Дифференциальные методы определения параметров глубоких уровней по рекомбинационным токам p-n-перехода

© С.В. Булярский, Н.С. Грушко, А.В. Лакалин

Ульяновский государственный университет, 432700 Ульяновск, Россия

(Получена 6 апреля 1998 г. Принята к печати 8 апреля 1998 г.)

На основе модели рекомбинации Шокли–Рида–Холла разработаны две методики определения энергии активации центров, создающих глубокие уровни в области пространственного заряда p-n-перехода. Предлагаемые методики базируются на рассмотрении токов рекомбинации в области пространственного заряда при низком уровне инжекции. Первая методика основана на дифференциальном анализе приведенной скорости рекомбинации $\partial R_{np}(U)/\partial U$, вторая — на анализе зависимости $R_{np}^2(U)/\exp(qU/2kT)$.

Описанные методики применялись для обработки вольт-амперных характеристик кремниевых p^+ —n-диодов, легированных золотом. Найденные из вольт-амперных характеристик энергии активации глубокого центра золота в кремнии хорошо согласуются с известными по литературе результатами.

Введение

Генерационно-рекомбинационные процессы в области пространственного заряда (ОПЗ) p-n-перехода были впервые рассмотрены в рабте [1]. Используя статистику рекомбинации через простой двухзарядный центр Шокли-Рида-Холла, в [1] получено общее выражение для плотности тока рекомбинации в ОПЗ (в виде интеграла по ОПЗ от скорости рекомбинации). Аналитические выражения удалось получить лишь для некоторых частных случаев при тех или иных допущениях. В том числе, целиком вся вольт-амперная характеристики (ВАХ), обусловленная токами рекомбинации в ОПЗ p-n-перехода при низком уровне инжекции (НУИ), полученна в [2–6]. И хотя полного совпадения с тем, что дает численное интегрирование скорости рекомбинации, так и не получено, тем не менее некоторые оценки могут считаться удовлетворительными [5–7].

Развитый в [5,6] подход позволяет определять энергию активации глубоких уровней, а при дополнительной информации — либо отношение коэффициентов захвата, либо времена жизни в квазинейтральных областях. По сравнению с методиками нестационарной генерации носителей в ОПЗ p-n-перехода (термостимулированная емкость (ТСЕ) [8], нестационарная спектроскопия глубоких уровней (НСГУ) [9]), требующими измерений в широком интервале температур, анализ тока рекомбинации можно проводить при некоторой фиксированной температуре (например, комнатной). Это приводит к более простому варианту измерений. В данной работе на основе используемого в [8] подхода разработаны еще два способа обработки тока рекомбинации в ОПЗ при НУИ. При этом основной акцент делается на использование ЭВМ на всех стадиях процесса: от проведения измерений и до получения окончательного результата. Объектами исследования были легированные золотом кремниевые p^+ – n-диоды промышленного производства (Д-220). Про эти диоды (Д-220) известно, что они изготавливаются по сплавной технологии, и уровни легирования p^+ - и

n-областей постоянны (p-n-переход резкий), что подтверждено результатами емкостных измерений. Такой выбор материала обусловлен тем, что золото в кремнии хорошо исследовано [10] и может быть использовано для проверки предлагаемых методик.

Токи рекомбинации в ОПЗ и приведенная скорость рекомбинации

Токи рекомбинации в ОПЗ p-n-перехода через простые двухзарядные глубокие центры описываются выражением [6]

$$i_r = \sum_{m=1}^s \frac{qSw(U)c_{nm}c_{pm}n_i^2\left(\exp\left(\frac{qU}{kT}\right) - 1\right)N_{tm}}{2n_i\sqrt{c_{nm}c_{pm}}\exp\left(\frac{qU}{2kT}\right) + c_{nm}n_{1m} + c_{pm}p_{1m}} \times \frac{2kT}{q(U_{\text{dif}} - U)},$$
(1)

где w(U) — ширина ОПЗ, s — число ГУ, S — площадь p-n-перехода, $n_{1m}=N_c\exp\left(-\frac{E_{mm}}{kT}\right),\ p_{1m}=N_v$ $\times \exp\left(-\frac{E_{tpm}}{kT}\right), c_n, c_p$ — усредненные по всем состояниям коэффициенты захвата электрона и дырки на данный центр, N_t — концентрация ГУ, E_t — положение ГУ в запрещенной зоне. $E_{tn} = E_c - E_t, \; E_{tp} = E_t - E_v.$ Выражение (1) имеет место при выполнении условий: глубокие центры равномерно распределены в запрещенной зоне, уровни дискретны, система находится в тепловом равновесии, отсутствует освещение, туннельные переходы и рекомбинация полностью определяется тепловыми процессами [4,5]). Выражение (1) получено на основе теории Шокли-Рида-Холла рекомбинации через простой двухзарядный центр и несколько отличается от приведенного в работе [1]. Это различие подробно рассмотрено в [4,7], а вывод представлен в [6], так что мы не будем на нем останавливаться. Границы применимости (1) также определены в [4–6]. Каждое слагаемое в (1) представляет собой ток рекомбинации через m-й глубокий уровень. Выражение (1) может быть представлено в виде [7]

