Самокомпенсация в CdTe(CI) в условиях фазового равновесия кристалл–пар кадмия (теллура)

© О.А. Матвеев, А.И. Терентьев

Физико-технический институт им.А.Ф.Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 14 апреля 1997 г. Принята к печати 16 апреля 1997 г.)

Исследовано явление самокомпенсации заряженных точечных дефектов в CdTe \langle Cl \rangle до предельно низких концентраций свободных носителей заряда $(n_i p_i)$ во всем интервале изменения давления паров P_{Cd} и P_{Te} в равновесии кристалл–газ при отжиге. В условиях контроля P_{Te2} при отжиге кристалла обнаружено возрастание концентрации электронов *n* от 10⁷ до 10¹⁴ см⁻³, при увеличении P_{Te} от P_{min} до насыщения CdTe \langle Te \rangle . Этот результат объяснен образованием антиструктурного дефекта, Te_{Cd}. Появление Te_{Cd} в кристалле приводит к уменьшению содержания вакансий кадмия в нем, что нарушает механизм точной самокомпенсации CdTe \langle Cl \rangle и получаются низкоомные кристаллы *n*-типа электропроводности. Полученные данные о концентрации p(n) от P_{Te2} позволили построить полную зависимость $n-n_i-p_i-n$ при изменении $P_{Cd}-P_{Te2}$, отражающую состояние точечных дефектов в CdTe \langle Te \rangle . Использованная методика отжига кристалла в двухфазном равновесии кристалла.

СdTe — бинарное соединение с двумя летучими компонентами. Давление паров кадмия (P_{Cd}) (или теллура (P_{Te})) является параметром состояния, определяющим при данной температуре кристалла CdTe (t_{cr}) его состав, обогащенный кадмием (или теллуром) по сравнению с составом конгруэнтной сублимации (P_{min}) (рис. 1).

В CdTe \langle Cl \rangle , как известно, наблюдается самокомпенсация электропроводности, заключающаяся в уменьшении количества электронов проводимости за счет захвата их собственными точечными дефектами (СТД), образующимися в кристалле [1,2]. Практически самокомпенсация происходит с довольно высокой точностью при термодинамическом равновесии кристалла с газовой фазой [2,3].

Методика отжига кристаллов CdTe (Cl) для исследования явления самокомпенсации подробно описана нами в работе [4]. Суть его состоит в следующем. На первой стадии отжига кристаллы выдерживались при высокой температуре $t_{cr} \ge 700^{\circ}$ C для установления термодинамического равновесного состояния фаз кристалл (CdTe) — газ (Cd,Te). В зависимости от t_{cr} , давления пара $P_{\rm Cd}(P_{\rm Te})$ и концентрации хлора ($N_{\rm Cl}$) образуются соответствующие количества CTД — вакансий кадмия и теллура ($N_{\rm VCd}$, $N_{\rm VTe}$) и межузельных атомов ($N_{\rm Cdi}$, $N_{\rm Tei}$). Образование ассоциатов CTД с Cl_{Te} при этих t_{cr} маловероятно [5].

На второй стадии отжига, заключающейся в медленном охлаждении кристалла до комнатной температуры и управлении $P_{\rm Cd}(P_{\rm Te})$, происходит ассоциация заряженных СТД с ${\rm Cl}_{\rm Te}$ и при этом не только сохраняется самокомпенсированное состояние кристалла [2], а одновременно происходит "самоочистка" кристалла [6]. Самокомпенсация приводит к низкой электропроводности (~ 10^{-9} Om⁻¹ · cm⁻¹), низким *n* и *p* (~ n_i), а самоочистка — к возрастанию величин подвижностей и времен жизни свободных носителей заряда.

Образцы для отжига приготавливались из монокристалла CdTe(Cl), вырезанных из середины кристалли-

ческого слитка. Концентрация $N_{\rm Cl} = 2 \cdot 10^{18} \, {\rm cm}^{-3}$ — навеска CdCl₂, вводимая в расплав, при выращивании слитка. Использовались кристаллы *p*-типа проводимости с $p = (1-5) \cdot 10^8 \, {\rm cm}^{-3}$ и $\mu \cong 40 \, {\rm cm}^2/{\rm B} \cdot {\rm c}$.

