Фотовольтаический эффект в поверхностно-барьерных структурах In/тонкие пленки I–III–VI₂

© В.Ю. Рудь, Ю.В. Рудь*, И.В. Боднарь[†], В.Ф. Гременок[†], О.С. Образцова[†], С.Л. Сергеев-Некрасов[†]

Санкт-Петербургский государственный технический университет,

195251 Санкт-Петербург, Россия

* Физико-технический институт им.А.Ф.Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

† Белорусский государственный университет информатики и радиоэлектроники,

220027 Минск, Белоруссия

(Получена 19 ноября 1997 г. Принята к печати 23 декабря 1997 г.)

На пленках тройных соединений CuInTe₂, AgGaTe₂, AgInTe₂ и твердом растворе Cu_{0.5}Ag_{0.5}InSe₂, полученных лазерным испарением, изготовлены поверхностно-барьерные структуры, при освещении которых наблюдался фотовольтаический эффект. Установлено, что максимальной вольтовой фоточувствительностью обладают структуры на основе тройного соединения *p*-AgGaTe₂. Показано, что полученные лазерным осаждением пленки соединений I–III–VI₂ и твердых растворов Cu_{0.5}Ag_{0.5}InSe₂ могут использоваться для создания широкополосных фотопреобразователей естественного излучения.

Введение

В последние годы тройные полупроводниковые соединения I-III-VI2 привлекают внимание исследователей как одни из наиболее перспективных материалов для создания высокоэффективных солнечных преобразователей. Они обладают высоким коэффициентом оптического поглощения (10⁴-10⁵ см⁻¹) в области спектра солнечного излучения и прямыми оптическими переходами. В настоящее время на основе тройного соединения CuInSe₂, а также твердых растворов CuGaIn_{1-x}Se₂ созданы тонкопленочные элементы с кпд более 16% [1,2]. Многочисленные экспериментальные исследования показали, что электрические и оптические свойства полупроводников I-III-VI2 определяются в значительной степени типом собственных дефектов, связанных с отклонением от стехиометрии [3,4]. В связи с этим дальнейшее улучшение характеристик солнечных элементов на основе этих соединений возможно при лучшем понимании физических свойств таких материалов и приборов на их основе. В настоящей работе приводятся результаты исследования поверхностно-барьерных структур In/тонкие пленки I-III-VI₂.

Получение кристаллов и пленок

Кристаллы тройных соединений (Cu,Ag)(Ga,In)Te₂ и твердых растовров $Cu_xAg_{1-x}InSe_2$ выращивали методом Бриджмена–Стокбаргера. Полученные слитки соединений CuGaTe₂, CuInTe₂, AgGaTe₂ были монокристаллическими, слитки AgInTe₂ и твердых растворов — крупноблочными и использовались в качестве мишеней для напыления пленок.

Осаждение пленок проводилось в вакууме $\sim 10^{-5}$ Па, с помощью лазера, работающего в режиме свободной генерации ($\lambda = 1.06$ мкм, $\tau_{imp} = 10^{-3}$ с, $E_{imp} = 130 - 150$ Дж).

Состав кристаллов и пленок устанавливали методом энергодисперсного рентгеновского анализа на сканирующем электронном микроскопе JEOL6400. Полученные данные приведены в табл. 1. Видно, что экспериментальные и расчетные величины удовлетворительно согласуются между собой.

Структуру и параметры кристаллов и пленок определяли рентгеновским методом. Дифрактограммы записывали на аппарате ДРОН-3М. Проведенные исследования показали, что на дифрактограммах как кристаллов, так