$$i_r = \frac{2kTw(U)Sn_i}{U_{\text{dif}}(u) - U} \sum_{m=1}^s \frac{\alpha_m \left(\exp\left(\frac{qU}{kT}\right) - 1\right)}{2\zeta_m \exp\left(\frac{qU}{2kT}\right) + \zeta_m^2 + 1},$$
 (2)

где $\alpha_m = (n_{1m})/n_i)c_{nm}N_{tm}$, $\zeta_m = (n_{1m}/n_i)\sqrt{c_{nm}/c_{pm}}$ (здесь воспользовались равенством $n_{1m}p_{1m} = n_i^2$). В (1), (2) зависимости $U_{\rm dif}(U)$ и w(U) могут быть найдены из емкостных измерений, тогда неизвестными остаются параметры α_m и ζ_m , которые зависят лишь от природы глубоких уровней, их концентрации $(c_{nm}, c_{pm}, E_{tm}, N_{tm})$ и материала полупроводника (n_j) . Ранее уже предлагалось проводить анализ токов рекомбинации в ОПЗ p-n-перехода при помощи такой физической величины как приведенная скорость рекомбинации R_{np} [4–6], которая определяется как

$$R_{np}(U) = \frac{i_r(U) \exp\left(\frac{qU}{2kT}\right)}{Sw(U)n_i\left(\exp\left(\frac{qU}{kT}\right) - 1\right)} \frac{U_{\text{dif}}(U) - U}{2kT}.$$
 (3)

Из (2) и (3) видна связь этой величины с параметрами глубоких центров:

$$R_{np}(U) = \sum_{m=1}^{s} R_{npm}(U)$$

$$= \sum_{m=1}^{s} \frac{\alpha_m \left(\exp\left(\frac{qU}{kT}\right) - 1\right)}{2\zeta_m \exp\left(\frac{qU}{2kt}\right) + \zeta_m^2 + 1}.$$
 (4)

Если s=1 (один глубокий уровень), то (2) и (4) описываются всего двумя параметрами, которые могут быть найдены путем подбора. В общем случае число подгоночных параметров 2s. Они могут быть найдены путем последовательного подбора на каждом участке $R_{npm}(U)$ для каждого m-го глубокого центра и последовательного вычитания $R_{npm}(U)$ из исходной кривой R(U). Эту процедуру можно проделывать графически [5,6] или автоматизировать. Определив ζ_m , легко находим при фиксированной температуре

$$E_{tnm} = \frac{E_g}{2} - kT \ln \zeta_m + \frac{3}{4}kT \ln \frac{m_n^*}{m_p^*} + \frac{1}{2}kT \ln \frac{c_{nm}}{c_{pm}}.$$
 (5)

Энергия активации *m*-го глубокого уровня определяется с точностью до последнего слагаемого, которое можно определить, проведя измерения при нескольких температурах. (Для многих центров c_n/c_p не превосходит 10^2 , тогда при $T=300~\mathrm{K}~\frac{kT}{2}\ln\frac{c_n}{c_n}\cong 0.06~\mathrm{3B}$). Кроме того

$$\frac{\alpha_m}{\zeta_m} = \left(\frac{1}{c_{nm}N_{tm}}\right)^{1/2} \cdot \left(\frac{1}{c_{pm}N_{tm}}\right)^{1/2} = \sqrt{\tau_{n0m} \cdot \tau_{p0m}}. \quad (6)$$

Дифференциальная методика $\frac{\partial R_{np}(U)}{\partial U}$

Из (4) найдем $\partial R_{np}(U)/\partial U$. Операция дифференцирования дает

$$\frac{\partial R_{np}(U)}{\partial U} = \frac{q}{2kT} \sum_{m=1}^{s} \frac{\alpha_m \exp\left(\frac{qU}{2kT}\right)(\zeta_m^2 + 1)}{\left(2\zeta_m \exp\left(\frac{qU}{2kT}\right) + \zeta_m^2 + 1\right)^2}.$$
 (7)

