Определение термодинамических параметров размытых фазовых переходов в Ag₂Te

© С.А. Алиев, Ф.Ф. Алиев, З.С. Гасанов

Институт физики Академии наук Азербайджана, 370143 Баку, Азербайджан

(Поступила в Редакцию 25 февраля 1998 г.)

Проведен дифференциальный термический анализ в вакууме и исследованы коэффициенты электропроводности, теплопроводности и термоэдс в Ag_2 Те в окрестности структурного ФП. Показано, что эти данные могут быть использованы для вычисления функции включения L(T), определения области сосуществования фаз внутри перехода и вычисления термодинамических параметров. До и после основного ФП обнаружены дополнительные переходы типа смещения. Установлено, что ФП осуществляется примерно по схеме $\alpha_{385K} \rightarrow \alpha'_{405K} \rightarrow \beta'_{420K} \rightarrow \beta_{440K}$. Определены удельная теплоемкость C_p , изменение энтропии ΔS и энтальпия превращения ΔH в условной точке перехода T_0 , а также минимальный объем фазовой флуктуации V и теплота ФП Q. Показано, что избытки Те и Ag почти не изменяют температуру переходов T_0 , а на термодинамические параметры оказывают существенное влияние.

Исследование процессов, происходящих вблизи и в областях фазовых превращений (ФП), является одним из развивающихся направлений физики твердого тела. Скачкообразное изменение электрических и тепловых свойств, происходящих при ФП, часто используется для создания различного рода преобразователей. Для этого необходимо иметь достоверные данные о величине и закономерностях изменения исследуемого эффекта при ФП, о температурном интервале перехода, о влиянии на них примесей, отклонений от стехиометрии и других внешних воздействий. Совокупность таких данных может выявить пути к стабилизации и управлению явлениями при ФП. При этом чрезвычайно существенной является информация о самом процессе ФП и его параметрах. Определение термодинамических и кинетических параметров перехода, изучение различных структурных характеристик взаимодействующих модификаций в процессе ФП способствуют выявлению механизма превращения. По данным интенсивностей рентгеновских отражений каждой фазы в области ФП определены область сосуществования этих фаз и функция включения L(T), характеризующая относительную долю фаз.

В работе [1] было обнаружено, что в Ag₂Te стехиометрического состава и с избытком Te основному $\alpha \rightarrow \beta$ -переходу предшествует переход $\alpha \rightarrow \alpha'$, а в образцах с избытком серебра имел место и ряд других ФП. Поэтому необходимо было провести более подробные исследования на образцах всех серий, определить функции включения и других термодинамических параметров для всех обнаруженных фаз Ag₂Te, а также изучить влияние на них избытка теллура и серебра. С этой целью предлагается использовать данные электрических и тепловых свойств в области ФП.

1. Экспериментальные результаты

Исследованы температурные зависимости электропроводности $\sigma(T)$, термоэдс $\alpha_0(T)$, перепад температуры вдоль образца ΔT_x и проведен дифференциальный термический анализ (ДТА) ΔT_y на серии образцов Ag₂Te: стехиометрического состава, с избытком Te (до 0.75 at.%) и Ag (до 0.25 at.%). ДТА проводился на установке, позволяющей проводить эксперименты в вакууме [2].

На рис. 1,2 представлены характерные кривые температурных зависимостей $\sigma(T)$ и $\alpha_0(T)$ для образцов стехиометрического состава с избытком Те и Аg. Видно, что для образцов стехиометрического состава и с избытком Те на кривых $\sigma(T)$ перед основным ФП в интервале температур 400–410 К наблюдается плато, при 410 К σ скачком уменьшается, при 414–418 К наблюдается еще одно плато. Далее в образце со стехиометрическим составом σ резко уменьшается (до 422 К), а с избытком Те проходит через небольшой максимум. В образце с

Рис. 1. Температурная зависимость электропроводности $\sigma(T)$ в Ag₂Te. I — стехиометрический состав, 2 — с избытком Ag, 3 — с избытком Te.

Рис. 2. Температурная зависимость термоэдс $\alpha_0(T)$ в Ag₂Te.

избытком Ag в области температур 400–410 K на месте плато наблюдается резкий рост $\sigma(T)$, затем повторяется температурный ход стехиометрического состава. На кривых $\alpha_0(T)$ все это повторяется в обратной последовательности.

