Индуцированная примесная фотопроводимость в кристаллах Si- и Ge-силленитов

© Т.В. Панченко

Днепропетровский государственный университет, 320625 Днепропетровск, Украина

(Поступила в Редакцию 30 июня 1997 г.)

В нелегированных и легированных ионами Al, Ga, Cr, Cu, Mn и V кристаллах $Bi_{12}SiO_{20}$ и $Bi_{12}GeO_{20}$ в оптическом диапазоне 0.5–3.5 eV при температурах 85–95 K и 285–295 K исследованы спектральное распределение интенсивности и релаксации фотопроводимости, индуцированной УФ-облучением. Показано, что в коротковолновой области 2.2–3.5 eV она контролируется многоцентровой рекомбинацией с участием центров "быстрой" и "медленной" рекомбинации.

Кристаллы силленитов $Bi_{12}MO_{20}$ (BMO), где M = Si, Ge, Ti, — сложный объект для исследования неравновесных процессов в связи с богатым спектром локальных состояний запрещенной зоны. Полезную информацию о схемах электронных переходов дает индуцированная примесная фотопроводимость (ИПФ). Она наблюдалась в чистых кристаллах Bi₁₂SiO₂₀ (BSO), Bi₁₂GeO₂₀ (BGO), а также в кристаллах BSO, легированных ионами Cr, Mn, Ni [1-5], и характеризуется увеличением фотопроводимости на 1-2 порядка величины с "красной границей" $h\nu_f \leq 2.1 \,\mathrm{eV}$. Переход в состояние ИПФ сопровождается ростом дрейфовой подвижности фотоносителей [2], изменением типа люкс-амперных характеристик [3] и кинетики релаксации [4,5]. Эти эффекты нельзя объяснить в рамках простой модели [1], связывающей ИПФ с заполнением донорных уровней за счет опустошения (светом с $h\nu > 2.1 \,\mathrm{eV}$) акцепторных, без учета механизма рекомбинации. На многоцентровую рекомбинацию в кристаллах ВМО указывают эффекты термической активации и гашения фотопроводимости, которые хорошо описываются с помощью s-центров "быстрой" и *г*-центров "медленной" рекомбинации [6–9].

В данной работе приведены результаты исследования ИПФ в кристаллах BSO и BGO при температурах $T_1 = 285-295$ К и $T_2 = 85-95$ К, соответствующих механизмам быстрой или медленной рекомбинации [8,9].

Исследовались номинально чистые и легированные ионами Al, Ga, Cr, V, Cu и Mn кристаллы BSO и BGO, выращенные методом Чохральского. Содержание примеси составляло $6 \cdot 10^{-3}$ (Cr), $3 \cdot 10^{-2}$ (Mn), $5 \cdot 10^{-2}$ (V), $3 \cdot 10^{-1}$ (Cu), $4 \cdot 10^{-2}$ (Ga) и $6 \cdot 10^{-3}$ wt.% (Al). Образцы были приготовлены в виде полированных пластин толщиной 0.3-0.7 mm с большими плоскостями (001), на которые наносились Ад-электроды, вожженные в вакууме. Все образцы перед измерениями прогревались в темноте до 700 К.

Исследовались спектральное распределение стационарной и индуцированной фотопроводимости $(\Delta \sigma^{\rm ph}(h\nu))$ в диапазоне $h\nu = 0.5-3.5$ eV и релаксация ИПФ. Использовался монохроматор SPM-2 с разрешающей способностью не хуже 0.02 eV. Источником света служила лампа накаливания мощностью 400 W, свет модулировался с частотой 12 Hz. Зависимости $\Delta \sigma^{\rm ph}(h\nu)$

нормировались относительно аппаратной функции распределения потока фотонов $N(h\nu)$. Измерения проводились от низких к высоким значениям $h\nu$ во избежание неконтролируемой ИПФ. Использовались режим постоянного поля $E = 100-200 \,\mathrm{V} \cdot \mathrm{cm}^{-1}$ и техника синхронного детектирования. ИПФ возбуждалась ртутной лампой в полосе $h\nu \approx 3.4 \,\mathrm{eV}$ (зона-зонное возбуждение).

ИПФ наблюдалась (в отличие от [1–3] и в соответствии с [4,5]) во всем спектральном диапазоне. Ярко выраженным является усиление ИПФ при понижении температуры в кристаллах, легированных Cr, Mn, Cu и V (рис. 1).

