# Импульсная ЭПР-спектроскопия $V_{KA}$ -центра в CaF<sub>2</sub>: Na

© Т.А. Гавашели, Д.М. Дараселия, Д.Л. Джапаридзе, Р.И. Мирианашвили, Т.И. Санадзе

Тбилисский государственный университет, 380028 Тбилиси, Грузия

(Поступила в Редакцию 12 января 1998 г. В окончательной редакции 3 марта 1998 г.)

Методами ЭПР-спектроскопии исследован самозахваченный дырочный центр ( $V_{KA}$ -центр) в монокристалле CaF<sub>2</sub>, легированном Na. Для адекватного описания спектров ЭПР впервые использован пятикомпонентный тензор сверхтонкого взаимодействия. Определены параметры электронного спин-гамильтониана  $V_{KA}$ -центра и тензоры лигандного сверхтонкого взаимодействия со всеми ядрами ближайшего окружения, а также квадрупольные константы взаимодействия с ядром Na. На основании полученных результатов однозначно установлена структура центра и обсуждаются механизмы его образования.

Радиационные дефекты, возникающие в монокристаллах под действием ионизирующих излучений при низких температурах, до сих пор представляют большой интерес для физики твердого тела и интенсивно исследуются различными методами, в том числе и методами магнитного резонанса. В частности, в работах [1,2] в монокристаллах  $CaF_2$  исследованы ЭПР и ДЭЯР дырочных центров, представляющих молекулярный ион  $F_2^-$ .

Для понимания механизмов образования и термической динамики радиационных дефектов представляет интерес исследование этих кристаллов с примесью одновалентных щелочных металлов. В [3,4] нами были приведены отдельные результаты исследований ЭПР и сверхтонких взаимодействий дырочного  $V_{KA}$ -центра в CaF<sub>2</sub>, легированном Na. В настоящей работе представлены систематизированные полные результаты проведенных исследований, и в частности дана новая интерпретация спектров ЭПР.

#### 1. Эксперимент

Эксперименты проводились на супергетеродинном спектрометре ЭПР 3 ст-диапазона при температуре 4.2 К. Для получения спектров дискретного насыщения (ДН) и радиочастотного дискретного насыщения (РЧДН) использовался дополнительный импульсный насыщающий клистрон. Методика ДН и РЧДН, которая является импульсным аналогом ДЭЯР, подробно описана в [5]. Образцы CaF<sub>2</sub> содержали 0.1% натрия и облучались суммарной дозой 10 Mrad в  $\gamma$ -источнике Co<sup>60</sup>. Специальное устройство позволяло проводить облучение при контролируемой температуре в интервале 77–200 К. Затем образец без промежуточного прогрева переносился в криостат и охлаждался до температуры жидкого гелия для проведения измерений спектров ЭПР и РЧДН.

# 2. ЭПР $V_{KA}$ -центра в CaF<sub>2</sub> : Na

В работе [3] нами было показано, что образцы,  $\gamma$ -облученные при 77 K дают два одинаковых спектра ЭПР, смещенных примерно на 2° относительно друг дру-

га (внешне это напоминает ситуацию, когда в кристалле существует два развернутых на 2° блока). После нагрева образцов выше 170 К "блочность" исчезала и оставался один спектр ЭПР с существенно меньшей интенсивностью. В образцах, которые  $\gamma$ -облучались при высокой (170 К) температуре, наблюдался тот же спектр ЭПР, что и после нагревания, при этом его интенсивность была на порядок выше. К вопросам термической трансформации спектров ЭПР мы вернемся в заключительном разделе.

Для исследований мы использовали образцы, облученные при 170 К. Все приведенные далее результаты исследований суперсверхтонких взаимодействий (ССТВ)  $V_{KA}$ -центра в CaF<sub>2</sub>: Na подтверждает модель, представленную на рис. 1. В системе координат, обозначенной на этом рисунке, электронный спин-гамильтониан орторомбической симметрии, описывающий спектр ЭПР



Рис. 1. Модель  $V_{KA}$ -центра в CaF<sub>2</sub>: Na.