На рис. 3 представлены кривые ДТА $\Delta T_y(T)$ стехиометрического состава (1), с избытками Те (2) и Ag (3). Как видно, на всех сериях перед основным переходом и после него наблюдаются переходы с поглощением тепла. В образце с избытком Ag помимо этих трех переходов обнаруживается и переход при 364–367 К. Заметим, что слабые переходы в зависимостях $\Delta T_y(T)$ проявляются только в адиабатических условиях, тогда как электронные процессы реагируют на них независимо от условий эксперимента. На рис. 3, *b* приведены кривые температурной зависимости $\Delta T_x(T)$. Вследствие наличия градиента температуры вдоль образца кривые $\Delta T_x(T)$ смещены в сторону низких температур, и слабые переходы не всегда проявляются. Видно, что ΔT_x проходит через глубокий минимум, что означает прохождение коэффициента теплопроводности через острый максимум.

2. Обсуждение результатов

О существовании дополнительных ФП в Ag₂Te сообщалось в работе [1], в которой на основании измерений $\sigma(T)$ указывается на наличие в области температур 533–633 К фазы α' с тригональной структурой. В [3] на температурной зависимости ионной проводимости σ при \sim 306 К обнаружен ФП, отнесенный к ФП второго рода. В [4] делается заключение, что в низкотемпературной фазе Ag₂Te реализуются два фазовых перехода (в области температур 150–250 К и при 307 К), по характеру близких к ФП первого рода. Отмечается, что примесь Te до 0.75 at.% сильно размывает эти ФП.

Вопросы физики размытых фазовых переходов рассмотрены в монографии [5] и в [6]. Там анализируются и вопросы сосуществования каждой из фаз в области перехода. С этой целью использована теория размытых ФП в конденсированных системах, основанная на введении функции включения L(T). Предполагается, что если термодинамические потенциалы α - и β -фаз обозначить через Φ_{α} и Φ_{β} , то термодинамический потенциал $\Phi(T)$ в области сосуществования фаз может быть представлен в виде

$$\Phi(T) = \Phi_{\alpha}(T) - \Delta \Phi(T) L(T), \qquad (1)$$

где $\Delta \Phi(T) = \Phi_{\beta}(T) - \Phi_{\alpha}(T)$. В случае когда фазовый переход происходит в интервале температур

Рис. 3. Температурная зависимость ДТА $T_y(T)$ (*a*) и $T_x(T)$ (*b*).

Рис. 4. Температурные зависимости распределения масс $\ln y$ (*a*), функции включения L(T) (*A*) и ее производной dL/dT (*B*) в Ag₂Te (с избытком Te) при $\Phi\Pi \alpha \rightarrow \alpha'$ (*b*), $\alpha' \rightarrow \beta'$ (*c*), $\beta' \rightarrow \beta$ (*d*). Штриховые линии (*b*-*d*) рассчитаны с учетом изменения внутренней энергии кристалла при $\Phi\Pi$.

 $\Delta T = T_2 - T_1 \ (T_2 > T_1),$ функция включения должна удовлетворять условиям

$$L(T) = \begin{cases} 0, & T < T_1, \\ 0 < L < 1, & T_1 < T < T_2, \\ 1, & T > T_2. \end{cases}$$
(2)

Согласно теории размытых переходов, для функции включения получено выражение

$$L(T) = \left\{ 1 + \exp[-a(T - T_0)] \right\}^{-1},$$
 (3)

где постоянная *a*, характеризующая степень размытия ФП, зависит от объема возможных фазовых флуктуаций, энергии и температуры ФП. Учитывая, что функция включения характеризует относительную долю фаз в области их сосуществования, ее можно представить в простом виде

$$L(T) = \frac{m_{\beta}(T)}{m_{\alpha}(T) + m_{\beta}(T)} = \left[1 + \frac{m_{\alpha}}{m_{\beta}}(T)\right]^{-1}, \quad (4)$$

где m_{α} и m_{β} — массы α - и β -фаз. Из температурной зависимости $\ln(m_{\alpha}/m_{\beta})$ можно определить температуру

*T*₀, при которой массы обеих фаз количественно равны. Сравнивая выражения (3) и (4), получим

$$a = \frac{1}{T_0 - T} \ln\left(\frac{m_\alpha}{m_\beta}\right).$$
 (5)

Если *a* — некоторая постоянная, то множитель $\ln\left(\frac{m_{\alpha}}{m_{\beta}}\right)$ должен быть линейной функцией температурной разности T₀ – T. В работах [4,7,8] была показана возможность определения этой функции на основе структурного исследования фазовых переходов в твердых телах. При этом предполагалось, что в узкой области сосуществования фаз температурное изменение интенсивностей рентгеновских отражений обусловлено количественным изменением фаз. Если допустить, что в указанной области температурные изменения электрических и тепловых свойств также обусловлены в основном количественным изменением фаз, то L(T) можно определить и по этим данным. Для этого необходимо вблизи и в области перехода добиться линейного изменения температуры. Тогда от начала перехода до конца интервал ΔT можно разбить на равные промежутки и соответствующие значения исследуемых эффектов отнести к предполагаемым