Для анализа ИПФ выделим две области: длинноволновую $\Delta h\nu_1 = 0.5-2 \,\text{eV}$ (примесного поглощения) и коротковолновую $\Delta h\nu_2 = 2.2-3.5 \,\text{eV}$ (область "плеча" поглощения, обусловленного собственными дефектами, примыкающую к краю фундаментального поглощения).

В области $\Delta h\nu_1$ наблюдается ИПФ, типичная для широкозонных полупроводников и обусловленная заполнением примесных уровней. При T_1 она наибольшая в кристаллах BSO:Cu, BSO:Ga. Понижение температуры до $T_2 \approx 85-95$ К приводит к увеличению ИПФ, наиболее значительному для кристаллов BGO:Mn (рис. 1). Энергия оптической активации E_a^{Op} , найденная по порогам примесных фотоэффектов, приведена в таблице.

Оптическая энергия активации E_a^{Op} (в eV) примесных уровней в кристаллах BSO и BGO

BSO	BGO:Al	BSO:Ga	BGO: Mn	BSO:Cr	BSO:Cu	BSO:V
0.79	0.84	0.86	0.84	0.74	0.72	0.86
1.02	1.52	1.24	1.0	1.13	0.83	1.0
1.5	2.45*	1.24	1.36	1.37	1.23	1.32
1.92	2.6*	2.2	1.52	1.48	1.5	1.43
2.22	3.0	3.13	1.92	1.93	1.9	1.52
2.45*	3.19		2.18*	2.45	2.26	1.89
2.6*	3.39		2.48*	2.55	2.52	2.23
2.86			2.55^{*}	2.87	2.89	2.8
3.03			3.04	3.02	3.07	3.02
3.2				3.26	3.23	3.27

* Полосы фоточувствительности, интенсивность которых убывает под действием УФ-подсветки.

Релаксация фототока имеет "быструю" и две "медленные" компоненты с характерными значениями времен релаксации: $\tau_1 = 0.2 \text{ s}, \tau_2 = 62 \text{ s}$ и $\tau_3 = 120 \text{ s},$ что указывает на участие уровней прилипания, параметры которых определены в [8,9].

Рис. 1. Спектральное распределение стационарной (*1–6*) и индуцированной (*1'–6'*) фотопроводимости кристаллов BSO (*1*, *1'*), BSO:Cu (*2*, *2'*), BGO:A1 (*3*, *3'*), BSO:V (*4*, *4'*), BSO:Cr (*5*, *5'*), BGO:Mn (*6*, *6'*). T = 90 K.

Рис. 2. Коротковолновое спектральное распределение интенсивности стационарной (1-5) и индуцированной (1'-5') фотопроводимости кристаллов BSO (1, 1'), BSO:Ga (2, 2'), BSO:Cr (3, 3'), BSO:Cu (4, 4'), BGO:Mn (5, 5'). T = 290 K.

В коротковолновой области $\Delta h \nu_2$ механизм ИПФ более сложный. В кристаллах BSO и BGO УФ-подсветка вызывает уменьшение фоточувствительности в полосе с $h\nu_{\rm max}=2.48\,{\rm eV}$ и значительный ее рост в области вблизи края поглощения ($h\nu \sim 3.3\,{
m eV}$), где выделяются полосы с $h\nu_{\rm max} = 3$ и 3.1 eV (понижение температуры до T_2 смещает их в область больших $h\nu$). Аналогичное распределение интенсивности ИПФ наблюдается в кристаллах BSO:Cu и BSO:V. В кристаллах BGO:Mn, BSO:Cr, BGO: Al и BSO: Ga оно близко к экспоненциальному и наблюдается в более узкой прикраевой полосе (рис. 2). Принимая во внимание, что ионы Al и Ga практически полностью, а ионы Cr и Mn частично компенсируют (в роли акцепторов) оптическое поглощение и фоточувствительность ВМО в области плеча [10-12], заключаем, что спектральное распределение интенсивности ИПФ зависит от степени компенсации.

Стационарный фототок под действием прямоугольного импульса света в полосе с $h\nu_{max} = 2.48 \text{ eV}$ устанавливается, подчиняясь обычной закономерности $I_{max}(1 - t/\tau)$, где τ имеет компоненты $\tau_1 = 2.5 \text{ s}$, $\tau_2 = 18.5 \text{ s}$ и $\tau_3 = 60 \text{ s}$ характеризующие также и его экспоненциальный спад (рис. 3). В состоянии ИПФ механизм релаксации фотоотклика изменяется: она приобретает "вспышечный" характер, при этом установление фототока может быть описано выражением типа $I = \{A/(\tau^{-1} - B)\} \times \{\exp(-Bt) - \exp(-t/\tau)\}$, где τ изменяется в пределах 1–370 s и A, B = const. После вспышки фототок не спадает до нуля, а устанавливается на уровне $I_0 = 0.7I_{max}$. После выключения света ИПФ спадает значительно медленнее стационарной (рис. 3).