Самокомпенсацию проводимости на таких полуизолирующих кристаллах целесообразно изучать около области инверсии проводимости, которая происходит вблизи P_{\min} , когда $P_{Cd} \approx P_{Te}(P_{Te2}^{1/2})$. В этом случае необходимо создать такие условия отжига образцов, при которых будет практически исключена не только даже незначительная сублимация кристалла, но и состав образца будет определяться задаваемым давлением пара одного

Рис. 1. Область существования твердого CdTe на диаграмме состояния Cd–Te (*T*-*X*-координаты).

Рис. 2. *а* — схема установки отжига кристаллов: *1* — зона отжига образцов, *2* — зона печи засыпки, *3* — зона холодная, задающая *P*_{Te2} (*P*_{Cd}), *4* — отжигаемые кристаллы, *5* — засыпка, *6* — теллур (кадмий); *b* — распределение температур в системе по длине печи при отжиге кристаллов.

летучего компонента, а не будет изменен за счет ухода из него в ампулу второго летучего компонента.

Все эти требования могут быть выполнены при проведении отжигов в парах Te2 или Cd на установке, схематично изображенной на рис. 2. Образцы размещались в зоне 1, засыпка — в зоне 2, теллур (кадмий) в зоне *3* вакуумированной ампулы (10⁻⁴ Па). Засыпка приготавливалась измельчением кристалликов из того же слитка, что и образцы для отжига. Большая поверхность кристалликов засыпки демпфирует массообмен образца с газовой фазой, исключая сублимацию образца. Однако, поскольку давление пара одного из летучих компонентов, например, P_{Te2} в ампуле, строго говоря, не предохраняет исследуемый образец от потерь другого летучего компонента, Cd, то, чтобы не произошло изменения исходного состояния образца, температура засыпки выбирается на 5°С выше температуры образца. В этом случае заполнение объема газовой фазы обоими летучими компонентами происходит за счет засылки и теллура (кадмия), помещенного в зону 3, осуществляя, таким образом, защиту образца от неконтролируемых изменений.

В подтверждение правильности выбранного режима отжига могут быть приведены результаты по отжигам в парах кадмия (теллура) при равных температурах образца и засыпки. В этом случае не наблюдалось сублимации образцов. Однако при отжигах в парах кадмия образцы оставались *n*-типа проводимости во всем диапазоне изменения P_{Cd} . Инверсия в *p*-тип не наблюдалась даже при низких P_{Cd} . Это показало в работе [4] (рис.3), что связано, по-видимому, с потерей образцов теллура, ушедшего из образца в газовую фазу на стадии охлаждения. Аналогичные разультаты были получены и при отжиге в парах Те, приведенные в настоящей работе (рис. 3, b).

Далее приведены результаты изучения равновесия фаз кристалл CdTe \langle Cl \rangle — пар Te₂. Область, контролируемая давлением Te₂, интересна, так как при этом должно происходить увеличение N_{VCd} , которые играют, как известно, определяющую роль в процессе самокомпенсации.

Отжиги проводились при температурах $t_{cr} = 735$ и 900°С. Температуры отжигов, при которых исследовали самокомпенсацию в CdTe(Cl) при контролируемом P_{Cd2} , ограничивались сверху ($t_{cr} \leq 900$ °С) наблюдаемой деформацией образца из-за сублимации CdTe. Нижний предел температур отжига $t_{cr} \sim 735$ °С выбирался из соображений длительности диффузионных процессов, определяющих установление состава в кристалле, соответствующего задаваемому P_{Te2} . Время отжига при t_{cr} составляло ≈ 24 ч.

