Температурные зависимости высокополевой намагниченности разбавленных фрустрированных ферримагнитных шпинелей

© Н.Н. Ефимова, С.Р. Куфтерина

Харьковский государственный университет, 310077 Харьков, Украина

(Поступила в Редакцию 4 августа 1997 г. В окончательной редакции 29 декабря 1997 г.)

> Представлены результаты исследования магнитных свойств разбавленных фрустрированных ферримагнитных шпинелей Li_{0.5}Fe_{2.5-x}Ga_xO₄ (x = 0.8-1.2), характеризующие основные параметры ферримагнитного состояния и свидетельствующие о наличии локального нарушения коллинеарного спинового упорядочения и фрустраций. В частности, измерены концентрационные зависимости магнитного момента $n_0(x)$ и точки Кюри $T_c(x)$, изотермы намагниченности $\sigma_T(H)$ при T = 4.2 К и $H \leq 10$ kOe, а также низко- и высокополевые политермы намагниченности $\sigma_H(T)$. Установлено, что при $x \geq 0.8$ в полях, бо́льших поля технического насыщения $H_s \sim 2$ kOe, температурные зависимости высокополевой намагниченности $\sigma_H(T)$ в интервале температур 4.2–230 К не могут быть описаны законом Блоха $T^{3/2}$, тогда как для неразбавленной Li-шпинели (x = 0) этот закон выполняется. Во всем интервале температур (4.2–230 K) экспериментальные кривые $\sigma_H(T)$ могут быть аппроксимированы соотношениями $\sigma_H(T) = \sigma_0(1 - AT^{3/2} - BT^{5/2})$ для x = 0.8-1.0и $\sigma_H(T) = \sigma_0[1 - CT^{3/2} \exp(\mu(H - H_0)/k_BT)]$ для $x = 1.1, 1.2, где \mu H_0 \sim 15$ K — внутреннее поле, обусловленное конкуренцией обменных взаимодействий и фрустрациями.

В растоящей работе представлены результаты исследования магнитных свойств разбавленных двухподрешеточных ферримагнитных шпинелей Li_{0.5}Fe_{2.5-x}Ga_xO₄ (x = 0.8-1.2) с одним сортом магнитных ионов — Fe³⁺. Основное внимание уделено выяснению вопроса о характере температурных зависимостей высокополевой намагниченности σ_H , т.е. намагниченности в полях, бо́льших поля технического насыщения $H > H_s$, и, в частности, о возможности их описания законом Блоха $T^{3/2}$, который для коллинеарных ферро- и ферримагнетиков может выполняться вплоть до температур ~0.8 T_c [1,2].

При рассматриваемых концентрациях немагнитных ионов Ga³⁺ Li–Ga шпинели являются слабо фрустрированными гейзенберговскими ферримагнетиками. При x = 0.8, 0.9 во всем интервале температур $T = 4.2 \text{ K} - T_c$ (точка Кюри) реализуется ферримагнитное (Φ M) состояние, а интервал x = 1.0-1.2 соответствует возвратной (reentrant) области x - T-диаграммы [3]. В нулевом или слабом магнитном поле при понижении температуры здесь последовательно происходит два перехода: парамагнетик–ферримагнетик (Π M– Φ M) в точке Кюри T_c и ферримагнетик–ферримагнитное спиновое стекло (Φ M– Φ CC) при температуре замерзания $T_f < T_c$. Для x = 1.0-1.2 значения T_f составляют 10–12 K [4].

Влияние конкуренции обменных взаимодействий и фрустраций на спектр магнитных возбуждений первоначально рассматривалось главным образом в контексте проблемы неупорядоченных состояний типа СС [5]. Хотя в последние годы ситуация изменилась и возрос интерес непосредственно к изучению различного рода моделей фрустрированных магнетиков [6,7], для экспериментальных исследований по-прежнему наиболее перспективными являются системы, в которых при изменении концентрации компонент происходит переход в СС-состояние.

