# Вращательная переориентация директора в нематических твистовых ячейках

© А.В. Захаров, А.А. Вакуленко

Институт проблем машиноведения Российской академии наук, 199178 Санкт-Петербург, Россия

E-mail: avak.@microm.ipme.ru

(Поступила в Редакцию 10 июня 2005 г. В окончательной редакции 16 сентября 2005 г.)

Исследуется ориентационная релаксация директора к его равновесному положению под действием электрических, упругих и вязких моментов, возникающих в нематических твистовых ячейках (НТЯ). Показано, что время релаксации директора сильно зависит от величины внешнего электрического поля и слабо зависит от энергии сцепления молекул жидкого кристалла (ЖК) с поверхностями ячейки. Обнаружен аномально высокий рост времени релаксации директора при значениях электрического поля, близких к пороговой величине Фредерикса. Показано, что при определенных значениях внешнего электрического поля в НТЯ может возникнуть релаксационный режим в виде бегущих волн, распространяющихся от одного края ячейки к другому. Расчет релаксационных процессов вблизи температуры перехода нематик–смектик А показал, что деформация поля директора однородна по всему сечению ЖК-ячейки и не зависит от характера сцепления ЖК-молекул с поверхностями ячейки.

PACS: 64.70.Md, 61.30.Gd, 61.30.Eb

#### 1. Введение

Однородная текстура в нематических твистовых ячейках (НТЯ) создается посредством ориентации капли жидкого кристалла (ЖК), помещенного между двумя параллельными пластинами, которые определяют ориентацию граничных молекул нематика. В случае жесткой ориентации молекул ЖК ограничивающими поверхностями, например, вдоль оси х (ось у направлена перпендикулярно оси x, а ось z перпендикулярно границам ячейки) внутри ячейки ЖК устанавливается однородная ориентация поля директора n параллельно оси x. Если мы приложим элекрическое поле Е параллельно оси у, то возникнет следующая картина. При *E* < *E*<sub>th</sub> внутри ячейки будет оставаться однородная недеформированная ориентация директора параллельно оси x. Здесь Eth пороговое значение Фредерикса для электрического поля в НТЯ, равное [1]

$$E_{\rm th} = \frac{\pi}{d} \sqrt{\frac{K_2}{\epsilon_0 \epsilon_a}},\tag{1}$$

где d — толщина ячейки ЖК,  $K_2$  — коэффициент твистовой упругости Франка,  $\epsilon_0$  — диэлектрическая постоянная вакуума,  $\epsilon_a = \epsilon_{\parallel} - \epsilon_{\perp}$  — диэлектрическая анизотропия ЖК,  $\epsilon_{\parallel}$  и  $\epsilon_{\perp}$  — диэлектрические постоянные ЖК-фазы параллельно и перпендикулярно направлению директора **n**. С ростом величины внешнего электрического поля  $E \ge E_{\rm th}$  возникает деформация однородного распределения ориентаций поля директора между двумя параллельными границами ЖК-ячейки и возникает необходимость описания процесса вращательной релаксации директора к его равновесному положению  $\hat{\mathbf{n}}_{\rm eq}$ . Это режим, в котором директор вращается в плоскости, параллельной обеим стеклянным пластинам, подчинен результирующему крутящему моменту, действующему в НТЯ и направленному перпендикулярно ограничивающим плоскостям. Состояние ЖК, вызванное этим режимом, термодинамически нестабильно, поскольку внешнее электрическое поле направлено параллельно границам ЖК-ячейки (параллельно оси у) и возможны большие ориентационные флуктуации, которые поддерживают состояние ЖК между метастабильным и стабильным состояниями, ослабляя и усиливая действие кручения. Таким образом, если на границах поддерживается постоянный крутящий момент, флуктуации, уменьшающие кручение, релаксируют на суммарном внутреннем крутящем моменте, который уравновешивается моментом, приложенным к границам ячейки. В результате ЖК-фаза будет необратимо испытывать воздействие возрастающего крутящего внутреннего момента до тех пор, пока этот момент не уравновесится внешним заданным моментом. Более того, для тонких или ультратонких НТЯ  $(d < 2-3 \mu m)$  сцепление играет важную роль и влияние поверхности на процесс релаксации необходимо рассматривать во всем диапазоне температур. Особо необходимо обратить внимание на область температур, близких к температуре фазового перехода второго рода нематик-смектик А T<sub>NA</sub>, поскольку это ведет к образованию поверхностных смектических слоев вблизи ограничивающих ЖК поверхностей [2-5]. Рост приповерхностных флуктуаций SmA-фазы в твистовом нематике ведет к перенормировке некоторых вязких и упругих коэффициентов нематической фазы, что сказывается на характере релаксации вращательных процессов в твистовых ячейках. Таким образом, описание релаксационных процессов в НТЯ при разнообразных внешних условиях является нетривиальной проблемой, решение которой и составляет цель настоящей работы. Далее приводятся динамическое уравнение, описывающее переориентацию поля директора в НТЯ, его численное решение и численные оценки релаксации директора к его равновесной ориентации для ряда режимов релаксации как при температурах, близких к  $T_{NA}$ , так и вдали от этой температуры.