Полученные из измерений коэффициента Холла на отожженных кристаллах величины концентраций свободных носителей заряда в зависимости от P_{Te2} показаны на рис. 3. При низких $P_{\text{Te2}} \sim P_{\text{min}}$ происходит сублимация образца, на рис. 3 это область $P_{\text{Te}} < 10^{-3}$ Па. Из рис. 3 видно, что образцы после отжига получались как p, так и n-типа электропроводности. Для всех t_{cr} отжига можно отметить три хорошо выделенных участка: первый — с низкой и примерно постоянной концентрацией $n(p) \sim (10^7 - 10^9) \text{ см}^{-3}$ для низких P_{Te2} , второй — с высокой $n \sim 10^{14} \text{ см}^{-3}$ для высоких значений P_{Te2} и тре-

Рис. 3. Концентрация свободных носителей заряда в кристалле в зависимости от P_{Te2} , $a - t_{cr} = 735^{\circ}\text{C}$, $b - 900^{\circ}\text{C}$. $1 - t_p = t_{cr}$, $2 - t_p - t_{cr} + 5^{\circ}\text{C}$, темные точки — n, светные точки — p.

тий — переходный между этими участками. Первый — соответствует весьма точному самокомпенсированному состоянию донорных и акцепторных дефектов кристаллической решетки (Cl_{Te}^{+} и V_{Cd}^{-2}). Энергетический уровень V_{Cd}^{-2} в запрещенной зоне $E_{\nu} + 0.83$ эВ [7]. Второй — механизму контролируемой донором электропроводности.

На рис. 3, b, на участке самокомпенсированного состояния донорных и акцепторных точечных дефектов построены две кривые для условий отжига, когда $t_p = t_{cr}$ и $t_p = t_{cr}$ +5°С. Кривая 1, соответствующая первому условию, расположена ниже вдоль оси концентраций и характеризует образцы минимальной электропроводности п-типа. Кривая 2 характеризует преимущественно образцы р-типа электропроводности. Меньшая защищенность от потери атомов кадмия в газовую фазу при отжиге в первом случае приводит к высокому содержанию $V_{\rm Cd}^{-2}$. Глубокий уровень энергии этого дефекта расположен выше середины запрещенной зоны в CdTe и объясняет нижнюю кривую. В образцах, "защищенных" засыпкой при отжиге, р-тип электропроводности объясняется образованием комплексов $[V_{Cd}Cl]^{-}$, уровень энергии которых находится в нижней половине запрещенной зоны.

Рассмотрим результаты, представленные на рис. 3 в области низких $P_{\text{Te2}} \sim P_{\text{min}}$. Образцы, отожженные при $t_{cr} = 735^{\circ}$ С, проявляли только *n*-тип электропроводности (рис. 3, *a*). При этой температуре растворимость V_{Cd} по сравнению с концентрацией Cl_{Te}^+ в кристалле мала (см. рис. 1). В соответствии с процессом самокомпен-

сации [2] образуется заряженный центр V_{Cd}^{-2} , создающий глубокий уровень в запрещенной зоне и определяющий низкую величину *n*. Величина *n* при этом была наименьшей по сравнению с измеренной на кристаллах, отожженных при более высоких t_{cr} . При увеличении t_{cr} , следуя линии P_{min} (см. рис. 1), получается большая концентрация акцепторных СТД (V_{Cd}) в кристалле (рис. 3, *b*). Образцы, отожженные при $t_{cr} = 900^{\circ}$ С при $P_{Te2} \sim P_{min}$, имели электропроводность *p*-типа при малых давлениях, которая при увеличении давления переходила в проводимость *n*-типа (рис. 3, *b*), которая затем, оставаясь *n*-типа, резко возрастала. Этот переход в *n*-тип с резким ростом концентрации электронов при увеличении *P*_{Te2} не объяснить традиционно используемыми СТД в механизме самокомпенсации.

Полученные результаты по переходу в *n*-тип с резким ростом концентрации электронов при увеличении P_{Te2} можно объяснить, рассматривая участие в термодинамическом равновесии антиструктурного дефекта, являющегося донором — $\text{Te}_{\text{Cd}}^{+2}$. Образование антиструктурных дефектов можно представить как переход атомов Те из узлов или межузельных Te_i на место V_{Cd} , концентрация которых возрастает по мере увеличения P_{Te2} :

$$V_{\rm Cd} + {\rm Te}_i = {\rm Te}_{\rm Cd}.$$
 (1)

Расчет энтальпии образования Te_{Cd} для условий насыщения CdTe теллуром дал величину $\Delta H(Te_{Cd}) = 3.76$ эВ [8], что меньше энтальпии образования $\Delta H(V_{Cd}) = 4.75$ [8]. Эти величины существенно

Рис. 4. Концентрация свободных носителей заряда в кристалле в зависимости от P_{Cd} и P_{Te2} при $t_{cr} = 900^{\circ}$ С, темные точки — n, светлые точки — p.