Состав пленки	Си, ат%		Ag, at%		Ga, ат%		In, ат%		Se, ат%		Те, ат%	
	расчет	экспе- римент										
AgGaTe ₂	-	-	25.00	26.20	25.00	24.56	-	_	-	-	50.00	49.24
CuGaTe ₂	25.00	26.60	_	_	25.00	24.20	_	_	_	_	50.00	49.22
AgInTe ₂	-	-	25.00	25.12	-	-	25.00	24.32	-	-	50.00	50.56
CuInTe ₂	25.00	26.18	_	_	-	-	25.00	24.51	_	_	50.00	49.08
Cu _{0.5} Ag _{0.5} InSe ₂	12.50	11.86	12.50	13.49	-	-	25.00	25.48	50.00	49.17	-	-
Cu _{0.7} Ag _{0.3} InSe ₂	17.50	18.10	7.50	9.35	-	-	25.00	23.60	50.00	48.95	-	-

Таблица 1. Результаты энергодисперсионного рентгеновского анализа тройных соединений (Cu,Ag)(Ga,In)Te₂ и твердых растворов Cu_xAg_{1-x}InSe₂

и пленок всегда присутствовала система линий, соответствующая структуре халькопирита. Параметры элементарной ячейки для кристаллов и пленок согласуются между собой.

Создание структур

Поверхностно-барьерные структуры создавались вакуумным термическим напылением тонких пленок металлического индия ($d_c \approx 1-2$ мкм) на наружную поверхность пленочных образцов I–III–VI₂, изготовленных методом импульсного лазерного напыления. Поверхность пленок перед нанесением слоев индия какой-либо обработке не подвергалась, а сами пленки ни во время осаждения, ни в последующем какому-либо нагреву выше комнатных температур не подвергались. Пленки индия обнаружили высокую адгезию в отношении поверхности тонкопленочных подложек I–III–VI₂. Использование индия в качестве барьерного контакта оказалось возможным на основании наших предварительных исследований контактных явлений на пленочных образцах I–III–VI₂.

Фоточувствительность структур

При освещении полученных структур на основе соединений и твердого раствора Cu_{0.5}Ag_{0.5}InSe₂ наблюдается фотовольтаический эффект (табл. 2). Знак фотонапряжения не зависит от места попадания светового зонда на поверхность структур и соответствует положительной полярности фотонапряжения на пленках халькогенидов. Максимальная фоточувствительность обычно проявляется при освещении структур со стороны барьерного контакта, а ее значения приведены в табл. 2. Из табл. 2 видно, что максимальная вольтовая фоточувствительность $S_U \approx 0.8$ B/Bt достигнута при использовании в структурах пленок AgGaTe₂.

Спетральные зависимости относительной квантовой эффективности фотопреобразования η для типичных структур при T = 300 К представлены на рис. 1 и 2, а некоторые их характеристики даны в табл. 2. Главные закономерности полученных тонкопленочных структур состоят в следующем.

Для всех структур обнаруживается широкополосный фотовольтаический эффект. Полная ширина спектров η

Таблица 2. Фотоэлектрические свойства структур In/тонкие пленки I–III–VI₂, полученные лазерным осажеднием

	-					
Состав пленки	T_s , °C	<i>d</i> _c , мкм	<i>ρ</i> , Ом · см	<i>S</i> _и В/Вт	$\delta_{1/2}$ э ${ m B}$	<i>S</i> , эВ ⁻¹
AgGaTe ₂	380	0.50	$3 \cdot 10^{3}$	0.8	1.25	16
CuGaTe ₂	400	0.30	0.5	-	-	-
AgInTe ₂	460	0.60	10^{5}	0.4	1.16	45
CuInTe ₂	480	0.38	1	0.5	1.16	40
Cu _{0.5} Ag _{0.5} InSe ₂	460	0.55	$5 \cdot 10^{3}$	0.2	~ 1.2	20
$Cu_{0.7}Ag_{0.3}InSe_2$	460	0.45	10 ⁴	-	-	-

Рис. 1. Спектральные зависимости относительной квантовой эффективности фотопреобразования поверхностно-барьерных структур на основе тонких пленок материалов I–III–VI₂ и слоев индия при T = 300 K (состав пленок: 1 -AgInTe₂, 2 -CuInTe₂, 3 -Cu_{0.5}Ag_{0.5}InSe₂. Освещение со стороны слоя индия).