## Динамика вращательной переориентации директора в нематической твистовой ячейке

Динамическое уравнение, описывающее переориентацию директора в ячейке между двумя ограничивающими поверхностями, определяется балансом электрических, упругих и вязких моментов и имеет вид [1]

$$\mathbf{T}_{\rm el} + \mathbf{T}_{\rm elast} + \mathbf{T}_{\rm vis} = \mathbf{0}.$$
 (2)

В случае плоской геометрии директор имеет компоненты  $\hat{\mathbf{n}} = (\cos \phi(z), \sin \phi(z), 0);$  в отсутствие течения в нематической ячейке эти моменты записываются в виде  $= \hat{\mathbf{n}} \cdot (\boldsymbol{\nabla} \hat{\mathbf{n}})$  — компоненты кручения молекулярного поля,  $\gamma_1$  — коэффициент вращательной вязкости. В случае плоской геометрии, когда директор n̂ всегда находится в плоскости пластин, параллельной границам (і-і-плоскости, определяемой директором n̂<sub>s</sub> на нижней плоскости (і-направление) и направлением электрического поля (**j**-направление)), вектор  $\hat{\mathbf{k}} = \hat{\mathbf{i}} \times \hat{\mathbf{j}}$  ориентирован нормально к обеим границам ячейки,  $\phi(z)$  обозначает азимутальный угол, т.е. угол между направлениями вектора i и директора n. Следует отметить, что при такой ориентации директора полярный угол, т.е. угол между направлением директора n и нормалью к ограничивающей поверхности, равен  $\pi/2$ . Момент, вызванный электрическим полем, дается выражением  $\mathbf{T}_{\rm el} = \frac{E^2}{2} \epsilon_0 \epsilon_a \sin 2\phi(t, z) \hat{\mathbf{k}}$ . Вязкий момент имеет вид  $\mathbf{T}_{\rm vis} = -\gamma_1 \partial_t \phi(t, z) \hat{\mathbf{k}}$ , где  $\partial_t \phi(t, z) = \partial \phi(t, z) / \partial t$ . Момент упругих сил в НТЯ также известен:  $T_{\text{elast}} = K_2 \partial_{zz} \phi(t, z) \mathbf{k}$ , где  $\partial_{zz}\phi(t,z) = \partial^2\phi(t,z)/\partial z^2$  [1]. Принимая во внимание эти выражения, уравнение (2) можно преобразовать к безразмерному виду

$$\partial_{\tau}\phi(\tau,z) = \partial_{zz}\phi(\tau,z) + \delta\sin 2\phi(\tau,z),$$
 (3)

где  $\tau = \frac{K_2 t}{\gamma_1 d^2}$  — безразмерное время,  $z = \frac{z}{d}$  — безразмерная координата по толщине нематической ячейки, а  $\delta = \frac{\pi^2}{2} \left(\frac{E}{E_{\rm th}}\right)^2$  — безразмерный параметр уравнения. Здесь  $E_{\rm th} = \frac{\pi}{d} \sqrt{\frac{K_2}{\epsilon_0 \epsilon_a}}$  — пороговое поле Фредерикса для твистовой геометрии. Уравнение (3) описывает динамику директора в НТЯ и далее решено численно, однако уравнение статического равновесия

$$\partial_{zz}\phi_{\rm eq}(z) + \delta\sin 2\phi_{\rm eq}(z) = 0 \tag{4}$$

может быть решено аналитически.

2.1. Случай сильного сцепления. В случае сильного сцепления молекул ЖК с ограничивающими поверхностями граничными условиями являются

$$\phi(z)_{z=0} = 0, \quad \phi(z)_{z=1} = 0,$$
 (5)

что физически означает строго параллельную оси x ориентацию директора на обеих ограничивающих поверхностях, в то время как начальная ориентация директора распределена параллельно внешнему полю **E** с  $\phi(\tau = 0, z) = \frac{\pi}{2}$  и затем релаксирует к его равновесному значению  $\phi_{eq}(z)$ . Решение (4) с граничными условиями (5) имеет вид [6]

$$z = 2\delta \int_{0}^{\psi} \frac{d\lambda}{\sqrt{1 - \sin^2 \phi_m \sin^2 \lambda}}$$
$$= 2\delta \mathscr{K}(\psi, \sin \phi_m), \quad 0 \le z \le \frac{1}{2}, \tag{6}$$

где  $\mathscr{K}(\psi, k)$  — эллиптический интеграл первого рода с модулем k ( $k = \sin \phi_m$ ),  $\phi_m = \phi(1/2)$ . Решение для  $\frac{1}{2} < z \leq 1$  получено из уравнения (6) путем простой замены z на 1 - z. Релаксация директора  $\hat{\mathbf{n}}$  к его равновесной ориентации, которая описывается эволюцией



**Рис. 1.** Релаксация азимутального угла  $\phi(\tau, z)$  ( $\tau = K_2 t/\gamma_1 d^2$ ,  $\tau_R$  и z — безразмерные время, время релаксации и толщина ячейки) к его равновесному значению  $\phi_{eq}(z)$  (сплошная линия) в НТЯ, рассчитанная с помощью уравнения (3) и условия 5).  $E/E_{th}$ :  $a = 1.01, b = 0.99, \tau$ : a = 0 (1), 10 (2), 30 (3), 50 (4), 63 ( $\tau_R$ ) (5), b = 0 (1), 3 (2), 5 (3), 7 (4), 9 (5), 11 (6), 14 ( $\tau_R$ ) (7).