1. Образцы и методика измерений

Поликристаллические образцы шпинелей $Li_{0.5}Fe_{2.5-x}Ga_xO_4$ (x = 0.8-1.2) были синтезированы путем реакции в твердой фазе аналогично [3]. Однофазность контролировалась рентгенографическим методом.

Во избежание недоразумений нужно отметить, что в отличие от [4] в настоящей работе использованы образцы с x = 0.9, которые не имеют перехода в ФСС-состояние.

Для исследования магнитных свойств применялись методы и установки, аналогичные [3,4]. Политермы низкополевой намагниченности в интервалах температур 4.2–200 К, 77–300 К и 300–950 К были измерены индукционным методом на трех баллистических магнетометрах с чувствительностями 10^{-3} , 10^{-2} и 10^{-2} G·cm³·g⁻¹ соответственно. Изотермы $\sigma_T(H)$ в полях до 10 kOe, а также высокополевые политермы намагниченности $\sigma_H(T)$ измерялись на баллистическом ($4.2 \leq T \leq 230$ К) магнитометре. При измерениях зависимостей $\sigma_H(T)$ шаг по температуре составлял 3–5 К. Температура измерялась углеродным термометром сопротивления TCУ-2.

2. Экспериментальные результаты и их обсуждение

1) Влияние диамагнитного разбавления на магнитные свойства. Влияние диамагнитного разбавления на макроскопические параметры ферримагнитного состояния иллюстрируют данные рис. 1, где приведены концентрационные зависимости точки Кюри $T_c(x)$ и магнитного момента при $T = 4.2 \text{ K} - n_0(x)$. Значения T_c были определены двумя методами: Белова– Арротта [1] и посредством экстраполяции к оси T высо-

Рис. 1. Концентрационные зависимости точек Кюри $T_c(x)$ и магнитного момента $n_0(x)$ шпинелей Li_{0.5}Fe_{2.5-x}Ga_xO₄.

Рис. 2. Политермы низкополевой намагниченности $\sigma_H(T)$ разбавленных шпинелей Li_{0.5}Fe_{2.5-x}Ga_xO₄ (x = 0.0, 0.9, 1.1 и 1.2). H = 50 Oe.

котемпературных участков кривых $\sigma_H(T)$, соответствующих максимальному значению производной $(\partial \sigma / \partial T)$ (рис. 2). В пределах точности обоих методов $(\pm 2 \text{ K})$ полученные величины T_c совпадали.

В таблице представлены сведения о катионном распределении, рассчитанном с использованием значений n_0 (рис. 1), как в [8]. Основанием для использования такого приближения послужили результаты исследования намагничивания $\sigma_T(H)$, подобные представленным на рис. 3 для T = 4.2 К. Для x = 0.8-1.1 насыщение достигается при $H = H_x \sim 2$ kOe. Низкотемпературный парапроцесс, являющийся признаком неколлинеарности спинового упорядочения [1], при $M > M_s$ наблюдается лишь для образцов с X = 1.2.

Однако при x = 0.8 немагнитными ионами Ga³⁺ замещено уже 32 mol.% ионов Fe³⁺, и в слабых полях или *H* = 0 коллинеарная в макроскопическом смысле ФМ-структура имеет локальные нарушения — кантинг спинов в окрестностях магнитных вакансий (Ga³⁺) [3,9]. Качественным подтверждением наличия областей локальной неколлинеарности (ОЛН) могут служить результаты, показанные на рис. 2, где представлены политермы низкополевой намагниченности $\sigma_H(T)$, соответствующие различной предыстории образцов: ZFC предварительное охлаждение до $T = 4.2 \,\mathrm{K}$ в отсутствие поля, а FC — при $H \neq 0$. Видно, что во всех случаях, за исключением X = 0 (незамещенная Li-шпинель), имеет место необратимость хода политерм: $\sigma_{\rm ZFC}(T,H) \neq \sigma_{\rm FC}(T,H).$ Отсутствие эффекта для Li-шпинели показывает, что он не связан с особенностями поликристаллической структуры образцов. В полях ~ 1 Ое необратимые явления наблюдаются в интервале температур примерно 4.2–100 К, а при $H > 100 \,\text{Oe}$ только для x = 1.2 в низкотемпературной области. В целом же наблюдающиеся во всей области концентраций *x* = 0.8–1.2 эффекты необратимости (с учетом их зависимости от x, T, H) хорошо согласуется с моделью формирования ФСС-состояний [9], предполагающей образование ОЛН на предшествующей по концентрации (T = 0) или температуре $(T > T_f)$ стадии.