**Рис. 2.** Угловая зависимость спектра ЭПР шести неэквивалентных V<sub>KA</sub>-центров в CaF<sub>2</sub>: Na при вращении магнитного поля в плоскости (100) кристалла. Параметры спин-гамильтониана (1) взяты из табл. 1

молекулярного иона F<sub>2</sub><sup>-</sup>, имеет вид

$$H_{\rm EPR} = \beta \mathbf{S}g\mathbf{B} + \mathbf{S}(T_1\mathbf{I}_1 + T_2\mathbf{I}_2) - g_{\rm F}\beta(\mathbf{I}_1 + \mathbf{I}_2)\mathbf{B}, \quad (1)$$

где **В** — внешнее магнитное поле, **S** — оператор электронного спина (S = 1/2), g — электронный g-тензор, **I**<sub>1</sub> и **I**<sub>2</sub> — операторы ядерных спинов ядер фтора 1 и 2 молекулярного иона фтора,  $T_1$  и  $T_2$  — соответствующие тензоры сверхтонкого взаимодействия. Из общих соображений симметрии (наличие плоскости отражения XOZ) тензор  $T_1$  имеет вид

$$T_1 = \begin{vmatrix} T_{xx} & 0 & T_{xz} \\ 0 & T_{yy} & 0 \\ T_{zx} & 0 & T_{zz} \end{vmatrix}.$$
 (2)

Тензор  $T_2$  имеет тот же вид, только члены  $T_{xz}$  и  $T_{zx}$  имеют отрицательный знак, поскольку ядро 2 переходит в ядро 1 молекулярного иона при отражении в плоскости XOY.

Следует отметить, что для описания сверхтонкой структуры спектров ЭПР здесь впервые использован пятикомпонентный тензор СТВ. Измерялась угловая зависимость спектра ЭПР при вращении магнитного поля в плоскости кристалла (100). Поскольку имеются три возможные взаимно перпендикулярные ориентации молекулярного иона  $F_2^-$  и в каждом случае два возможных положения иона Na<sup>+</sup> относительно  $F_2^-$ , должны существовать шесть неэквивалентных типов  $V_{KA}$ -центра. Каждый центр дает сильно анизотропный спектр из четырех линий ЭПР; следовательно, в общем

случае имеются 24 линии. При вращении магнитного поля в плоскости (100) в общем случае остаются всего 16 линий, некоторые из них всегда слиты, а многие линии часто сильно перекрываются (рис. 2).

Для адекватного описания спектра ЭПР орторомбической симметрии необходимо иметь измерения в двух плоскостях. Из общей угловой зависимости спектра ЭПР всех шести неэквивалентных V<sub>KA</sub>-центров были выбраны угловые зависимости в двух взаимно перпендикулярных плоскостях для одного из них.

Для определения параметров спин-гамильтониана (1) использовалась компьютерная программа минимизации дисперсии  $\Sigma (B_i^{exp} - B_i^{\text{theor}})^2$ , где суммирование взято по всем хорошо разрешенным линиям ЭПР, причем  $B_i^{\text{theor}}$  вычислялось путем точной диагонализации комплексной матрицы размерностью  $8 \times 8$  гамильтониана (1). Было обнаружено, что дисперсия мало чувствительна к разности параметров  $T_{xz}$  и  $T_{zx}$ , поэтому в окончательных расчетах мы были вынуждены принять  $T_{xz} = T_{zx}$ . Результаты проведенных расчетов параметров электронного спин-гамильтониана приведены в табл. 1. Вычисленная по этим параметрам полная угловая зависимость спектра ЭПР  $V_{KA}$ -центров при вращении магнитного поля в плоскости (100) приведена на рис. 2.

Отличие указанные в табл. 1 параметров от приведенных в нашей же работе [3] связано с тем, что в той работе была использована традиционная диагональная форма тензора СТВ, и соответственно невозможно было правильно идентифицировать линии спектра ЭПР.

**Таблица 1.** Вычисленные параметры спин-гамильтониана молекулярного иона. Константы СТВ приведены в МНz (в скобках — в гауссах)

| $g_x$   | <i>g</i> <sub>y</sub> | $g_z$               | $T_{xx}$   | $T_{yy}$   | $T_{zz}$          | $T_{xz}$         |
|---------|-----------------------|---------------------|------------|------------|-------------------|------------------|
| 2.0199  | 2.0188                | $2.0015 \pm 0.0002$ | $70 \pm 3$ | $43 \pm 8$ | $2572 \pm 1$      | $73 \pm 1$       |
| ±0.0002 | ±0.0004               |                     | (25 ± 1)   | (15 ± 3)   | (918.2 $\pm$ 0.4) | (25.8 $\pm$ 0.4) |

Таблица 2. Компоненты тензоров ССТВ и квадрупольного взаимодействия ядер натрия (в MHz)

| A <sub>xx</sub>    | $A_{yy}$         | $A_{zz}$         | $P_{xx}$           | $P_{yy}$        | $P_{zz}$        |
|--------------------|------------------|------------------|--------------------|-----------------|-----------------|
| $-1.801 \pm 0.003$ | $-4.714\pm0.003$ | $-4.089\pm0.007$ | $-0.153 \pm 0.002$ | $0.149\pm0.003$ | $0.004\pm0.004$ |