Образец	Переход	$T_{0,\sigma}$ K	<i>T</i> _{0,DTA} , К	a, K^{-1}	Q, cal/g	V, 10 ²⁰ cm ³	ΔH , cal/mol	ΔS , cal/mol · K	S, cal/mol · K	$\Delta C_p,$ cal/mol · K	C_p cal/mol · K
Ag ₂ Te	$\begin{array}{c} \alpha \to \alpha' \\ \alpha' \to \beta' \\ \beta' \to \beta \end{array}$	407 410 419	400 416 432	0.31 0.42 0.30	0.9 3.8 0.83	2.28 0.82 2.90	309 1304 285	0.77 3.13 0.69	42.65 44.21 44.55	0.06 0.35 0.07	47.55 163.2 45.17
$Ag_2Te + 0.75$ at.% Te	$\begin{array}{c} \alpha \to \alpha' \\ \alpha' \to \beta' \\ \beta' \to \beta \end{array}$	408 411 420	394 416 420	0.44 0.47	1.2 3.9	1.70 0.89 2.38	412 1340 242	0.52 3.32	41.93 44.61 45.01	0.12 0.40	65.17 167.34
$Ag_2Te + 0.25$ at.% Ag	$\begin{array}{c} \rho \rightarrow \rho \\ \alpha \rightarrow \alpha' \\ \alpha' \rightarrow \beta' \\ \beta' \rightarrow \beta \end{array}$	420 407 412 418	430 393 414 430	0.30 0.33 0.42 0.33	1.0 1.6 4.1 1.1	2.38 1.30 0.73 2.38	549 1407 378	1.40 3.41 0.88	42.97 44.67 45.11	0.09 0.14 0.37 0.10	49.08 69.37 176.04 52.01

Термодинамические параметры Ag2Te в области фазовых переходов

фазам, например:

$$\Delta T_{y} = T_{y,\alpha} \left(1 - \frac{m_{\beta}}{m_{\alpha}} \right) + \Delta T_{y,\beta} \left(\frac{m_{\beta}}{m_{\alpha}} \right).$$

На рис. 4 представлены характерные зависимости ln y $(y = m_{\alpha}/m_{\beta})$ от T для образцов с избытком Ag, где соответствующие массы m_{α} и m_{β} определены из данных $\Delta T_{v}(T)$ (1). По точке пересечения прямой с осью абсцисс определены условные температуры Т₀ обнаруженных ФП. Прямые на этом рисунке описываются выражением $y = \exp(-a(T - T_0))$, где значения a, определенные из наклона прямых, являются температурными постоянными перехода. Как видно, в указанных координатах прямые охватывают почти весь интервал ФП, что указывает на справедливость использованной методики определения $m_{\alpha}/m_{\beta}(T)$. Данные *а* и T_0 , полученные из $\Delta T_{v}(T)$ и $\sigma(T)$, хорошо согласуются (см. таблицу), но данные по $\alpha_0(T)$ несколько смещены в сторону высоких температур, что связано с наличием перепада температуры вдоль образца при измерении $\alpha_0(T)$.

Согласно теории гетерофазных флуктуаций [5], $a = VQ(kT_0)^{-2}$, где V — объем фазовой флуктуации, *Q* — теплота фазового перехода единицы объема, *T*₀ температура ФП. Поэтому величину V можно рассматривать как минимальный объем, в котором происходит четкий фазовый переход, или как объем частицы новой фазы внутри старой. Количество тепла (выделенное (+Q) или поглощенное (-Q)) при $\Phi\Pi$ определено по данным $\Delta T_{v}(T)$ как Q = khbM/vm, где h и b — высота и ширина пика на половине максимума или минимума, *М* — молекулярная масса, *v* — скорость нагревания, *m* масса образца. Значения Q и V для соответствующих ФП представлены в таблице. Видно, что значение V для lpha'
ightarrow eta'-фазы значительно меньше, чем в lpha
ightarrow lpha'и $\beta' \to \beta$ -фазах, т.е. $\Phi\Pi \alpha' \to \beta'$ происходит при значительно меньших объемах. По данным а и T₀ по формуле (3) определены функции включения L(T) для каждой фазы. Характерные кривые L(T) представлены на рис. 4, b-d. На этих рисунках представлены и производные по температуре dL/dT

$$\frac{dL}{dT} = \frac{a}{2} \frac{1}{1 + ch[a(T - T_0)]},$$
(6)

