мы можем оценить соответствующие энергетические уровни через матричные элементы  $V_{00}^m \to -\sqrt{\frac{\omega_L}{2}} \left( \frac{1}{\sqrt{|m|}} - \frac{\omega_L d^2}{4|m|^{3/2}} \right) \to -\frac{1}{\sqrt{|m|}}$  $|m| \to \infty.$ 

Для случая примеси с зарядом  $Z \neq 1$  во все вышеприведенные формулы войдет множитель Z:  $V_{mn'}^m|_{Z\neq 1} = V_{mn'}^m|_{Z=1} \cdot Z.$ 

Для рациональных  $\gamma = \frac{P}{q}$  уровни энергии без учета кулоновского взаимодействия  $E_{0_{nm}}$  и  $E_{0_{n'm'}}$  будут совпадать, если

$$\frac{2(n-n') - |m'| + |m|}{m-m'} = \gamma = \frac{P}{q},$$
$$P = 2(n-n') + |m| - |m'|, \qquad q = m-m'.$$

Такие квазивырождения являются случайными совпадениями значений уровней, не отражающими внутреннюю симметрию задачи. Поскольку наш метод допускает учет смешивания уровней с различными квантовыми числами, такие квазивырождения не ограничивают его применения (в отличие от построения 1-го порядка теории возмущений по кулоновскому взаимодействию как, например, в [16]).

Учет толщины пленок для достаточно тонких пленок в случае сильных магнитных полей закон дисперсии несколько изменяет количественно, но не качественно, причем с ростом импульса это изменение уменьшается (см. также [26,28]).

Имеется разумное согласие результатов расчета численной диагонализацией гамильтониана на соответствующем базисе и полученных в эксперименте (см. [4–6,8,9]).

# 3. Непрямой экситон в связанных квантовых точках

Экспериментально реализуется ситуация с локализацией экситона в квантовой яме [8,29], связанное с шероховатостью поверхности раздела и рассматриваемой как "естественная" квантовая точка. Возможна также локализация экситона и в искуственной квантовой точке или в вертикально связанных квантовых точках. В этой связи мы в данной работе исследуем энергетический спектр непрямого 2D экситона в следующей модели, описывающей вышеупомянутые экспериментальные реализации: электрон *е* и дырка *h* с эффективными массами  $m_e^*$  и  $m_h^*$ , находятся в разделенных барьером шириной dдвух вертикально связанных двумерных квантовых точках, описывающихся, соответственно, параболическими потенциалами  $U = \alpha_e r_e^2$  и  $U = \alpha_h r_h^2$  ( $\mathbf{r}_e, \mathbf{r}_h$  — двумерные радиус-вектора е и h вдоль плоскости квантовых точек) (мы используем единицы параметра крутизны  $\alpha_0$  удерживающего потенциала:  $\alpha_0 = \frac{E_0}{r^2}$ ).

Сделав замену координат, выделив движение центра тяжести  $\mathbf{R} = \mu_e \mathbf{r}_e + \mu_h \mathbf{r}_h$  и  $\mathbf{r} = \mathbf{r}_e - \mathbf{r}_h$ , преобразуем уравнение Шредингера к виду

$$\begin{bmatrix} \mu_e \mu_h \Delta_{\mathbf{R}} + \Delta_{\mathbf{r}} + E + \frac{i\gamma\omega_c m}{2} \frac{\partial}{\partial \theta_r} - \left(\alpha_e + \alpha_h + \frac{\omega_c^2}{4}\right) R^2 \\ - \left(\mu_h^2 \left(\alpha_e + \frac{\omega_c^2}{4}\right) + \mu_e^2 \left(\alpha_h + \frac{\omega_c^2}{4}\right)\right) r^2 \\ + \frac{1}{(r^2 + d^2)^{1/2}} - 2\left(\frac{\omega_c^2}{4}(\mu_h - \mu_e) \\ + \mu_h \alpha_e - \mu_e \alpha_h\right) \mathbf{r} \mathbf{R} \end{bmatrix} \psi = 0.$$
(21)

Для упрощения рассмотрим случай  $\frac{\omega_e^2}{4}(\mu_h - \mu_e) + \mu_h \alpha_e - \mu_e \alpha_h = 0$ . Это равенство имеет место, например, для одинаковых квантовых точек и  $\mu_e = \mu_h$ . Тогда оказывается возможным разделить движение центра тяжести экситона и относительное движение электрона и дырки.