**Таблица 3.** Компоненты тензоров ССТВ ядер фтора ближайшего окружения (в MHz)

| Тип ядра | $A_{xx}$       | $A_{yy}$       | $A_{zz}$       | $A_{xy}$      | $A_{xz}$      | $A_{yz}$      |
|----------|----------------|----------------|----------------|---------------|---------------|---------------|
| Α        | $2.25\pm0.02$  | $0.38\pm0.04$  | $36.47\pm0.03$ | 0             | $0.29\pm0.07$ | 0             |
| В        | $-0.63\pm0.01$ | $0.22\pm0.02$  | $-2.61\pm0.01$ | $4.06\pm0.01$ | $0.28\pm0.03$ | $0.09\pm0.03$ |
| B'       | $-1.10\pm0.01$ | $0.04\pm0.02$  | $-2.90\pm0.01$ | $3.65\pm0.01$ | $0.23\pm0.03$ | $0.07\pm0.03$ |
| С        | $1.60\pm0.01$  | $-0.94\pm0.03$ | $-0.99\pm0.02$ | 0             | $0.56\pm0.05$ | 0             |
| C'       | $1.36\pm0.01$  | $-1.13\pm0.03$ | $-0.55\pm0.03$ | 0             | $0.27\pm0.05$ | 0             |
| C''      | $-1.04\pm0.01$ | $1.62\pm0.04$  | $-0.68\pm0.02$ | $0.04\pm0.01$ | $0.06\pm0.06$ | $0.55\pm0.10$ |

## 3. Суперсверхтонкие взаимодействия

После предварительного исследования CCTB  $V_{KA}$ -центра методом ДН [4] более детальное проводилось методом РЧДН. Угловая зависимость спектров РЧДН изучалась на линии спектра ЭПР, которая имеет малую анизотропию. Эта линия была выбрана еще и потому, что для нее I = 0, M = 0 и отсутствует перемешивает электронных состояний сильным сверхтонким взаимодействием. Поэтому ССТВ молекулы F<sub>2</sub><sup>-</sup> с окружающими ядрами можно описывать спин-гамильтонианом, содержащим только ядерные взаимодействия, и принять S = 1/2. Гамильтонианы ядер ближайшего окружения молекулярного иона F<sub>2</sub><sup>-</sup> записывались в системе координат, представленой на рис. 1.

1) Взаимодействие с натрием. Ядерный спингамильтониан натрия имеет вид

$$H_{\rm Na} = g_{\rm Na} \beta_N \mathbf{IB} + \mathbf{S} A \mathbf{I} + \mathbf{I} P \mathbf{I},\tag{3}$$

где S = 1/2, I = 3/2, A и P — тензоры ССТВ и квадрупольного взаимодействия,  $g_{\text{Na}}$  — ядерный g-фактор Na,  $\beta_N$  — ядерный магнетон. Эти тензоры благодаря наличию двух взаимно перпендикулярных плоскостей отражения имеют диагональный вид; кроме того,  $P_{xx} + P_{yy} + P_{zz} = 0$ .

Угловая зависимость частот РЧДН приведена в [4]. Для определения параметров спин-гамильтониана (3) использовалась процедура минимизации дисперсии, аналогичная описанной выше для спектров ЭПР, включающая точную диагонализацию комплексной матрицы гамильтониана (3) размерностью 8 × 8. Результаты вычислений приведены в табл. 2. Среднее отклонение между теоретическими и экспериментальными точками составляет 3 kHz.

2) Взаимодействие с ядрами фтора. Ядерный гамильтониан *n*-го ядра фтора вблизи молекулярного иона  $F_2^-$  имеет вид

$$H_n = -g_F \beta_N \mathbf{I}_n \mathbf{B} + \mathbf{S} A_n \mathbf{I}_n. \tag{4}$$

Ядра фтора ближайшего окружения  $V_{KA}$ -центра делятся на три группы, которые обычно обозначаются буквами *A*, *B* и *C* [2]. Наиболее сильное СТВ наблюдается для ядер *A*, лежащих на оси *Z*, являющейся осью молекулярного иона. Эти ядра обусловливают разрешенную сверхтонкую структуру линий ЭПР в ориентации *B* || *Z*. Как показывает эксперимент, в отличие от  $V_{K}$ -центра [2] в нашем случае ядра *B* делятся на две неэквивалентные группы *B* и *B'*, расположенные соответственно вблизи Na<sup>+</sup> и Ca<sup>2+</sup>. Аналогично вместо двух типов ядер *C* у  $V_{K}$ -центра для  $V_{KA}$ -центра имеем три группы: *C*, *C'* и *C''*. Угловые зависимости спектров РЧДН ядер типа *B* и *C* приведены на рис. 3, 4.

