Магнитная анизотропия системы нанокристаллических частиц ВаО · 6Fe₂O₃

© З.В. Голубенко, А.С. Камзин*, Л.П. Ольховик, Ю.А. Попков, З.И. Сизова

Харьковский государственный университет,

310000 Харьков, Украина

* Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Поступила в Редакцию 13 февраля 1998 г. В окончательной редакции 7 апреля 1998 г.)

Исследована магнитная анизотропия системы частиц бариевого феррита со средним диаметром 60 nm. По методу приближения намагниченности к насыщению определены значения эффективной константы анизотропии в интервале температур 4.2 K- T_c . Наблюдаемое отличие от значения константы магнитокристаллической анизотропии объясняется отрицательным вкладом "поверхностной" анизотропии. Сделана оценка этого вклада в зависимости от размера частиц.

Гексагональный феррит бария BaO · 6Fe₂O₃ имеет коллинеарную пятиподрешеточную магнитную структуру и одноосную магнитокристаллическую анизотропию с осью легкого намагничивания (ОЛН), параллельной гексагональной оси **с**.

Энергия магнитокристаллической анизотропии одноосного кристалла может быть записана в виде

$$E_a = K_1 \sin^2 \theta + K_2 \sin^4 \theta + \dots, \qquad (1)$$

где K_1 и K_2 — константы анизотропии, θ — угол между направлением магнитного момента и ОЛН. Константа K_1 феррита бария положительна и значительно больше, чем K_2 .

Для однодоменных частиц наряду с магнитокристаллической анизотропией существенную роль могут играть два других вида магнитной анизотропии: "поверхностная" и анизотропия формы.

Энергия анизотропии формы, отнесеннная к единице объема, есть

$$E_a^f = K_f, \tag{2}$$

где константа анизотропии формы K_f для одноосного кристалла равна $\frac{NI_{\star}^2}{2}$ (I_s — намагниченность насыщения, N — размагничивающий фактор кристалла, равный разности размагничивающих факторов вдоль оси, N_{\parallel} , и перпендикулярно ей, N_{\perp}). Для пластинчатой шестигранной частицы гексаферрита бария, рассматриваемой как сжатый эллипсоид вращения, малая ось которого совпадает с гексагональной осью **с**,

$$N(R) = N_{\parallel} - N_{\perp} = 2\pi \left\{ \left[\frac{3R^2}{R^2 - 1} \right] \times \left[1 - \frac{1}{\sqrt{R^2 - 1}} \arccos\left(\frac{1}{R}\right) \right] - 1 \right\}, \quad (3)$$

где R = d/h, d — диаметр, h — толщина частицы [1].

"Поверхностная" анизотропия обусловлена наличием структурно-дефектной открытой поверхности, влияние которой тем значительнее, чем меньше частица. При этом под "поверхностной" анизотропией подразумевается магнитная анизотропия приповерхностной зоны конечной толщины [2]. Для ее характеристики можно ввести константу K_s.

С учетом вкладов всех трех упомянутных видов анизотропии эффективная константа анизотропии запишется следующим образом:

$$K_{\rm ef} = K_1 - K_f + K_s \frac{V_s}{V},\tag{4}$$

где V — объем частицы, V_s — объем ее приповерхностного слоя.

Константы магнитокристаллической анизотропии и анизотропии формы для рассматриваемых частиц противоположны по знаку, знак константы и величина вклада "поверхностной" анизотропии неоднозначны и могут быть выяснены лишь путем анализа результатов экспериментального исследования эффективной анизотропии.

В данной работе исследовалась магнитная анизотропия системы нанокристаллических частиц феррита бария с незамещенной магнитной матрицей.

Исследуемый порошковый образец был получен с использованием нетрадиционной криохимической технологии [3].

В качестве исходных ферритообразующих компонентов применялись воднорастворимые совместимые соли $Fe(NO_3)_3 \cdot 9H_2O$ и $Ba(NO_3)_2$. Для стабилизации химической однородности нитратной системы использовался комплексообразующий агент Cit-ион. Сублимированная ферритообразующая смесь подвергалась термообработке при относительно низкой (для феррита бария) температуре ($T \leq 800^{\circ}C$), оказавшейся достаточной в данном случае для обеспечения практически полной ферритизации. В результате была получена система однодоменных пластинчатых частиц размером от 20 до 160 nm (рис. 1). Мессбауэровские исследования при 300 K показали отсутствие каких-либо примесных фаз, а также парамагнитной фракции.