на их полувысоте $\delta_{1/2}$ во всех структурах оказалась приблизительно одинаковой и достигает ≈ 1.2 эВ. Длинноволновый край фоточувствительности всех структур экспоненциальный и локализован в окрестности энергии падающих фотонов ~ 1 эВ. Значения крутизны $S = \frac{\delta(\ln \eta)}{\delta(\hbar\omega)}$ длинноволнового края фоточувствительности лежат в пределах 20-50 эВ⁻¹, что позволяет считать межзонные оптические переходы в этих веществах прямыми. Этот вывод согласуется с данными прямых оптических исследований на объемных кристаллах некоторых из полупроводников [5,6], тогда как для твердого раствора Cu_{0.5}Ag_{0.5}InSe₂ это предположение формулируется впервые. Это означает, что в результате образования твердого раствора энергетический спектр исходных соединений не претерпевает существенных изменений.

Экспоненциальный рост η при увеличении энергии падающих фотонов во всех структурах (рис. 1 и 2)

Рис. 2. Спектральная зависимость *η* тонкопленочной структуры In/AgGaTe₂ при 300 K.

Рис. 3. Зависимость $(\eta \hbar \omega)^{1/2} - \hbar \omega$ для структур In/AgGaTe₂ при 300 К (1 — тонкая пленка AgGaTe₂, 2 — монокристалл AgGaTe₂.

завершается в окрестности практически одной и той же энергии 1.08 эВ. С дальнейшим ростом энергии фотонов квантовая эффективность фотопреобразования в исследованных структурах, включающих в качестве компоненты индий, выходит на практически постоянный уровень. Из рис. 2 видно, что для структуры на основе пленки, в составе которой индий заменен на галлий, η продолжает возрастать в очень широкой области энергий. Этот рост, как следует из рис. 3 (кривая 1), подчиняется закону $\sqrt{\eta \hbar \omega} \sim \hbar \omega$. Очень важно отметить, что и в аналогичной структуре на основе объемного монокристалла *p*-AgGaTe₂, который использовался в качестве источника для напыления пленки, спектральная зависимость длинноволновой границы квантовой эффективности фотопреобразования следует аналогичному закону. При этом оказывается, что общепринятая в таких случаях экстраполяция $\sqrt{\eta \hbar \omega} \to 0$ дает одно и то же значение энергии $\hbar\omega \approx 1.06$ эВ. По-видимому, это обстоятельство является следствием того, что развитая технология превращения мишени в тонкую пленку протекает без нарушения состава и кристаллической структуры, исходной для напыления мишени.

Таким образом, выполненное физико-технологическое исследование позволяет сделать вывод о том, что получаемые лазерным осаждением пленки соединений I–III-VI₂ и их твердых растворов могут быть использованы для создания широкополосных тонкопленочных фотопреобразователей естественного излучения.

Список литературы

- [1] H.W. Schock. Sol. Energy Mater. and Sol. Cells, 34, 19 (1994).
- [2] H.W. Schock. Appl. Surf. Sci., 92, 606 (1996).
- [3] H. Neumann, R.D. Tomlinson, Solar. Cells, 28, 301 (1990).
- [4] A. Rocket, R.W. Birkmirc. J. Appl. Phys., 70, R81 (1991).
- [5] J.L. Shay, J.H. Wernick. ternary chalcopyrite semiconductors: Growth, electronic properties and applications (Pergamon Press, N.Y., 1975).
- [6] G.A. Medvedkin, V.D. Prochukhan, Yu.V. Rud', M.A. Tairov. Phys. St. Sol. (b), **151**, 711 (1989).

Редактор В.В.Чалдышев

A photovoltaic effect of In/thin films I–III–VI₂ surface-barrier structures

V.Yu. Rud', Yu.V. Rud'*, I.V.Bodnar[†], V.F. Gremenok[†], O.S. Obrastsova[†], S.L. Sergeev-Nekrasov[†]

St.Petersburg State Technical University, 195251 St.Petersburg, Russia *A.F.loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia † National State University of Information Science and Radioengineering, 220027 Minsk, Belarus