Положим  $\psi(\mathbf{R}, \mathbf{r}) = \psi_R(\mathbf{R})\psi_r(\mathbf{r})$ . В результате получаем систему уравнений:

$$\left(\Delta_{\mathbf{R}} + \frac{E_R}{\mu_e \mu_h} - \alpha_1 R^2\right)\psi_R = 0, \qquad (22)$$

$$\left(\Delta_{\mathbf{r}} + E_r - \alpha_2 r^2 + \frac{1}{(r^2 + d^2)^{1/2}}\right)\psi_r = 0, \qquad (23)$$

$$E = E_R + E_r + \frac{i\gamma\omega_c m}{2}, \qquad (24)$$

где  $\alpha_1 = \frac{\alpha_e + \alpha_h}{\mu_e \mu_h} + \frac{\omega_e^2}{4}, \alpha_2 = \mu_h^2 \alpha_e + \mu_e^2 \alpha_h + \frac{\omega_e^2}{16}.$ Таким образом, уравнение (22) для центра масс в

таким ооразом, уравнение (22) для центра масс в рассматриваемом случае имеет вид уравнения для гармонического осциллятора. Его решения для энергии центра масс  $E_R$  и собственных функций  $\psi_R$  есть

$$E_{R_{nm}} = 4\alpha_1^{1/2} \left( n + \frac{|m|+1}{2} \right), \tag{25}$$

$$\psi_{R_{nm}} = \left(\frac{n!}{\pi(|m|+n)!} (\alpha_r)^{|m|+1}\right)^{1/2} \\ \times R^{|m|} e^{-\sqrt{\alpha_1 R^2}/2} L_n^{|m|} \left(\sqrt{\alpha_1 R^2}\right) e^{im\theta}.$$
 (26)

Уравнение для относительного движения (23) отличается от уравнения для центра масс (22) учетом межэлектронного взаимодействия. В соответствии с симметрией задачи волновая функция относительного движения может быть представлена в виде  $\psi_r(\mathbf{r}) = f_m(r) \exp(im\theta)$ , где  $m = 0, \pm 1...$ ; радиальная функция  $f_m(r)$  удовлетворяет уравнению

$$\frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \left( E_r - \alpha_2 r^2 + \frac{1}{(r^2 + d^2)^{1/2}} - \frac{m^2}{r^2} \right) f = 0.$$
(27)

Разложим  $f_m(r)$  по базису собственных функций задачи без кулоновского взаимодействия электронов  $f_m = \sum_n C_{nm} f_{nm}$ , где  $f_{nm} = \left(\frac{n!}{(|m|+n)!} \alpha_2^{|m|+1}\right)^{1/2} r^{|m|} \times e^{-\sqrt{\alpha_2}r^2/2} L_n^{|m|} (\sqrt{\alpha_2}r^2)$ . Методом численной диагонализации гамильтонианан на базисе этих функций мы найдем решение уравнения (27). Собственные значения энергии определяются из уравнения

$$\det \{V_{nn'}^m + \delta_{nn'}(\varepsilon_{nm} - E_r)\} = 0, \qquad (28)$$

где

$$\varepsilon_{nm} = 4\sqrt{\alpha_2} \left( n + \frac{|m|+1}{2} \right); \tag{29}$$

$$V_{nn'}^{m} = \left(\frac{n!n'!}{(n+|m|)!(n'+|m|)!}\right)^{1/2} \\ \times \sum_{i=0}^{n} \sum_{j=0}^{n'} \frac{(-1)^{i+j}}{i!j!} \binom{n+|m|}{n-i} \binom{n'+|m|}{n-j} \\ \times \alpha_{2}^{(|m|+i+j+1)/2} \Gamma(i+j+|m|+1) d^{2(i+j+|m|+1/2)} \\ \times \Psi(i+j+|m|+1,i+j+|m|+3/2;\sqrt{\alpha_{2}}d^{2}).$$
(30)

Физика и техника полупроводников, 1998, том 32, № 11

Зависимости нижних уровней энергии  $E_r$  от параметра  $\alpha_2$  приведены на рис. 7. Значения энергетических уровней монотонно возрастают с ростом  $\alpha_2$ .