Рис. 1. Зависимость вклада "поверхностной" анизотропии в эффективную константу от дисперсности системы при 300 К.

Для определения эффективной константы магнитной анизотропии использовался закон приближения намагниченности к насыщению [4] в виде

$$I(H) = I_s(1 - A/H - B/H^2 - \dots).$$
 (5)

Член A/H приписывается существованию неоднородностей, которые могут тормозить процессы намагничивания. В данном исследовании этот вопрос не анализировался.

Коэффициент *В* в разложении (5) связан с магнитной анизотропией. Для одноосного гексагонального кристалла [5]

$$B = \frac{4}{15} \frac{K_{\rm ef}^2}{I_s}.$$
 (6)

На рис. 2 представлены кривые намагничивания $\sigma(H)$ для ряда температур, измеренные на термически размагниченном плотноупакованном порошковом образце, и соответствующие им кривые $\Delta \sigma \cdot H^2 = f(H)$ $(\Delta \sigma = \sigma_s - \sigma(H), \sigma$ — удельная намагниченность). Области приближения к насыщению на кривой $\Delta \sigma \cdot H^2 = f(H)$ соответствует прямолинейный участок ab, при экстраполяции которого к оси ординат отсекается отрезок, равный $B \cdot \sigma_s$. Следует отметить несвойственный макрообъекту (поликристаллу или порошку, состоящему из более крупных частиц) характер кривой намагничивания, который особенно наглядно проявляется на кривых $\Delta \sigma \cdot H^2 = f(H)$. Линейному участку подхода к насыщению аb предшествует область с ярко выраженным максимумом, который с ростом температуры постепенно сглаживается и при 649 К отсутствует. Наблюдаемая особенность, по-видимому, связана со спецификой процессов намагничивания в системе однодоменных ультрамалых частиц.

На рис. 3 приведена полученная температурная зависимость эффективной константы анизотропии исследуемого порошка в сравнении с зависимостью $K_1(T)$ для поликристалла [6]. Как видно, в температурном интервале 4.2 К- T_c K_{ef} меньше по величине, чем K_1 . Сделанные оценки показали, что учет вклада только анизотропии формы, на котором акцентируется внимание, например, в работе [7], недостаточен для объяснения наблюдаемого в рассматриваемом случае различия. Так, при 300 К даже для частиц системы с максимальным значением d/h = 4 он равен $K_f = -0.3 \cdot 10^6$ erg · cm⁻³, что составляет лишь 10% от K_1 . Отсюда можно сделать вывод о том, что вклад "поверхностной" анизотропии в K_{ef} отрицателен.

Рис. 2. Экспериментальные и обработанные по закону приближения к насыщению кривые намагничивания нанокристаллического порошка. *T* (K): *1* — 4.2, *2* — 474, *3* — 620, *4* — 694.

Рис. 3. Температурная зависимость констант анизотропии бариевого феррита. $I - K_{ef}(T)$, исследуемая система нанокристаллов, $2 - K_1(T)$, поликристалл [6].

Рис. 4. Распределение частиц системы нанокристаллов по полям анизотропии. *T*(*K*): *1* — 300, *2* — 600.

Как было показано в [8], нарушение стехиометрии $(n \neq 6)$ на открытой поверхности базисной плоскости микрокристаллов ВаО · 6Fe₂O₃ составляет не менее 20%, при этом дефектность структуры, убывая, распространяется на прилежащие слои. Следствием образования вакансионной структуры в приповерхностной зоне является локальное изменение расположения ионов в ближайшем окружении ионов Fe³⁺, а следовательно, понижение симметрии занимаемых ими кристаллографических позиций. Соответственно одноионные вклады Fe³⁺ в магнитную анизотропию должны измениться.

Как отмечалось выше, величина эффекта возрастает с уменьшением размера частиц. Поскольку в исследуемой, как и в любой реальной системе, существует распределение частиц по размерам, оценка интегрального вклада "поверхностной" анизотропии (17% от $K_{\rm ef}$ при 300 K) не отражает в достаточной степени ее значимость. В связи с этим в данной работе была рассчитана зависимость вклада "поверхностной" анизотропии в $K_{\rm ef}$ от дисперсности системы. Из полевой зависимости остаточной намагниченности по методу, развитому в [9], было получено распределение частиц по полям эффективной