Нетрудно увидеть, что функция (7) имеет максимумы. Для их нахождения осуществляем операцию поиска экстремума:

$$\frac{\partial^{2} R_{np}(U)}{\partial U^{2}} = \left(\frac{q}{2kT}\right)^{2} \times \sum_{m=1}^{s} \frac{\alpha_{m} \exp\left(\frac{qU}{2kT}\right) \left(\zeta_{m}^{2} + 1\right) \left(\zeta_{m}^{2} + 1 - 2\zeta_{m} \exp\left(\frac{qU}{2kT}\right)\right)}{\left(2\zeta_{m} \exp\left(\frac{qU}{2kT}\right) + \zeta_{m}^{2} + 1\right)^{3}} = 0.$$
(8)

Поскольку мы предполагаем, что процессы рекомбинации идут независимо через каждый центр, равенство (8) выполняется, если каждое слагаемое в (8) равно 0 (допущение методики). Тогда

$$\zeta_m^2 + 1 - 2\zeta_m \exp\left(\frac{qU_{0m}}{2kT}\right) = 0, \tag{9}$$

 $m=1,2,\ldots,s$, где U_{0m} — точка максимума для m-го слагаемого. Решая квадратное уравнение относительно ζ_m , получаем

$$\zeta_m = \exp\left(\frac{qU_{0m}}{2kT}\right) + \sqrt{\left(\exp\left(\frac{qU_{0m}}{2kT}\right)\right)^2 - 1}$$
 (10)

(мы выбрали корень со знаком "+"). Если $\exp(\frac{qU_{0m}}{2kT})\gg 1$, то

$$\zeta_m = 2 \exp\left(\frac{qU_{0m}}{2kT}\right). \tag{11}$$

Определив из (10) или (11) ζ_m по (5), находим E_{tnm} . Подставляя ζ_m^2+1 из (9) в (7) находим, что амплитуда A_m каждого максимума равна

$$A_m = \frac{q}{2kT} \frac{\alpha_m}{8\zeta_m}.$$
 (12)

Зная ζ_m , легко найти α_m или ζ_m/α_m .

Поэтому, вместо того чтобы численно подбирать α_m и ζ_m , раскладывая R_{np} на составляющие, можно построить зависимость $\partial R_{np}(U)/\partial U$ и по положению максимумов (U_{om}) и значению функции в точках максимума найти ζ_m и ζ_m/α_m . Далее, используя (5), (6), рассчитать требуемые параметры.

Данная методика по сравнению с предложенной в [5], где анализируется $\partial \gamma(U)/\partial U$, $\gamma(U)=(2kT/q)\times\partial \left(\ln R_{np}(U)\right)/\partial U$, имеет два существенных преимущества: во-первых, необходимо строить лишь первую производную от $R_{np}(U)$, а не вторую, и, во-вторых, положение точек максимума на первой производной определяется более точно, чем на второй, так как "зашумленность" первой производной всегда меньше.

Методика $\frac{R_{np}^2(U)}{\exp(qU/2kT)}$

В предложенной выше дифференциальной методике имеется недостаток: численное дифференцирование экспериментальных точек $\partial R_{np}(U)/\partial U$ приводит к зашумленности кривой $\partial R_{np}(U)/\partial U$, а это существенно усложняет поиск U_{0m} . Поэтому предлагается поступить по-другому. Введем функцию L(U) следующим образом:

$$L(U) = \frac{R_{np}^2(U)}{\exp\left(\frac{qU}{2kT}\right)}.$$
 (13)

Эта функция имеет точки максимума. Для их нахождения осуществляем операцию поиска экстремума:

$$\frac{\partial L(U)}{\partial U} = \frac{\partial}{\partial U} \left(\frac{R_{np}^2(U)}{\exp\left(\frac{qU}{2kT}\right)} \right)$$

$$= \frac{2R_{np}\frac{\partial R_{np}}{\partial U} - R_{np}^2\frac{q}{2kT}}{\exp\left(\frac{qU}{2kT}\right)} = 0.$$
(14)

Используя (7), получаем

$$2\frac{q}{2kT} \sum_{m=1}^{s} \frac{\alpha_{m} \exp\left(\frac{qU_{0m}}{2kT}\right) (\zeta_{m}^{2} + 1)}{\left(2\zeta_{m} \exp\left(\frac{qU_{0m}}{2kT}\right) + \zeta_{m}^{2} + 1\right)^{2}} - \frac{q}{2kT}$$

$$\times \sum_{j=1}^{s} \frac{\alpha_{j} \exp\left(\frac{qU_{0j}}{2kT}\right)}{2\zeta_{j} \exp\left(\frac{qU_{0j}}{2kT}\right) + \zeta_{j}^{2} + 1} = 0. \quad (15)$$