выражающие температурные скорости фазовых превращений каждой фазы. С помощью функции включения можно определить характер поведения и величину скачка различных термодинамических величин в области размытого ФП. В частности, энтропия превращения и удельная теплоемкость в условной точке T могут быть определены из соотношения

$$S = -\frac{\partial \Phi}{\partial T} = S_1 + \Delta SL,\tag{7}$$

$$C_p = T \frac{\partial S}{\partial T} = C_{p1} + \Delta C_p L + T \Delta S \frac{\partial L}{\partial T}, \qquad (8)$$

где S_1 и C_{p1} — энтропия и удельная теплоемкость до начала ФП, ΔS — энтропия превращения. Здесь ΔC_p вычисляется по данным Q, ΔT , m ($\Delta C_p = Q/m\Delta T'_x$).

Заметим, что при этих расчетах необходимо произвести поправку на ΔT_x , связанную с его изменением за счет выделения или поглощения внутренней энергии кристалла в процессе $\Phi\Pi$: $\Delta T_x = T_{end} - T_{beg} + vt$ (см. штриховые кривые на рис. 4). Изменение энтальпии ΔH при $\Phi\Pi$ приравнивается к количеству тепла на один моль, вычисленному на основе ДТА в единицах cal/mol. Полученные результаты представлены в таблице.

При постоянном W, создающем ΔT_x , температурная зависимость $\Delta T_x(T)$ отражает обратный ход температурной зависимости коэффициента теплопроводности \varkappa , что указывает на острый максимум \varkappa в точке $\Phi\Pi$.

Известно, что при ФП первого рода теплоемкость должна проходить через острый пик, разрываясь в точке перехода. Это неоднократно наблюдалось в экспериментах, в том числе и в Ag₂Te. Поскольку $\varkappa_p \sim C$, можно полагать, что в области ФП температурная зависимость $\varkappa(T)$ в основном обусловлена C(T). Из совокупности экспериментальных данных и полученных на их основе термодинамических параметров (см. таблицу) можно заключить, что в Ag₂Te фазовый переход из моноклинной

 αT -фазы в ГЦК β -фазу сопровождается дополнительными переходами $\alpha \rightarrow \alpha'$ и $\beta' \rightarrow \beta$ примерно по схеме $lpha_{385}
ightarrow lpha_{405}'
ightarrow eta_{420}'
ightarrow eta_{440}$. Показано, что избытки Те и Ag на температуру переходов To не действуют, а на термодинамические параметры оказывают существенное влияние. Отношение термодинамических параметров основного перехода lpha' o eta' к параметрам сопутствующих переходов ($\alpha \rightarrow \alpha'$ и $\beta' \rightarrow \beta$) составляет до 5 раз. Это находится в соответствии с общим представлением о структурном ФП [9], согласно которому при переходе кристалла низкой симметрии в кристалл высокой симметрии, основному переходу могут сопутствовать переходы типа смещения (разупорядочение подрешетки). Однако для окончательного вывода структур фаз $\alpha \to \alpha'$ и $\beta' \to \beta$ необходимо проведение более тщательных структурных исследований.

Список литературы

- [1] J. Szumi, S. Miyatani. J. Phys. Soc. Jap. 35, 312 (1973).
- [2] С.А. Алиев, Ф.Ф. Алиев, Г.П. Пашаев. Неорган. материалы 29, 8, 1073 (1993).
- [3] Е.С. Крупников, Ф.Ю. Алиев, А.Г. Абдуллаев. ФТТ 22, 8, 2468 (1980).
- [4] Е.С. Крупников, Ф.Ю. Алиев, С.А. Алиев. ФТТ **33**, *11*, 3408 (1991).
- [5] Б.Н. Ролов. Размытые фазовые переходы. Рига (1972). С. 311.
- [6] Б.Н. Ролов. Изв. АН ЛатвССР. Сер. физ. и техн. наук, 4, 33 (1983).
- [7] К.П. Мамедов, М.Ф. Гаджиев, З.Д. Нуриева. ДАН СССР 231, 1, 94 (1976).
- [8] К.П. Мамедов, М.Ф. Гаджиев, З.Д. Нуриева. ФТТ 19, 7, 2196 (1977).
- [9] М.Дж. Бергер. Кристал. 16, 3, 1084 (1971).