магнитной анизотропии (H_a^{ef}) (рис. 4). Верхний предел распределения H_a^{ef} относится к наиболее крупным частицам, для которых отрицательные долевые вклады анизотропии формы и "поверхностной" анизотропии минимальны. Нижний предел соответствует малым частицам ($d \sim 20\,\mathrm{nm}$), для которых влияние структурно возмущенного поверхностного слоя наиболее ощутимо. Значение верхнего предела распределения *H*^{ef}_a завышено по сравнению с полем магнитокристалличекой анизотропии [6] на 20% для 300 К и на 10% для 600 К. Возможность такого расхождения отмечалась в работе [10], в которой указывается, что расчет распределения по полям анизотропии путем дифференцирования полевой зависимости остаточной намагниченности дает лишь первое приближение. Сопоставление распределений частиц по полям анизотропии и размерам позволило рассчитать К_f в зависимости от размера частиц системы и в результате с использованием формулы (4) получить зависимость вклада "поверхностной" анизотропии в Kef от дисперсности системы (рис. 1). Как видно из этого рисунка, вклад "поверхностной" анизотропии для частиц с $d \sim 20\,\mathrm{nm}$ при 300 К составляет около 60% от магнитокристаллической. В диапазоне 40-160 nm он монотонно убывает, изменяясь в результате практически на порядок.

Учитывая, что толщина самых мелких частиц в системе ($d \approx 20 \,\mathrm{nm}$) может составлять несколько (вплоть до двух) параметров с решетки, можно предположить, что нарушение кристаллической и возмущение магнитной структуры распространяются на весь объем таких частиц. В этом случае $V_s/V \sim 1$ и величина вклада "поверхностной" анизотропии $(-1.9 \cdot 10^6 \text{ erg} \cdot \text{ cm}^{-3})$ соответствует константе К_s. Для самых крупных частиц системы $(d \approx 160 \,\mathrm{nm})$ объем приповерхностной зоны мал по сравнению с объемом частицы ($V_s/V \ll 1$), и, следовательно, вклад "поверхностной" анизотропии в K_{ef} стремится к нулю. При 600 K константа $K_s = -0.6 \cdot 10^6 \,\mathrm{erg} \cdot \mathrm{cm}^{-3}$, т.е. в интервале температур 300-600 K K_s , как и K_1 , уменьшается в 3 раза. Это указывает на то, что природа "поверхностной" и магнитокристаллической анизотропии одна и та же, а изменение вклада "поверхностной" анизотропии $K_s \cdot V_s/V$ в K_{ef} в зависимости от размера частиц определяется только изменением долевого вклада объема приповерхностной зоны.

Таким образом, в работе установлено, что "поверхностная" анизотропия в исследуемой системе нанокристаллических частиц бариевого феррита вносит отрицательный по отношению к магнитокристаллической анизотропии вклад в эффективную константу, что коррелирует с фактом существования "скошенной" магнитной структуры в приповерхностном слое [10]. Показано, что для высокоанизотропного ферритового материала "поверхностная" анизотропия соизмерима с магнитокристаллической лишь в нанометровом диапазоне.

Один из авторов (А.С. Камзин) благодарит Российский фонд фундаментальных исследований за поддержку данной работы, грант № 98-02-18279.

Список литературы

- [1] A.H. Morrish. The Physical properties of magnetism. Wiley, N. Y. (1965).
- [2] J.M.D. Coey. Phys. Rev. Lett. 27, 1140 (1971).
- [3] L.P. Ol'khovik, N.M. Borisova, T.G. Kuz'micheva, V.P. Shabatin. Functional Materials 3, 1, 84 (1996).
- [4] С. Тикадзуми. Физика ферромагнетизма. Магнитные характеристики и практические применения. Мир, М. (1987). 420 с.
- [5] R. Grössinger. Phys. Stat. Sol. (a) 66, 665 (1981).
- [6] Я. Смит, Х. Вейн. Ферриты. ИЛ, М. (1962). 504 с.
- [7] H. Pfeiffer, W. Schüppel. Phys. Stat. Sol. (a) 119, 259 (1990).
- [8] A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik, E.D. Kovtun. J. Magn. Magn. Mater. 161, 139 (1996).
- [9] E. Kneller. In: Handbuch der Physik / Ed. S. Flügge and H.J. Wijn. Springer-Verlag, Berlin, Heidelberg, N. Y. (1996). XVIII / 2.
- [10] K. Haneda, A.H. Morrish. IEEE Trans. Magn. 25, 3, 2597 (1989).