Аккуратно соблюдая правило работы с суммирующими индексами и приводя (15) к общему знаменателю, получаем

$$2\alpha_{m} \exp\left(\frac{qU_{0m}}{2kT}\right) (\zeta_{m}^{2} + 1) - \alpha_{m} \exp\left(\frac{qU_{0m}}{2kT}\right) \times \left(2\zeta_{m} \exp\left(\frac{qU_{0m}}{2kT}\right) + \zeta_{m}^{2} + 1\right) \\
= 0.$$

$$\left(2\zeta_{m} \exp\left(\frac{qU_{0m}}{2kT}\right) + \zeta_{m}^{2} + 1\right)^{2} \tag{16}$$

Как и выше, делаем допущение, что (16) выполняется, когда каждое слагаемое равно нулю. Тогда

$$\zeta_m^2 + 1 - 2\zeta_m \exp\left(\frac{qU_{0m}}{2kT}\right) = 0, \tag{17}$$

 $m=1,2,\ldots,s$, что в точности совпадает с (9), и корнями этого квадратного уравнения относительно ζ_m будут (10) или (11). Однако при анализе L(U) параметр α_m ни по амплитуде максимума, ни каким-либо другим способом нельзя определить (см. (13)). Таким образом, анализируя L(U), можно лишь найти ζ_m и по (5) определить E_{tnm} .

По сравнению с предыдущей данная методика имеет преимущество в том, что в ней отсутствует процедура численного дифференцирования, а недостатком является то, что она позволяет определить только параметр ζ_m .

Результаты обработки вольт-амперных характеристик Si : $Au-p^+-n$ -диодов и их обсуждение

Измерения ВАХ проводились на кремниевом p^+ -n-диоде, легированном золотом (Д-220) при $T=297\,\mathrm{K}$ (24°C). По формуле (3) для каждого напряжения рассчитывалась приведенная скорость рекомбинации $R_{np}(U)$ (рис. 1). $U_{\mathrm{dif}}(U)$ и w(U) находились обычным способом [11] по результатам емкостных измерений, приведенных на этом же образце. Согласно выражению (4) $R_{np}(U)$ путем последовательного численного подбора параметров α_m и ζ_m (m=1,2) раскладывалась на составляющие (каждая "полочка" описывается парой α_m и ζ_m (см. рис. 1). По найденным ζ_1 и ζ_2 из (5) рассчитывалась энергия активации глубоких уровней:

$$E_{tn}^{+} = 0.33 + 0.01 \cdot \ln \frac{c_{n}^{+}}{c_{p}^{0}}; \quad E_{tn}^{-} = 0.53 + 0.01 \cdot \ln \frac{c_{n}^{0}}{c_{p}^{-}}. \quad (18)$$

Поскольку известны значения c_n^+ , c_p^0 , c_n^0 , c_p^- ($\ln(c_n^+/c_p^0) \approx 1$, $\ln(c_n^0/c_p^-) \approx 0.4$ [10]), мы можем точно определить E_n^+ и E_m^- , однако в общем случае (если коэффициенты захвата неизвестны заранее) мы можем сделать лишь приблизительную оценку. Из разделения $R_{np}(U)$ получаем $E_{tn}^+ \approx 0.34$ эВ и $E_{tn}^- \approx 0.53$ эВ, что хорошо соответствует результатам других исследователей [10]. (Как известно [10], примесь золота в кремнии образует два глубоких уровня в запрещенной зоне: 1) акцепторный $E_t = E_c - 0.55$ эВ; при T = 300 К $\sigma_n^0 = 1.7 \cdot 10^{-16}$ см², $\sigma_p^- = 1.1 \cdot 10^{-14}$ см²; 2) донорный $E_t = E_v + 0.35$ эВ; при T = 300 К $\sigma_n^+ = 6.3 \cdot 10^{-15}$ см², $\sigma_p^0 = 2.4 \cdot 10^{-15}$ см²).

Применим к обработке $R_{np}(U)$ дифференциальную методику разделения. Производная $\partial R_{np}(U)/\partial U$ представлена на рис. 2. Точки максимума $U_{01}=0.06\,\mathrm{B}$ и

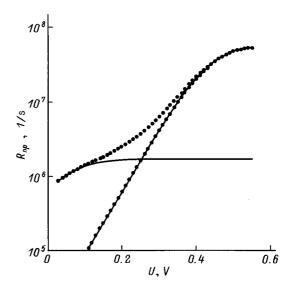


Рис. 1. Разделение приведенной скорости рекомбинации на составляющие ($T = 297 \,\mathrm{K}$).