Резонансные частоты ядер фтора определялись по формулам [5]

$$\nu_{\pm} = \sqrt{\nu_{\rm F}^2 + \frac{1}{4}\tilde{A}^2 \mp \bar{A}\nu_{\rm F}},\tag{5}$$

где знак  $\pm$  соответствует двум электронным состояниям;  $\tilde{A}^2 = \alpha_{\zeta i} \alpha_{\zeta k} A_{pi} A_{pk}; \ \bar{A} = \alpha_{\zeta' i} \alpha_{\zeta k} A_{ik}; \ i, k, p = x, y, z;$   $\alpha_{\zeta' x} = l_x, \ \alpha_{\zeta' y} = l_y, \ \alpha_{\zeta' z} = l_z -$  направляющие косинусы внешнего магнитного поля; электронный спин квантуется вдоль оси  $\zeta$  с направляющими косинусами  $\alpha_{\zeta k} = (g_k/g) l_k; \nu_F$  — ядерная зеемановская частота. Вычисленные компоненты тензоров СТВ ядер ближайшего окружения приведены в табл. 3.

#### 4. Обсуждение результатов

Хорошо известно, что при выращивании флюоритов, легированных щелочными металлами, образуются так называемые примесно-вакансионные диполи [6]. В CaF<sub>2</sub> с примесью Na это Na<sup>+</sup>-вакансия фтора. В результате  $\gamma$ -облучения при 77 К электрон, выбитый из иона фтора,



**Рис. 3.** Угловая зависимость спектра РЧДН ядер фтора типа *B* в плоскости (001) кристалла. Цифры около кривых и на модели нумеруют конкретные ядра фтора: типа *B* (5–8), типа *B'* (1–4). Знаки  $\pm$  на кривых обозначают принадлежность к электронным состояниям  $|+1/2\rangle$  и  $|-1/2\rangle$ . Сплошные линии — вычисленные по формуле (5) с параметрами из табл. 3.



**Рис. 4.** Угловая зависимость спектра РЧДН ядер фтора типа *С* в плоскости (001) кристалла: ядра *С* (*1*, *2*), ядра *C'* (*3*, *4*), ядра *C''* (5–8). Линии спектра ядер *C''* в действительности являются дублетами с максимальным расщеплением 300 kHz, которое вызвано компонентами  $\pm A_{xy}$  тензора ССТВ. Сплошные линии — вычисленные по формуле (5) с параметрами из табл. 3.

захватывается вакансией, образуя  $F_A$ -центр, а потерявший электрон ион образует с соседним ионом фтора молекулярный ион  $F_2^-$ . В нашем случае, основываясь на наблюдении температурной динамики спектров ЭПР, мы предполагаем, что вакансии были на местах, обозначенных *C* на рис. 1. Соответственно после  $\gamma$ -облучения на одном из этих мест образуется  $F_A$ -центр, который вызывает небольшое возмущение спектра ЭПР  $V_{KA}$ -центра. В результате нагревания такого образца может происходить как миграция  $F_A$ -центра, в результате чего остается "чистый"  $V_{KA}$ -центр, так и рекомбинация, которая приводит к наблюдавшемуся уменьшению интенсивности спектра ЭПР.

В случае когда образцы облучаются при высокой температуре (170 K), рекомбинировавшие  $V_{KA}$ -центры могут возникать повторно под действием излучения, в результате чего происходит их накопление в образце.

В заключение отметим, что все перечисленные результаты исследований ЭПР и СТВ с ближайшими ядрами однозначно подтверждают модель  $V_{KA}$ -центра, представленную на рис. 1.

### Список литературы

- [1] W. Hayes, J.W. Twidell. Proc. Phys. Soc. 79, 1295 (1962).
- [2] R.W. Marzke, R.I. Mieher. Phys. Rev. 182, 453 (1969).
- [3] Т.А. Гавашели, Р.И. Мирианашвили, О.В. Ромелашвили, Т.И. Санадзе. ФТТ 34, 2, 672 (1992).
- [4] Т.А. Гавашели, Д.М. Дараселия, Р.И. Мирианашвили, Т.И. Санадзе. ФТТ 36, 6, 1787 (1994).
- [5] Ц.И. Санадзе, Г.Р. Хуцишвили. Проблемы магнитного резонанса. Наука (1978). 206 с.
- [6] З.П. Чорний, Г.А. Щур, С.И. Качан, С.П. Дубельт. Физическая электрон. 35, 97 (1987).