Поскольку существование фрустраций связано с ОЛН, из факта наличия ($x \ge 1.0$) или отсутствия (x = 0.8, 0.9) низкотемпературных ФСС-состояний, а также по поведению в слабых и сильных полях (рис. 2, 3) исследуемые образцы можно подразделить на группы, которые ориентировочно соответствуют одинаковому уровню фрустраций. По мере возрастания это будет: 1) x = 0.8, 0.9; 2) x = 1.0, 1.1; 3) x = 1.2.

Рис. 3. Изотермы намагниченности $\sigma_T(H)$ Li–Ga-шпинелей с x = 0.0, 0.8 - 1.2 при T = 4.2 К.

2) Температурные зависимости высокополевой намагниченности. На рис. 4 показаны экспериментальные зависимости $\sigma_H(T)$, измеренные в поле H = 5 kOe. Для сравнения на этом же рисунке приведена кривая для незамещенной Li-шпинели (x = 0).

На рис. 5 экспериментальные результаты $\sigma_H(T)$ представлены в координатах $\sigma_H(T^{3/2})$. Из этих данных отчетливо видно, что для x = 0.8 - 1.0 зависимости $\sigma_H(T^{3/2})$ хорошо аппроксимируются двумя линейными участками, плавно сменяющими друг друга. Изменение хода наблюдается при $T \sim 100 \, \text{K}$, т.е. в той области температур, где, согласно результатам низкополевых исследований, начинают проявляться эффекты, связанные с возмущением обмена: понижение $\chi'(T)$ [4] и необратимость хода политерм (см. п.1 настоящего раздела). При $T \to 0$ К для образцов с x = 1.1 и 1.2, у которых на кривых $\sigma_H(T)$ соответственно наблюдается плато (при T < 30 K) или слабый размытый максимум (при $T < 50 \,\mathrm{K}$), закон $T^{3/2}$, естественно, не выполняется. Однако при более высоких температурах, как видно из данных рис. 5, для x = 1.1 (T > 30 K) также можно выделить два линейных участка с разными наклонами, в то время как для x = 1.2 существует лишь один линейный участок — в области *T* > 50 К.

Наклон прямых $\sigma_H(T^{3/2})$ определяется коэффициентом *A* в законе Блоха

$$\sigma_s(T) = \sigma_{s0} (1 - AT^{3/2}), \tag{1}$$

где σ_{s0} и $\sigma_s(T)$ — значения спонтанной намагниченности при T = 0 и T > 0 К. В нашем случае в качестве σ_s и σ_{s0} использованы соответственно значения $\sigma_H(T)$ в поле H = 5 kOe и σ_{s0} , полученные экстраполяцией к 0 К прямых $\sigma_H(T^{3/2})$.

Значения коэффициентов A из (1), определенные по низко- (T < 100 K) и высокотемпературному (T > 100 K) участкам зависимостей $\sigma_H(T^{3/2})$ (соответственно A_{LT} и A_{HT}), представлены в таблице. Так же

Рис. 4. Политермы высокополевой намагниченности в поле $H > H_s$ (H = 5 kOe) для шпинелей Li_{0.5}Fe_{2.5-x}Ga_xO₄ (x = 0.0, 0.8-1.2). Сплошные линии — кривые, рассчитанные в соответствии с (2) (x = 0.8-1.0) и (4) (x = 1.1, 1.2).

Рис. 5. Политермы рис. 4, представленные в координатах $\sigma - T^{3/2}$.