**Puc. 2.** To же, что на рис. 1.  $E/E_{\text{th}}$ : a = 5, b = 7.  $\tau$ : a = 0 (1), 0.02 (2), 0.04 (3), 0.06 ( $\tau_R$ ) (4), b = 0 (1), 0.02 (2), 0.04 (3), 0.05 ( $\tau_R$ ) (4).



Рис. 3. То же, что на рис. 1 в случае, когда угол рассчитан с помощью (3) и (7).  $E/E_{\text{th}}$ : a = 5, b = 7.  $\tau$ : a = 0 (1), 0.03 (2), 0.06 (3), 0.08 ( $\tau_R$ ) (4), b = 0 (1), 0.02 (2), 0.04 (3), 0.05 ( $\tau_R$ ) (4).

угла  $\phi(\tau, z)$  из начального состояния  $\phi(\tau = 0, z) = \frac{\pi}{2}$ к  $\phi_{\rm eq}(z)$  при плоской ориентации директора на обеих поверхностях (условия (5)) и различных значениях параметра  $\delta = \frac{\pi^2}{2} \left(\frac{E}{E_{\rm th}}\right)^2$ , исследована стандартным численным методом [7]; результаты показаны на рис. 1 и 2. Установлено, что угол  $\varphi( au,z)$  в случае  $E/E_{
m th} \leq 1.0$ (случай 1) релаксирует к нулю, в то время как в случае  $E/E_{\rm th} = 1.01$  (случай 2) азимутальный угол  $\phi(\tau, z)$  релаксирует к малому равновесному углу  $\phi_{\rm eq}(z)$ и значения  $\phi_{eq}(z)$  изменяются очень медленно между 0 на границе ячейки и 0.2  $(\sim 11.5^{\circ})$  в ее центре. Мы определили время релаксации  $\tau_R$  в НТЯ как время, необходимое действующим на директор моментам для того, чтобы сориентировать директор таким образом, чтобы  $\delta = |(\phi(t_R) - \phi(t_{eq})) / \phi(t_{eq})|$  было меньше любой заранее заданной величины. В наших вычислениях  $\delta = 10^{-4}$ . Важно отметить, что в случае 2 баланс между электрическим, упругим и гидродинамическим моментами, действующими на директор, влияет на величину времени релаксации  $\tau_R = \frac{\gamma_1 d^2}{K_2} t_R$  примерно в 4 раза сильнее, чем в случае 1. Было установлено, что с ростом величины электрического поля  $E/E_{\rm th}$  от 1.01 до 7.0 значение времени релаксации  $\tau_R$  уменьшается на два порядка. При этом азимутальный угол  $\phi(\tau, z)$  релаксирует к равновесному углу  $\phi_{eq}(z)$ , который в свою очередь при  $E/E_{\rm th} = 7.0$  очень быстро изменяется по сечению ячейки (в пределах первых 0.2 слоя от границы — от 0 до  $\pi/2$ ). В случае граничных условий

$$\phi(z)_{z=0} = 0, \qquad \phi(z)_{z=1} = \frac{\pi}{2},$$
 (7)

когда директор на верхней границе ЖК-ячейки сориентирован под прямым углом к направлению директора на нижней границе (причем, как и ранее, оба эти вектора остаются в плоскости пластин), релаксация директора к его равновесной ориентации показана на рис. 3. Процессы релаксации в его окрестности порогового значения электрического поля  $E/E_{\rm th} = 1.01$  для геометрии с граничными условиями (7) примерно в 2 раза быстрее, чем для тех же релаксационных процессов с граничными

Времена ориентационной релаксации, рассчитанные с помощью уравнения (3) для граничных условий (5) (случай 1) и (7) (случай 2)

| $E/E_{ m th}$ | $	au_R$ (1) | $	au_R$ (2) |
|---------------|-------------|-------------|
| 0.99          | 14          | 0.8         |
| 1.01          | 63          | 0.75        |
| 1.05          | 13          | 0.71        |
| 1.1           | 6.3         | 0.6         |
| 2.0           | 0.6         | 0.3         |
| 3.0           | 0.35        | 0.18        |
| 4.0           | 0.15        | 0.1         |
| 5.0           | 0.063       | 0.08        |
| 6.0           | 0.06        | 0.06        |
| 7.0           | 0.05        | 0.05        |
|               |             |             |



**Рис. 4.** Влияние внешнего поля  $E/E_{\text{th}}$  на время релаксации  $\tau_R$  для случая сильного сцепления молекул ЖК с ограничивающими поверхностями при граничных условиях (5) (*a*) и (7) (*b*).