Когда  $\alpha_2$  достаточно велико (случай сильного удерживающего потенциала или большого межслоевого расстояния), межэлектронное взаимодействие мало в сравнении с другими параметрами и энергии относительного движения  $E_r$  асимптотически стремятся к уровням энергии (29) двумерного гармонического осциллятора, т.е. линейны по  $\sqrt{\alpha_2}$ . Это видно на рис. 7.

Зависимости низколежащих уровней энергии от межслоевого расстояния d приведены на рис. 8. Вклад кулоновского взаимодействия в энергию убывает с ростом d, и уровни энергии асимптотически стремятся к  $\varepsilon_{nm}$  (29).

Зависимости нижних уровней энергии относительного движения от магнитного поля представлены на рис. 9. Значения энергий возрастают с ростом поля, асимптотически стремясь к  $2\sqrt{\alpha_2'}(2n + |m| + 1) + \gamma \omega_c m$ . В пределе сверхсильного магнитного поля уровни энергий асимптотически стремятся к уровням Ландау, как и



**Рис. 7.** Зависимости нижних уровней энергии  $E_r$  для пространственно разделенного экситона в связанных квантовых точках от параметра удерживающего потенциала  $\alpha_2$ .



**Рис. 8.** Зависимости низколежащих уровней энергии от межслоевого расстояния *d*.



**Рис. 9.** Зависимости нижних уровней энергии относительного движения пространственно разделенного экситона в связанных квантовых точках от магнитного поля *B* при  $\alpha_2 = 0.2$ .

в случае отсутствия параболической зависимости для удерживающего потенциала (например, модели "жестких стенок") (см. [16,17,28]).

Для больших межслоевых расстояний *d* имеет место асимптотическая зависимость для значений энергии:  $d \to \infty, E \sim 2\sqrt{\alpha'_2}(2n+|m|+1)+\gamma\omega_cm-1/d+1/(\sqrt{\alpha'_2}).$ В случае малых *d* при  $d \to 0$  матричный элемент

$$\begin{split} V^m_{nn'} &\to -\left(\frac{n!n'!}{(n+|m|)!(n'+|m|)!}\sqrt{\alpha'_2}\right)^{1/2} \\ &\times \sum_{i=0}^n \sum_{j=0}^{n'} \frac{(-1)^{i+j}}{i!j!} \binom{n+|m|}{n-i} \binom{n'+|m|}{n'-j} \\ &\times \Gamma\left(i+j+|m|+\frac{1}{2}\right). \end{split}$$

Значение d = 0 отвечает случаю одной квантовой ямы с двумя носителями (см. [30]).

Работа поддержана Российским фондом фундаментальных исследований, ИНТАС и программой "Физика твердотельных наноструктур".

Работа Н.Е. Капуткиной поддержана программой ISSEP для аспирантов.

### Список литературы

- T. Fukuzawa, E.E. Mendez, J.M. Hong. Phys. Rev. Lett., 64, 3066 (1990); J.A. Kash, M. Zachav, E.E. Mendez, J.M. Hong, T. Fukuzawa. Phys. Rev. Lett., 66, 2247 (1991).
- [2] U. Sivan, P.M. Solomon, H. Strikman. Phys. Rev. Lett., 68, 1196 (1992).
- [3] K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, G. Weiymann. Phys. Rev. Lett., **73**, 1138 (1994).
- [4] A. Zrenner, L.B. Butov, M. Hang, G. Abstreiter, G. Böhm, G. Weiymann. Phys. Rev. Lett., 72, 3382 (1994).