для сравнения приведен этот коэффициент для незамещенной Li-шпинели, а также для случая использования уравнения (1) с A = const во всем интервале температур. Из этих данных следует, что исследуемые образцы подразделяются на группы, причем те же самые, что были выделены ранее (см. п. 1 настоящего раздела).

Рассматриваемые порознь концентрационные изменения коэффициентов A_{LT} и A_{HT} вполне закономерны [10]. Изменение же A с температурой, т. е. $A_{LT} \neq A_{HT}$, было бы оправданным, например, при наличии фазового перехода. Однако в соответствующей температурной области мы не обнаружили типичных для этого особенностей низкополевой динамической восприимчивости, тогда как при $T = T_c$ и $T = T_f$ зависимости $\chi'(T)$ имеют характерные максимумы [4,11]. Особенности хода $\sigma_H(T^{3/2})$ для рассматриваемых объектов нельзя объяснить также с позиций зависимости D от температуры за счет взаимодействия спиновых волн (СВ) с двухуровневыми системами [12], так как этот механизм предполагает наличие плато или максимума на зависимости D(T) в интервале $T_c < T < T_f$ и заметное понижение величины D при $T \to T_f$. Такое поведение явно не согласуется с полученными в работе экспериментальными результатами. Таким образом, для аппроксимации экспериментальных зависимостей $\sigma_H(T)$ двумя линейными участками $\sigma_H(T^{3/2})$ нет сколько-нибудь убедительных физических причин. В связи с этим, применив математическую обработку экспериментальных кривых $\sigma_H(T)$, мы рассмотрели вопрос о возможности их описания едиными функциональными зависимостями во всем интервале температур.

3) Выбор аппроксимирующих функций. Предполагая, что для зависимостей $\sigma_H(T)$ выполняется спин-волновое приближение, мы использовали разложение Дайсона [13]

$$\sigma_s(T) = \sigma_{s0} \left(1 - A \, 2T^{3/2} - BT^{5/2} \right), \tag{2}$$

а также различные аппроксимации, учитывающие наличие щели в спектре CB [14]. Первоначально отбор заслуживающих внимания функциональных приближений

	x						Примечание
	0	0.8	0.9	1.0	1.1	1.2	
$N_A \pm 0.05$	1	0.49	0.52	0.50	0.51	0.47	
$N_B\pm 0.05$	1.5	1.21	1.08	1.00	0.89	0.83	
$A_{LT} \cdot 10^5, \mathrm{K}^{-3/2}$		10.0 ± 0.7	10.0 ± 0.7	18.1 ± 1.2	17.4 ± 1.4		
$A_{HT} \cdot 10^5, \mathrm{K}^{-3/2}$		7.0 ± 0.7	7.0 ± 0.7	10.0 ± 1.2	9.5 ± 1.4	15.50 ± 1.4	(1)
$A \cdot 10^5, \mathrm{K}^{-3/2}$	1.4 ± 0.10	8.00 ± 0.11	8.00 ± 0.11	13.00 ± 0.32	13.00 ± 0.30	15.00 ± 0.13	(1)
« χ^2 »		0.202	0.198	0.293	0.396	0.197	
$A_2 \cdot 10^5, \mathrm{K}^{-3/2}$		11.03 ± 0.36	11.7 ± 0.43	19.76 ± 0.71	17.84 ± 1.12	17.6 ± 0.66	(2)
$B \cdot 10^7, \mathrm{K}^{-5/2}$		1.58 ± 0.20	1.69 ± 0.24	4.18 ± 0.41	2.71 ± 0.63	1.15 ± 0.31	
$(1)^{2}$		0.071	0.072	0.060	0154	0 1 4 1	