условиями (5). Вычисления также показали, что влияние внешнего поля  $E/E_{\rm th}$  на время релаксации  $\tau_R$  для обоих типов граничных условий (5) и (7) убывает по мере того, как  $E/E_{\rm th}$  увеличивается. Значения  $\tau_R$  насыщаются при  $E/E_{\rm th} \sim 6.0$  (см. таблицу). Влияние электрического поля E на время релаксации  $\tau_R$  директора  $\hat{\mathbf{n}}$  к его равновесной ориентации в НТЯ с граничными условиями (5) (случай 3) и (7) (случай 4) показано на рис. 4. Оба эти случая (3 и 4) характеризуются увеличением времени релаксации по мере уменьшения величины поля E. Заметим, что релаксационный режим 4 характеризуется меньшими (примерно в 2 раза) временами релаксации, чем режим 3.

2.2. Случай слабого сцепления. Рассмотрим ту же ситуацию для НТЯ в случае, когда директор слабо сцеплен с обеими ограничивающими поверхностями, а энергия сцепления записана в виде [8]

$$W_{az} = W_{az}(\phi_s - \phi_0) = \frac{1}{2}A\sin^2(\phi_s - \phi_0),$$
 (8)

где A — плотность энергии сцепления,  $\phi_s$  и  $\phi_0$  — азимутальные углы, отвечающие ориентации директора на границе и оси легкого ориентирования  $\hat{\mathbf{e}}$  соответственно. На поверхностях действуют следующие моменты: 1) упругий момент  $T_{\text{elast}} = \frac{K_2}{d} (\partial_z \phi(z))_{z=0,1}$ , стремящийся развернуть  $\hat{\mathbf{n}}_s$  вдоль **E**; 2) противоположный момент, обусловленный энергией сцепления с поверхностью  $T_{\text{anchor}} = -\partial W/\partial \phi_s$ , который поворачивает  $\hat{\mathbf{n}}_s$  в сторону  $\hat{\mathbf{e}}$ ; 3) поверхностный вязкий момент  $T_{\text{vis}} = -\gamma_s \partial_t \phi_s$ . На временной шкале  $t \ll \tau_s = \gamma_s/(K_2 - dA\Delta\phi)$ , где  $\Delta\phi = \phi_s - \phi_0$ , эффектом поверхностной вязкости в балансе моментов можно пренебречь, и граничное условие для азимутального угла  $\phi(z, \tau)$  принимает вид

$$\left(\partial_z \phi(z)\right)_{z=0,1} = \pm A \, \frac{d}{K_2} \, \Delta \phi \,. \tag{9}$$

Здесь для упругих моментов учтена различная ориентация внешней нормали к граничным поверхностям z = 0 и z = 1. Для нематика 4-*n*-octyl-4'-cyanobiphenyl (8ЦБ) в работе [9] получена величина  $K_2 = 5.84 \,\mathrm{pN}$ при  $T = 308 \,\mathrm{K}$ , для тонких (или ультратонких HTЯ)  $d \sim 2.0 - 2.5 \,\mu$ m. Для случая ограничивающих поверхностей, образованных оловянной окисью индия (indium tin oxide), данные для A, полученные с помощью различных экспериментальных методов, изменяются в интервале от  $10^{-4}$  до  $10^{-6}$  J/m<sup>2</sup>; таким образом комбинация  $\frac{Ad}{K_2}$ изменяется между 0.43 и 43. В случае малых  $\Delta \phi$ , например  $\Delta \phi \in [0.03, 0.3]$ , значения  $\frac{Ad}{K_2} \Delta \phi$  лежат в промежутке (0.01, 4.0). Заметим, что максимальные отклонения  $\Delta \phi \sim 10^{\circ}$  [10]. Стационарное решение уравнения (4) с граничными условиями (9) исследовано стандартным численным методом, результаты вычислений для ряда значений E/Eth представлены на рис. 5, причем величина нормированной плотности энергии сцепления была взята равной  $\frac{Ad}{K_2}\Delta\phi = 0.1$ . Обнаружено, что значения  $\phi(\tau, z)$  в случае  $E/E_{\rm th} \sim 1.0$  (кривая 4) релаксируют к нулю, в то время как при  $E/E_{\rm th} > 1.0$  (кривые 1-3) азимутальный угол релаксирует к равновесному углу  $\phi_{eq}(z)$ и значения  $\phi_{eq}(z)$  изменяются очень быстро с ростом Eдо величины  $E/E_{\rm th} = 6.0$  (в пределах первых 0.13 слоя от границ ЖК-ячейки между значениями 0 и  $\pi/2$ ). Релаксация директора n к его равновесному значению, которая описывается релаксацией угла  $\phi(\tau, z)$  от начального условия (см. линии 1 на рис. 6) к  $\phi_{eq}(z)$  с



Рис. 5. Распределение стационарного угла  $\phi(z)$  по НТЯ, рассчитанное с помощью уравнения (4) и условия (9).  $\frac{Ad}{K_2}\Delta\phi = 0.1. E/E_{\text{th}}$ : I - 6.0, 2 - 4.0, 3 - 2.0, 4 - 1.0.