отличаются от известных ранее $\Delta H(\text{Te}_{\text{Cd}}) = 5.56 \text{ эB}$ и $\Delta H(V_{\rm Cd}) = 2.5$ эВ [9,10]. Данные работы [8] позволяют сделать вывод о смещении равновесия (1) в сторону образования антиструктурного дефекта. Доминированием последнего, однако, незьзя объяснить возрастание *n* до $\sim 10^{14}$ см⁻³ в кристалле при увеличении P_{Te2} , так как уровень центра $\text{Te}_{\text{Cd}}^{+2}$ расположен ниже $E_c - 0.6$ эВ в запрещенной зоне теллурида кадмия [8]. Концентрация $n \sim 10^{14} \, {
m cm^{-3}}$ может быть получена в кристалле вследствие уменьшения общего количества V_{Cd} из-за сдвига равновесия (1) вправо. В этом случае произойдет нарушение равновесия самокомпенсации $N_{\rm Cl}^{+} = 1/2N_{V{\rm Cd}^{-2}}$. Остающийся нескомпенсированным донор Cl_{Te}^+ ($E_c - 0.01$ эВ [11]) и является центром, ответственным за *n*-тип электропроводности с такой большой концентрацией носителей заряда.

Расчет в работе [8] показывает, что компенсация может происходить не только при высоких температурах равновесного термодинамического состояния, но и при охлаждении кристалла вследствие локального выигрыша энергии, когда не успевает осуществиться диффузионный сток СТД. Известно, что при высоких температурах содержание Те_i достигает больших значений $\ge 10^{16}$ см⁻³ [12]. Находясь в тетраэдрическом междоузлии, Те_i обладает высокой наружной релаксацией и будет охотно притягиваться к областям, где напряжения кристаллической решетки (возникающие при охлаждении) могут быть устранены, т.е. в области высокой концентрации V_{Cd}, в которых происходит релаксация и сдвиг соседних атомов [13]. Это и будет способствовать созданию антиструктурного дефекта Te_{Cd} , причем концентрации центра могут быть значительными ($\ge N_{Tei}$), а распределение по кристаллу весьма неоднородным, создавая *n*- и *p*-области с компенсированной проводимостью.

На основании результатов по отжигу кристаллов CdTe(Cl) в парах теллура (данные настоящей работы) и в параз кадмия (данные нашей работы [4]) можно привести обобщенную зависимость изменения концентрации носителей заряда от P_{Cd} и P_{Te}. Видно (рис. 4), что при $P_{\rm Cd} \sim 10^4\, \Pi a$ кристалл имеет *n*-тип проводимости с $n \approx 10^{14} \, \mathrm{cm}^{-3}$, который определяется мелкими донорами $\operatorname{Cl}^+_{\operatorname{Te}}$, нескомпенсированными $V_{\operatorname{Cd}}^{-2}$, вследствие малой их концентрации при высоком $P_{\rm Cd}$. С уменьшением $P_{\rm Cd}$ концентрация $V_{\rm Cd}^{-2}$ растет, повышая степень самокомпенсации, концентрация электронов при этом резко падает до величины $\sim 10^7$ см $^{-3}$, и затем наступает инверсия проводимости в *р*-тип. При дальнейшем снижении P_{Cd} концентрация дырок слабо растет до величины $\sim 10^8\,{
m cm}^{-3}$ и затем, уже при увеличении $P_{
m Te2}$, продолжает также слабо расти до $\sim 10^9$ см⁻³. В этой области малых давлений P_{Cd} и P_{Te} дырочная проводимость определяется глубоким акцептором $V_{\rm Cd}^{-2}$, концентрация которых растет по мере возрастания P_{Te2}. А затем в области давлений $P_{\rm Te} \sim 5 \cdot 10^3 \, {\rm \Pi a}$ (на рис. 4 отмечено стрелкой) проводимость кристалла снова меняет знак на п-тип и концентрация электронов резко растет до $\sim 10^{14}\,\text{cm}^{-3}.$ Эта неожиданная инверсия проводимости и ее резкое возрастание объясняется (как и при большом $P_{\rm Cd}$) мелкими донорами — ${\rm Cl}_{\rm Te}^+$, появление которых может быть обусловлено лишь снижением концентрации $V_{\rm Cd}^{-2}$. При высоком $P_{\rm Te}$ это может произойти только за счет образования антиструктурного дефекта Те⁺²_{Cd}. Действительно, с ростом P_{Te2} становится все больше $V_{\rm Cd}^{-2}$ и Te_i, которому, как было сказано выше, энергетически выгодно встать на место $V_{\rm Cd}^{-2}$ и нарушить процесс самокомпенсации. Таким образом, видно, что самокомпенсация идет достаточно полно и приводит к созданию полуизолирующих кристаллов р-и п-типа при давлениях $P_{\rm Cd}$ и $P_{\rm Te} < 10^4$ Па, а при больших давлениях P_{Cd} и P_{Te} самокомпенсация нарушается и получаются низкоомные кристаллы *п*-типа.