- [5] L.B. Butov, A. Zrenner, G. Abstreiter, G. Böhm, G. Weiymann. Phys. Rev. Lett., 73, 304 (1994).
- [6] L.B. Butov, A. Zrenner, G. Abstreiter, A.V. Petinova, K. Eberl. Phys. Rev. B, 52, 12153 (1995).
- [7] S.P. Cheng, S. Kono, B.D. McCombe, I. Lo. W.C. Mitcel, G.E. Stuts. Phys. Rev. Lett., 74, 450 (1995).
- [8] В.Д. Кулаковский, Л.В. Бутов. УФН, 165, 229 (1995).
- [9] M. Bayer, V.B. Timofeev, T. Gutbrod, A. Forchel, R. Steffen, S. Oshinno. Phys. Rev. B, 52, R11623 (1995).
- [10] M. Bayer, A. Schmidt, A. Forchel, F. Faller, T.L. Reineeke, P.A. Knipp, A.A. Dremin, V.D. Kulakovskii. Phys. Rev. Lett., 74, 3439 (1995).
- [11] M. Bayer, V.B. Timofeev, F. Faller, T. Gutbrod, A. Forchel. Phys. Rev. B, 54, 8799 (1996).
- [12] А.И. Филин, В.Б. Тимофеев, С.И. Губарев, Д. Биркедаль, Дж.М. Хван. Письма в ЖЭТФ, 65, 623 (1997).
- [13] Е.С. Москаленко, А.Л. Жмодиков, В.В. Криволапчук, Д.А. Мазуренко, И.К. Полетаев, С.Т. Фоксон, Т.С. Чонг. Полупроводники-97 (М., ФИАН, 1997) с. 246.
- [14] Ю.Е. Лозовик, В.И. Юдсон. Письма в ЖЭТФ, 22, 556 (1975).
- [15] Ю.Е. Лозовик, В.И. Юдсон. ЖЭТФ, 71, 1167 (1976).
- [16] И.В. Лернер, Ю.Е. Лозовик. ЖЭТФ, 80, 1488 (1981); ЖЭТФ, 82, 1188 (1982).
- [17] И.В. Лернер, Ю.Е. Лозовик. ЖЭТФ, 78, 1167 (1980).
- [18] D.S. Chemla, J.B. Stark, W.H. Knox. In: *Ultrafast Phenomena* VIII, ed. by J.-L. Martin et al. (Springer 1993) p. 21.
- [19] А.Б. Дзюбенко, Ю.Е. Лозовик. ФТТ, 25, 1519 (1983); ФТТ, 26, 51 540 (1983).
- [20] A.B. Dzuybenko, Yu.E. Lozovik. J. Phys., 24, 415 (1991).
- [21] Ю.Е. Лозовик, О.Л. Берман, В.Г. Цветус. Письма ЖЭТФ, 66, 332 (1997).
- [22] Ю.Е. Лозовик, О.Л. Берман. ЖЭТФ, 111, 1879 (1997).
- [23] А.В. Ключник, Ю.Е. Лозовик. ЖЭТФ, 76, 670 (1979).
- [24] Yu.E. Lozovik, A.V. Klyuchnik. J. Phys. C, 11, L483 (1978).
- [25] Yu.E. Lozovik, A.V. Poushnov. Phys. Lett. A, 194, 105 (1994).
- [26] Ю.Е. Лозовик, А.М. Рувинский. ЖЭТФ, 112, 1791 (1997).
- [27] Л.П. Горьков, И.Е. Дзялошинский. ЖЭТФ, 53, 717 (1967).
- [28] Yu. Lozovik, A.M. Ruvinsky. Phys. Lett. A, 227, 271 (1997).
- [29] Г.С. Геворкян, Ю.Е. Лозовик. ФТТ, 27, 1800 (1985).
- [30] N.E. Kaputkina, Yu.E. Lozovik. (to be published).

Редактор В.В. Чалдышев

### Spectrum of indirect magnetoexciton

N.E. Kaputkina, Yu.E. Lozovik\*

Moskow Institute of Steel and Alloys, 117936 Moscow, Russia \* Institute of Spectroscopy, Russian Academy of Sciences,

142092 Troitsk, Russia

E-mail: nataly@trf.misa.ac.ru E-mail: lozovik@isan.msk.su