Рис. 6. То же, что на рис. 1 в случае, когда угол рассчитан с помощью (3) и (9), при  $E/E_{\text{th}} = 3.0. \frac{Ad}{K_2} \Delta \phi$ : a = 0.1, b = 0.01. $\tau$ : a = 0 (1), 0.02 (2), 0.04 (3), 0.075 ( $\tau_R$ ) (4), b = 0 (1), 0.04 (2), 0.08 (3), 0.125 ( $\tau_R$ ) (4).



**Рис. 7.** То же, что и на рис. 6, при  $\frac{Ad}{K_2} \Delta \phi = 0.1. E/E_{\text{th}}: a - 3.0,$  $b - 4.0. \tau: a - 0.01 (1), 0.03 (2), 0.05 (3), 0.0075 (<math>\tau_R$ ) (4), b - 0.01 (1), 0.03 (2), 0.06 ( $\tau_R$ ) (3).



**Рис. 8.** Влияние нормированной плотности энергии сцепления  $\frac{Ad}{K_2} \Delta \phi$  при  $E/E_{\text{th}} = 4.0$  (*a*) и нормированного внешнего поля  $E/E_{\text{th}}$  при  $\frac{Ad}{K_2} \Delta \phi = 0.1$  (*b*) на время релаксации  $\tau_R$ , рассчитанное с помощью (3) и (9).

граничным условием (9), при значениях  $\frac{Ad}{K_2}\Delta\phi = 0.01$ и 0.1 и величине внешнего поля  $E/E_{\rm th} = 3.0$  пред-ставлена на рис. 6. С ростом значений  $\frac{Ad}{K_2}\Delta\phi$  от 0.01 до 0.1 значение времени релаксации  $\tau_R$  медленно изменяется между 0.075 и 0.125. Релаксация директора n̂ к его равновесной ориентации при значениях  $E/E_{\rm th} = 3.0$ и 4.0 показана на рис. 7. Рост внешнего поля  $E/E_{\rm th}$ при фиксированном значении  $\frac{Ad}{K_2}\Delta\phi = 0.1$  ведет к ме-деленному изменению времени релаксации  $\tau_R$  между 0.075 и 0.06. Характер влияния внешнего электрического поля Е на процесс релаксации директора к равновесной ориентации в НТЯ с граничным условием (9) показан на рис. 8, *b*. С ростом значений  $E/E_{\rm th}$  от  $\sim 1.0$  до 4.0 время релаксации  $\tau_R$  убывает на порядок. Влияние величины плотности энергии сцепления A на время релаксации  $\tau_R$ директора к его равновесной ориентации в НТЯ с граничным условием (9) показано на рис. 8, а. Электрическое поле  $(E/E_{\rm th} = 4.0)$  поворачивает директор в равновесное положение практически с одним и тем же временем релаксации  $\tau_R$ , которое медленно убывает с уменьшением значений плотности энергии сцепления до величины 0.075 для  $\frac{Ad}{K_2}\Delta\phi = 0.01$  и до величины 0.05 для



Рис. 9. Угловая скорость  $\omega(\tau, z)$  директора  $\hat{\mathbf{n}}(\tau, z)$  в НТЯ, рассчитанная с помощью (3) и (9) при  $E/E_{\text{th}} = 2.5$  и  $\frac{Ad}{K_2} \Delta \phi = 0.1$ для моментов времени  $\tau_1 = 0.04$ ,  $\tau_2 = 0.05$ ,  $\tau_3 = 0.06$  (*a*) и  $\tau_4 = 0.075$ ,  $\tau_5 = 0.09$ ,  $\tau_6 = \tau_R = 0.15$  (*b*).

 $\frac{Ad}{K_2} \Delta \phi = 4.0.$  Вычисление значений функции  $\phi(\tau, z)$  позволяет определить угловую скорость  $\omega(\tau, z) = \partial_\tau \phi(\tau, z)$  директора  $\hat{\mathbf{n}}$  в НТЯ. Характер изменения угловой скорости  $\omega(\tau, z)$  показывает, что при величине внешнего поля  $E/E_{\rm th} = 2.5$  (рис. 9) угловая скорость директора характеризуется увеличением в пределах первого интервала изменения времени релаксации (~0.06) до  $\omega(\tau, z) = 25 \,\mathrm{s}^{-1}$  и быстрым убыванием до нуля в пределах второго интервала его изменения (~0.15). Заметим, что второй интервал характеризуется сложным поведением  $\omega(\tau, z)$ . Значения  $\omega(\tau, z)$ , соответствующие  $\tau = \tau_4$  (рис. 9, b), показывают, что самые высокие скорости  $\omega(\tau_4, z)$  реализуются посередине между границами и центром ячейки.