 12.00 ± 2.00

 -5.80 ± 12.02

0.259

 12.00 ± 0.46

 -15.20 ± 0.13

0.378

 8.00 ± 0.64

 -16.2 ± 29.6

0.176

Катионное распределение в системе разбавленных шпинелей Li_{0.5}Fe_{2.5-x}Ga_xO₄ (x = 0.8-1.2) и коэффициенты A в законе Блоха для намагниченности (1), A_2 и B в разложении Дайсона (2), коэффициент C и величина щели Δ (3). N_A и N_B — числа магнитных ионов (Fe³⁺) в тетраэдрических и октаэдрических подрешетках

производился с учетом значений коэффициента корреляции R, а также с точки зрения физичности значений расчетных параметров, в частности щелевого — Δ . В итоге для анализа были оставлены только закон Блоха (1), разложение Дайсона (2) и соотношение (3), предполагающее наличие щели Δ в спектре CB.

$$\sigma_s(T) = \sigma_0 \Big[1 - CT^{3/2} \exp(-\Delta/k_{\rm B}T) \Big], \qquad (3)$$

 8.00 ± 0.75

 -9.4 ± 27.3

где $k_{\rm B}$ — константа Больцмана. Во всех этих случаях были получены коэффициенты корреляции *R* > 0.99. Далее в качестве критерия достоверности рассматривался "критерий χ^2 ". Из сопоставления данных таблицы (с учетом "критерия χ^2 " и соответственно ошибки в определении Δ видно, что для концентраций x = 0.8 - 1.0предпочтение следует отдать уравнению Дайсона (2), где " χ^2 " имеет минимальное значение, а ошибка в определении Δ значительно превышает ее величину. Для x = 1.1 и 1.2 ситуация сложнее: при x = 1.2 величины " χ^2 ", соответствующие аппроксимирующим функциям (2) и (3), близки, а для x = 1.1 отличаются более чем вдвое. Однако, несмотря на то что аппроксимация экспериментальных кривых $\sigma_H(T)$ уравнением Дайсона соответствует R = 0.99 и наиболее низким значениям " χ^2 ", она явно "не работает" при низких температурах. Вместе с тем эти участки кривых $\sigma_H(T)$ до температур $T = 4.2 \,\text{K}$ хорошо описываются уравнением (3). Кривые $\sigma_H(T)$, рассчитанные по (2) для x = 0.8 и по (3) для x = 1.1 и 1.2, показаны сплошными линиями на рис. 3. Таким образом, если руководствоваться задачей описания экспериментальных кривых $\sigma_H(T)$ во всем интервале температур ($T = 4.2 - 230 \, \text{K}$) одной функциональной зависимостью, то с учетом низкотемпературного поведения более предпочтительным для образцов с x = 1.1и 1.2 является уравнение (3), а для x = 0.8 - 1.0 уравнение (2).

Для щелевого параметра Δ получены отрицательные значения, причем близкие по величине к значениям температур замерзания T_f (см. выше). Это согласуется с результатами работ [15-17], где рассмотрена щель в спектре возбуждения вида $\Delta = \mu (H - H_0)$. Поскольку в нашем эксперименте $H = 5 \,\mathrm{kOe}, \,\mu = 5 \mu_{\mathrm{B}}$ для Fe³⁺ и $\mu H \sim 0.3$ K, щель практически определяется внутренним полем, т.е. $\Delta = -\mu H_0$. Такой вид щели обусловлен тем, что разупорядочение спинов и фрустрации способствует появлению возбуждений в магнитной подсистеме, тогда как магнитное поле их подавляет [17]. Отметим, что независимо от результатов расчета [14], щель такого типа получена на основании экспериментальных данных по исследованию теплоемкости в сильных магнитных полях для возвратных и спин-стекольных образцов системы (Eu-Sr)S [15,16]. Таким образом, в общих чертах результаты настоящей работы согласуются с имеющимися данными, полученными для других фрустрированных систем [15–19].