Список литературы

- [1] F.A. Kroger, J. Vink. Phys. St. Sol., 3, 310 (1956).
- [2] G. Mandel. Phys. Rev. A, 134, 1073 (1964).
- [3] Ф. Крегер. Химия несовершенных кристаллов (М., 1969) с. 654.
- [4] О.А. Матвеев, А.И. Терентьев. ФТП, 27, 1894 (1993).
- [5] R.O. Bell, F.V. Wald, C. Canaly, F. Nava, G. Ottaviani. IEEE Trans. N.S., NS-21, 331 (1974).
- [6] О.А. Матвеев, Е.Н. Аркадьева, Л.Н. Гончаров. ДАН СССР, 221, 325 (1975).
- [7] E.N. Arkadyeva, O.A. Matveev. Rev. de Phys. Appl., 12, 239 (1977).

163

- [8] M.A. Berding, M. Van Schilfgaarde, A.T. Paxton, A.Sher. J. Vac. Sci. Technol. A, 8, 1103 (1990).
- [9] J.A. Van Vechten. J. Electrochem. Soc., 122, 423 (1975).
- [10] В.Н. Мартынов, С.П. Кобелева. Кристаллография, 28, 394 (1983).
- [11] D. Nobel. Phil Res. Rep., 14, 361 (1959).
- [12] S.S. Chern, F.A. Kroger. J. Sol. St. Chem., 14, 44 (1975).
- [13] J.T. Schick. C.G. Morgan-Pond. J. Vac. Sci. Technol. A, 8, 1108 (1990).

Редактор В.В.Чалдышев

Self-compensation of CdTe(CI) under phase equilibrium conditions in a crystal-gas (cadmium, tellurium) system

O.A. Matveev, A.I. Terent'ev

A.F.loffe Physico-technical Institute, Russian Academy of Sciences, 194021 St.Petersburg, Russia

Abstract The investigation of self-compensation of charged point defects down to extremely low carrier density (n_i, p_i) has been carried out on CdTe(Cl) for the whole interval of variations in $P_{\rm Cd}$ and $P_{\rm Te}$ vapor pressure in crystal — gas equilibrium under annealing condition. It was found that electron concentration *n* from $10^7 \,\mathrm{cm}^{-3}$ to $10^{14} \,\mathrm{cm}^{-3}$ increased with P_{Te} from P_{min} to saturation of CdTe \langle Te \rangle under crystal annealing condition, P_{Te2} being controlled. The result could be explained by forming an antisite intrinsic point defect, Te_{Cd}. Its appearance in the crystal leads to decreasing Cd vacancies concentration that violates a precise self-compensation mechanism in $CdTe\langle Cl\rangle$ and results in obtaining low resistivity crystals of *n*-type conductivity. Data obtained on p(n) concentration as a function of P_{Te2} allowed us to plot a curve of $n-n_i-p_i-n$ versus P_{Cd} and P_{Te} changes, which presents the state of point defects in CdTe \langle Cl \rangle . The method used for crystal annealing in a two-phase gas-crystal equilibrium made it possible to realize a reversible inversion of $n_i - p_i$ conductivity in the crystal.