2.3. Случай решения в виде бегущей волны. Рассмотрим релаксационные процессы в форме бегущих волн, распространяющихся в НТЯ с вязкой диссипацией, определяемой динамическим уравнением Колмогорова–Фишера [11,12]

$$\gamma_1 \partial_t \phi(t, z) = K_2 \partial_{zz} \phi(t, z) + \Delta \sin 2\phi(t, z), \qquad (10)$$

где  $\Delta = \frac{\epsilon_0 \epsilon_a E^2}{2}$ . Поскольку в нашем случае поле **E** направлено параллельно оси *y*, состояние  $\phi_{z=0}(z) = 0$  нестабильно и фронт  $\phi(t, z)$  начинает двигаться от одного края (z = 0) ячейки к другому (z = d). Его скорость определяется балансом упругого, электрического

и гидродинамического моментов. Асимптотическая скорость v задается простым динамическим механизмом, и  $\phi(t = 0, z)$  убывает экспоненциально с длиной когерентности, обратно пропорциональной величине поля E. Скорость распространения фронта v получается при подстановке выражения

$$\phi(t, z) \sim \exp\left[-E\sqrt{\frac{\epsilon_0\epsilon_a}{K_2}}(z-vt)\right]$$
 (11)

в линеаризованное уравнение (10). Очевидно, что самая низкая скорость имеет значение

$$v = 2\sqrt{\frac{\epsilon_0 \epsilon_a K_2}{\gamma_1^2}} E,$$
(12)

т.е. пропорциональна величине электрического поля E, а самая узкая волна с шириной  $\kappa$  обратно пропорциональна величине поля E

$$\kappa = \sqrt{\frac{K_2}{\epsilon_0 \epsilon_a}} \frac{1}{E}.$$
 (13)

Таким образом, только при условии  $\kappa < d$  или  $E > E_{\rm th}/\pi$  возможно формирование режима релаксации в виде бегущей волны в НТЯ.

2.4. Температуры, близкие к  $T_{NA}$ . По мере того как температура ячейки приближается к  $T_{NA}$ , предпереходные флуктуации становятся достаточными для того, чтобы вызывать новый момент  $T_{fl}$ , который противодействует  $T_{vis}$ . Физическая природа  $T_{fl}$  связана с влиянием сдвигового течения на область флуктуаций. В результате эффект флуктуаций в нулевом приближении отражается в перенормировке коэффициентов  $\gamma_1$  и  $K_2$  [13–16]

$$\bar{\gamma} = \gamma_1 + \gamma_1^c, \tag{14}$$

$$\overline{K}_2 = K_2 + K_2^c, \tag{15}$$

где  $\gamma_1^c = \frac{k_B T}{4} \frac{\pi}{\xi_0} \sqrt{\frac{\rho_m}{K_1}} \eta^{\nu-1}$ . Здесь  $K_1$  — коэффициент поперечной упругой деформации,  $\rho_m$  — плотность вещества,  $\xi_0$  — базовая корреляционная длина,  $\eta = (T/T_{NA} - 1)$  — нормированная температура,  $\nu = \nu_{\parallel}$  — критический показатель. В нашем случае деформация кручения  $K_2^c$  может быть записана в виде [13]

$$K_{2}^{c} = \frac{k_{B}T}{6} \frac{\pi}{l^{2}} \frac{\xi_{\perp}^{2}}{\xi_{\parallel}} = \frac{k_{B}T}{6} \frac{\pi}{l^{2}} \frac{\xi_{0,\perp}^{2}}{\xi_{0,\parallel}} \eta^{-2\nu_{\perp}+\nu_{\parallel}}.$$
 (16)

Здесь l — интервал между слоями образующейся смектической фазы,  $\xi_{\parallel} = \xi_{0,\parallel} \eta^{-\nu_{\parallel}}$  и  $\xi_{\perp} = \xi_{0,\perp} \eta^{-\nu_{\perp}}$  — продольная и поперечная корреляционные длины,  $\xi_{0,\parallel}$  и  $\xi_{0,\perp}$  — их базовые части соответственно. Следует отметить, что в окрестности  $T_{NA}$ 

$$\lim_{\eta \to 0} \frac{\overline{K}_2}{\bar{\gamma}_1} \sim \frac{\eta^{-2\nu_\perp + \nu_\parallel}}{\eta^{-1 + \nu_\parallel}} \sim \eta^{1 - 2\nu_\perp}$$

В случае полярного ЖК 8ЦБ  $\nu_{\parallel} \sim 0.67, \nu_{\perp} \sim 0.55, \xi_{0,\parallel} \sim 0.45 \text{ nm}$  и  $\xi_{0,\perp} \sim 0.2 \text{ nm}$  [4,5], и приведеный выше предел принимает значение  $\lim_{\eta\to 0} \frac{K_2}{\gamma_1} \to \infty$ . В результате эффект флуктуаций отражается в перенормировке