 14.00 ± 0.12

0.168

 -14.80 ± 1.23

(3)

Таким образом, результаты исследования магнитных свойств разбавленных шпинелей $\text{Li}_{0.5}\text{Fe}_{2.5-x}\text{Ga}_x\text{O}_4$ (x = 0.8-1.2) показали, что этот интервал концентраций немагнитных ионов Ga^{3+} подразделяется на области, отличающиеся степенью насыщенности фрустрациями. Последнее определяет не только тип низкотемпературных состояний в нулевом магнитном поле (ФМ или ФСС), но и особенности поведения температурной зависимости высокополевой намагниченности $\sigma_H(T)$ в полях, превышающих поле технического насыщения ФМ.

Установлено, что для рассматриваемых фрустрированных ФМ зависимости $\sigma_H(T)$ в интервале температур 4.2–230 К не следуют закону Блоха $T^{3/2}$, который выполняется при отсутствии фрустраций (незамещенная Li-шпинель). В случае если при наложении внешнего поля $H > H_s$ восстанавливается коллинеарное ферримагнитное упорядочение, зависимости $\sigma_H(T)$ могут

 $C \cdot 10^5, \mathrm{K}^{-3/2}$

быть описаны с помощью приближения Дайсона, включающего члены $T^{3/2}$ и $T^{5/2}$, — уравнение (2). При этом роль члена $T^{5/2}$ возрастает по мере увеличения температуры. При сохранении в поле $H > H_s$ локальных нарушений коллинеарной ФМ-структуры и фрустраций зависимости $\sigma_H(T)$ также могут быть описаны в рамках спин-волнового приближения, но со щелью типа $\Delta = \mu(H - H_0)$ в спектре возбуждений.

Список литературы

- [1] К.П. Белов. Ферриты в сильных магнитных полях. Наука, М. (1972). 200 с.
- [2] S.J. Poon, J. Durand. Phys. Rev. B16, 1, 316 (1977).
- [3] Н.Н. Ефимова, Ю.А. Попков, Н.В. Ткаченко. ЖЭТФ 90, 4, 1413 (1986); ФТН 16, 12, 1565 (1990).
- [4] Н.Н. Ефимова, Ю.А. Попков, С.Р. Куфтерина, М. Халиби, В.А. Перваков, В.И. Овчаренко, Н.Ю. Тютрюмова. ФНТ 20, 6, 564 (1994).
- [5] K. Binder, A.P. Young. Rev. Mod. Phys. 58, 4, 801 (1986).
- [6] M. Benakli, H. Zheng, M. Gabay. Phys. Rev. B55, 1, 278 (1997).
- [7] A.E. Feiguin, C.J. Gazza, A.E. Trumper, H.A. Ceccato. Phys. Rev. B52, 21, 15043 (1995).
- [8] Д. Худсон. Статистика для физиков. Мир, М. (1970). 296 с.
- [9] J. Villain. Z. Phys. B33, 1, 31 (1979).
- [10] Ю.А. Изюмов, М.В. Медведев. Теория магнитоупорядоченных кристаллов с примесями. Наука, М. (1970). 271 с.
- [11] Н.Н. Ефимова, Ю.А. Попков, Г.А. Такзей, А.Б. Сурженко, А.М. Двоеглазов. ФТТ 36, 2, 490 (1994).
- [12] I.Ya. Korenblit, E.F. Shender. Phys. Rev. B33, 1, 624 (1986).
- [13] Ю.А. Изюмов, Р.П. Озеров. Магнитная нейтронография. Наука, М. (1966). 532 с.
- [14] А.И. Ахиезер, В.Г. Барьяхтар, С.В. Пелетминский. Спиновые волны. Наука, М. (1967). 368 с.
- [15] H. v. Löhneysen, R. Berg, G.V. Lekomte, W. Zinn. Phys. Rev. B31, 5, 2920 (1985).
- [16] J. Woznitza, H. v. Löhneysen, W. Zinn, U. Krey. Phys. Rev. B33, 5, 3436 (1986).
- [17] U. Krey. J. Physique Lett. 46, Z-845 (1985).
- [18] G. Gavoille, J. Hubsch. J. Phys. C (Paris) 49, 1159 (1988).
- [19] P.Z. Paulose, V. Nagarajan. Phys. Rev. B54, 21, 14934 (1996).