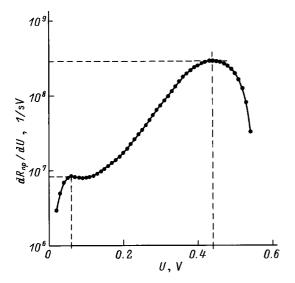


Рис. 2. Производная приведенной скорости рекомбинации по напряжению ($T=297\,\mathrm{K}$). Точки максимума 0.06 и 0.44 В.

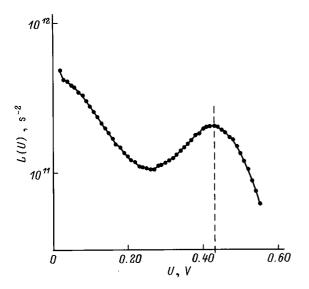


Рис. 3. Приведенная скорость рекомбинации по методике L(U). Точка максимума 0.43 В.

 $U_{02}=0.44\,\mathrm{B.}\,$ Согласно (10) находим ζ_1 и ζ_2 и по (5) рассчитываем энергию активации глубоких уровней:

$$E_{tn}^{+} = 0.33 + 0.01 \ln \frac{c_{n}^{+}}{c_{p}^{0}}; \quad E_{tn}^{-} = 0.52 + 0.01 \cdot \ln \frac{c_{n}^{0}}{c_{p}^{-}}. \quad (19)$$

Обработка $R_{np}(U)$ по второй методике (L(U)) представлена на рис. 3. Первый максимум U_{01} не проявляется, а $U_{02}=0.43$ В. Согласно (10) и (5) рассчитываем энергию активации глубокого уровня:

$$E_{tn}^{+} = 0.33 + 0.01 \cdot \ln \frac{c_n^{+}}{c_n^{0}}.$$
 (20)

Видно, что (18), (19) и (20) с точностью до 0.01 эВ совпадают с соответствуют результатам работы [10].

Список литературы

- [1] S.T. Sah, R.N. Noyce, W. Shockley. Proc. IRE. 45, 1228 (1957).
- [2] С.В. Булярский, Н.С. Грушко. Физические принципы функциональной диагностики p—n-nepexodoв с дефектами (Кишинев, Штиинца, 1992).
- [3] В.И. Старосельский. МЭ, **23**, 50 (1994).
- [4] С.В. Булярский, Н.С. Грушко. Генерационнорекомбинационные процессы в активных элементах (М., Изд-во МГУ, 1995).
- [5] С.В. Булярский, Н.С. Грушко, А.В. Лакалин. Завод. лаб., 63, 25 (1997).
- [6] С.В. Булярский, Н.С. Грушко, А.И. Сомов, А.В. Лакалин. ФТП, 31, 1146 (1997).
- [7] С.В. Булярский, Н.С. Грушко, А.В. Лакалин. В сб.: *Тр. межд. конф. "Центры с глубокими уровнями в полупроводниках и полупроводниковых структурах"* (Ульяновск, Изд-во УлГУ, 197) с. 65.
- [8] M.G. Buehler. Sol. St. Electron., 15, 69 (1972).
- [9] D.V. Lang. J. Appl. Phys., 45, 3014 (1974).
- [10] А. Милнс. Примеси с глубокими примесями в полупроводниках (М., Мир, 1977).
- [11] Л.С. Берман, А.А. Лебедев. Емкостная спектроскопия глубоких центров в полупроводниках (Л., Наука, 1981).

Редактор В.В. Чалдышев

Differential techniques for determination of deep level parameters by recombination currents of p-n-junctions

S.V. Buljarskii, N.S. Grushko, A.V. Lakalin

Ulyanovsk State University, 432700 Ulyanovsk, Russia

Abstract Two techniques for the determination of the activation energies of centres creating deep levels in the space — charge region (SCR) of p-n-junctions are developed on the basis of the Shockley–Read–Hall recombination model. The techniques proposed are based on the consideration of recombination currents in the SCR under a low injection level. The first technique involves a differential analysis of the reduced recombination rate, $\partial R_{np}(U)/\partial U$, the second one — the analysis of the expression $R_{np}^2(U)/\exp(qU/2kT)$.

The techniques considered have been applied for the processing of the I–V-chracteristics of silicon p^+ –n-diodes doped with gold. The gold-related deep center activation energies obtained from the I–V-characteristics are in good agrreement with the data known from literature.