величин  $\gamma_1$  и  $K_2$  в уравнении (10) в  $\bar{\gamma}_1$  и  $\overline{K}_2$  соответственно, и с учетом указанного выше в окрестности  $T_{NA}$ уравнение (10) принимает вид

$$\partial_{zz}\phi(t,z) = 0. \tag{17}$$

Вместе с граничными условиями  $\phi_{z=0,1}(z) = 0$ , соответствующими случаю сильного сцепления молекул ЖК с ограничивающими поверхностями, решение уравнения (17) имеет вид  $\phi = \phi_s(T_{NA}) \equiv 0$ . Физически это означает, что директор недеформирован по всему сечению ячейки подобно случаю, когда внешнее электрическое поле отсутствует, а температура значительно выше  $T_{NA}$ . В другом случае, когда температура НТЯ близка к  $T_{NA}$ , а граничное условие

$$\partial_z \phi(t, z)_{z=0,1} = 0,$$
 (18)

что соответствует случаю слабого сцепления молекул ЖК с ограничивающими поверхностями, уравнение (17) имеет решение  $\phi(z) = \phi_s(T_{NA})$ . Физически это означает, что ориентация директора однородна по всему сечению НТЯ. Следует отметить, что вблизи температуры переходы второго рода  $T_{NA}$  скорость распространения бегущей волны v = 0. Это следует непосредственно из определения скорости бегущей волны в виде

$$\lim_{\eta \to 0} v = \lim_{\eta \to 0} \left[ 2 \sqrt{\frac{\epsilon_0 \epsilon_a K_2}{\gamma_1^2}} E \right] \to 0, \tag{19}$$

поскольку в этой формуле использовались разные скорости расходимости величин K<sub>2</sub> и  $\gamma_1$  вблизи T<sub>NA</sub>. Таким образом, в окрестности температуры перехода Т<sub>NA</sub>, когда значения температуры отличаются от Т<sub>NA</sub> на несколько десятков mK, ориентация поля директора становится однородной и  $\phi \equiv 0$  по всему сечению ячейки. Такое аномальное выравнивание распределения поля директора n, когда роль электрического поля становится важной только при значениях Е, возрастающих пропорционально  $(T/T_{NA} - 1)^{\nu}$  по мере охлаждения образца нематика, при температуре порядка десятков mK выше  $T_{NA}$ , повидимому, можно наблюдать экспериментально. Следует отметить, что момент силы  $T_{sur} = K_2 \sin(\phi_s)/\xi$ , действующий на директор n, на поверхности ячейки стремится сориентировать его вдоль направления электрического поля E, в то время как момент сил  $T_{\text{anchor}} = -\partial W / \partial \phi_s$ , обусловленный энергией сцепления W, стремится развернуть директор в противоположном направлении (параллельно оси легкого ориентирования ê). Здесь  $\xi = \sqrt{K_2/(\epsilon_0 \epsilon_a)/E}$  — электрическая длина когеренстности [1]. Таким образом, баланс моментов, действующих на директор  $\hat{\mathbf{n}}_s$  на поверхности, принимает вид

$$T_{\text{sur}} + T_{\text{anchor}} = \frac{K_2}{\xi} \sin \phi_s - \partial_{\phi_s} W$$
$$= \frac{K_2}{\xi} \sin \phi_s - \frac{A}{2} \sin 2(\phi_s - \phi_0) = 0. \quad (20)$$

Здесь  $\phi_s$  — азимутальный угол ориентации директора на поверхности,  $\phi_0$  — азимутальный угол ориентации

оси легкого ориентирования. Таким образом, имеем соотношение, связывающее энергию сцепления молекул ЖК с твердой поверхностью, упругие и диэлектрические свойства ЖК и углы  $\Delta \phi = \phi_s - \phi_0$  и  $\phi_s$ ,

$$A\sin 2\Delta\phi = 2\sqrt{K_2\epsilon_0\epsilon_a}E\sin\phi_s.$$
 (21)

Когда температура  $T \to T_{NA}$ , плотность энергии сцепления A также стремится к бесконечности пропорционально  $\eta^{-\nu_{\perp}+\nu_{\parallel}/2}$  с уменьшением  $\eta$ . Недавно с помощью методов динамического светового рассеяния был зафиксирован аномальный рост плотности энергии сцепления A для соединения 8ЦБ при температурах, близких к  $T_{NA}$  [17]. Учитывая тот факт, что коэффициент твистовой деформации Франка вблизи температуры фазового перехода ( $T \sim 307 \text{ K}$ )  $K_2(8 \text{ЦБ}) \sim 8 \text{ pN}$  [9,18], можем рассчитать пороговое напряжение, соответствующее размерам этой ячейки:  $U_{\text{th}} = \pi \sqrt{\frac{K_2}{\epsilon_0 \epsilon_a}} \sim 0.9 \text{ V}$ . Экспериментально установлено, что значение угла  $\Delta \phi$  мало и составляет  $\sim 10^{\circ}$  [10], поэтому sin  $2\Delta \phi \sim 2\Delta \phi$ . Таким образом, мы располагаем уравнением, позволяющим рассчитать значение угла  $\phi_s$ 

$$\sin\phi_s = \frac{\Delta\phi A}{\sqrt{K_2\epsilon_0\epsilon_a}E} = \frac{\Delta\phi A}{\sqrt{K_2\epsilon_0\epsilon_a}}\frac{d}{dt}$$