Рис. 3. Кривые релаксации стационарной (1, 2) и индуцированной (3, 4) фотопроводимости кристаллов BSO при возбуждении прямоугольным импульсом света длительностью 60 (1, 2) и 130 s (3, 4). T = 290 K.

процессах оптической перезарядки примесных центров. Согласно [11], за поглощение и фоточувствительность в области $\Delta h\nu_2$ ответственны дефекты нестехиометрии: ионы ${\rm Bi}^{3+}$ и ${\rm Bi}^{5+}$ в роли акцепторов и доноров, замещающие ионы ${\rm Si}^{4+}$ в узлах Si-подрешетки. Поэтому возможным механизмом перезарядки являются переходы типа ${\rm Bi}^{5+}_{{\rm Si}^+} + 2e \rightarrow {\rm Bi}^{3+}_{{\rm Si}^+}$.

Влияние температуры на ИПФ сводится к следующему. Вблизи T_1 интегральная ИПФ ($\int \Delta \sigma^{\rm ph}(h\nu)d(h\nu)$) наибольшая для кристаллов BSO, BGO, BSO:Ga, BGO: Al (группа A), а при T_2 — для кристаллов BSO: Cu, BGO: Mn, BSO: V, BSO: Cr (группа B, рис. 2). Такая ситуация вполне определяется эффектом температурного гашения фотопроводимости. В [9] показано, что вблизи T_1 наиболее сильное (по сравнению с нелегированными кристаллами) гашение фотопроводимости имеет место в кристаллах группы B, например в кристаллах, легированных Cr и Cu, в то время как при T_2 гасится фотопроводимость кристаллов группы A.

Таким образом, можно предложить следующий механизм ИПФ: УФ-освещение обусловливает фотохимическое превращение глубоких примесных центров донорного типа (Bi⁵⁺, например) в "очувствляющие" *г*-центры медленной рекомбинации акцепторного типа (возможно, Ві³⁺). Это обусловливает ИПФ за счет увеличения времени жизни фотоносителей, ее величина нелинейно зависит от степени участия *r*-центров в процессах рекомбинации. Сильное температурное гашение фотопроводимости указывает на переключение с г-центров медленной на s-центры быстрой рекомбинации, при этом эффект ИПФ ослабляется. В [8] показано, что спектральный диапазон фотопроводимости, которая контролируется r- и s-центрами рекомбинации, имеет красную границу ≈ 2.1 eV, что соответствует рассматриваемой спектральной области.

Автор выражает признательность З.З. Янчуку за помощь в проведении экспериментов.

Список литературы

- А.Я. Волосов, В.Х. Костюк, А.Ю. Кудзин, Г.Х. Соколянский. ФТТ 23, 7, 2187 (1981).
- [2] В.Х. Костюк, А.Ю. Кудзин, Г.Х. Соколянский. ФТТ 22, 8, 2454 (1980).
- [3] В.П. Авраменко, А.Ю. Кудзин, Г.Х. Соколянский. ФТТ 26, 2, 485 (1984).
- [4] И.А. Карпович, Е.Е. Колосов, Е.И. Леонов, В.М. Орлов, М.В. Шилова. Изв. АН СССР. Неорган. материалы 21, 6, 965 (1985).
- [5] М.В. Шилова, В.М. Орлов, Е.И. Леонов Е.Е. Колосов, И.А. Карпович. Изв. АН СССР. Неорган. материалы 22, *1*, 103 (1986).
- [6] И.С. Захаров, И.А. Петухов, В.М. Скориков, М.Г. Кистенева. Изв. вузов. Физика, 6, 85 (1985).
- [7] И.С. Захаров. ФТТ 27, 4, 1062 (1985).
- [8] Т.В. Панченко, З.З. Янчук. ФТТ 38, 7, 2018 (1996).
- [9] Т.В. Панченко, З.З. Янчук. ФТТ 38, 10, 3042 (1996).

- [10] Т.В. Панченко, Н.А. Трусеева. УФЖ **29**, *8*, 1186 (1984).
- [11] Т.В. Панченко, В.Х. Костюк, С.Ю. Копылова. ФТТ 38, 1, 155 (1996).
- [12] Т.В. Панченко, А.Ю. Кудзин, В.Х. Костюк. Изв. АН СССР. Неорган. материалы 19, 7, 1144 (1983).