Все это позволяет получить величину  $\sin \phi_s(T_{NA}) \sim 0.05$ . Таким образом, по мере охлаждения помещенной во внешнее электрическое поле нематической ячейки с ЖК, допускающим фазовый переход второго рода, начальная деформация поля директора должна смениться недеформированным однородным распределением поля директора по всему сечению НТЯ со значением угла  $\lim_{T\to T_{NA}} \phi_s(T_{NA}) \sim 0$ . Плотность энергии сцепления *A* как функция температуры, вычисленная с помощью уравнения (21), представлена на рис. 10. При этом



Рис. 10. Зависимость плотности энергии сцепления A от температуры (I), рассчитанная с помощью уравнения (21), и измеренные значения A [18] для 8ЦБ (2).

наблюдается удовлетворительное согласие расчетных и измеренных [17] с помощью методов динамического рассеяния света значений плотности энергии сцепления.

## 3. Заключение

В настоящей работе исследовано явление ориентационной релаксации в НТЯ как в случае сильной, так и в случае слабой энергии сцепления молекул ЖК с ограничивающими поверхностями, а также времена релаксации для этих режимов в окрестности температур перехода второго рода нематик-смектик А и вдали от них. Релаксация директора n к его равновесной ориентации  $\hat{\mathbf{n}}_{eq}$  в НТЯ под действием внешнего электрического поля Е, направленного параллельно ограничивающим поверхностям, рассчитана с помощью уравнения баланса моментов, образованных электрическими, упругими и гидродинамическими силами, действующими на директор. Установлено, что с уменьшением электрического поля величина времени релаксации как в случае сильного, так и в случае слабого сцепления молекул ЖК с ограничивающими поверхностями аномально возрастает. В свою очередь исследование поля угловых скоростей директора в процессе релаксации к его равновесному положению показывает, что под действием электрического поля его величина достигает максимума в пределах короткого промежутка времени релаксации, а потом медленно убывает к нулю. Установлен режим, который способствует возникновению бегущих волн в процессе релаксации директора в НТЯ. Численные исследования релаксационных процессов в области температур, близких к  $T_{NA}$ , т.е. в нескольких десятках mK от  $T_{NA}$ , в нематической фазе показывают, что в этом режиме устанавливается однородное недеформированное состояние поля директора по всему сечению нематической ячейки. Эта ситуация аналогична случаю сильного сцепления в присутствии только упругих сил при температуре, далекой от T<sub>NA</sub>. Мы надеемся, что настоящее исследование позволит приблизиться к пониманию не только релаксационных, но и энергетических процессов вблизи точек фазового перехода второго рода и вдали от них.

### Список литературы

- П. де Жен. Физика жидких кристаллов. Мир, М. (1977). 400 с.
- [2] Ch. Rosenblatt. Phys. Rev. Lett. 53, 791 (1984).
- [3] A.V. Zakharov, J. Thoen. Phys. Rev. E 69, 011704 (2004).
- [4] B.M. Ocko, A. Braslau, P.S. Pershan, J. Als-Nielsen, M. Dentch. Phys. Rev. Lett. 57, 94 (1986).
- [5] B.M. Ocko. Phys. Rev. Lett. 64, 2160 (1990).
- [6] А.П. Прудников, Ю.А. Брычков, О.И. Маричев. Интегралы и ряды. Физматгиз, М. (2003). 626 с.
- [7] И.С. Березин, Н.Р. Жидков. Методы вычисления. Физматгиз, М. (1964). 464 с.

- [8] A. Rapini, M. Papoular. J. Phys. Colloq. (Paris) 30, 1, 4 (1969).
- [9] P.P. Karat, N.V. Madhusudana. Vol. Cryst. Liq. Cryst. 40, 239 (1977).
- [10] L.Z. Ruan, M.A. Osipov, J.R. Sambles. Phys. Rev. Lett. 86, 4548 (2001).
- [11] А.Н. Колмогоров, Г.И. Петровский, Н.С. Пискунов. Бюл. МГУ А 6, 1 (1937).
- [12] R.A. Fisher. Ann. Eugenics 7, 355 (1937).
- [13] F. Jahnig, F. Brochard. J. Phys. (France) 35, 301 (1974).
- [14] R.F. Bruinsma, C.R. Safinya. Phys. Rev. A 43, 5377 (1991).
- [15] A.V. Zakharov, A.A. Vakulenko, J. Thoen. J. Chem. Phys. 118, 4253 (2003).
- [16] A.V. Zakharov, J. Thoen. Eur. Phys. J. E 9, 461 (2002).
- [17] M. Vilfan, M. Copic. Phys. Rev. E 68, 031 704 (2003).
- [18] S. Faetti, V. Palleschi. Liq. Cryst. 2, 261 (1987).