Магнитная восприимчивость и электросопротивление сплавов GdZn_xCu_{1-x}

© Ю.П. Ирхин, Н.И. Коуров

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

(Поступила в Редакцию 8 декабря 1997 г.)

Отклонение от правила Нордгейма–Курнакова и аномальное поведение спин-разупорядоченного электросопротивления в квазибинарных твердых растворах GdZn ($T_c = 268$ K)–GdCu ($T_N = 142$ K) объясняются в приближении эффективной среды теории протекания для случая трех фаз: ферро-, антиферро- и парамагнитного типа. Сильное возрастание ρ при концентрациях цинка $x \sim 0.45$ связывается с близостью системы к пределу протекания. Объемы отдельных фаз, вычисленные для случайного распределения, дают хорошее описание концентрационной зависимости магнитной восприимчивости.

1. Основные представления

Электрические и магнитные свойства системы сплавов $GdZn_xCu_{1-x}$ имеют ряд интересных особенностей, носящих даже парадоксальный характер с точки зрения обычных представлений. Экспериментально они подробно исследованы в серии работ [1-6], где было показано сосуществование при низких температурах в сплавах переходной области концентраций (0.2 $\leq x \leq 0.8$) ферро- (F) и антиферромагнитной (A) фаз, а также, возможно, еще третьей фазы парамагнитного (Р) типа (или типа спинового стекла). Подобное низкотемпературное магнитное состояние обычно называют возвратным спиновым стеклом. Фазовая диаграмма магнитного состояния сплавов GdZn_rCu_{1-r} в области перехода от А-(при x < 0.2) к *F*-типу дальнего порядка (при x > 0.8) представлена на рис. 1. Однако даже качественное объяснение концентрационных и температурных зависимостей электросопротивления и магнитной восприимчивости этих сплавов встречает ряд трудностей, которые до сих пор не преодолены.

Основными из них являются следующие.

1) Остаточное (измеренное при T = 4.2 K) удельное электросопротивление $\rho_0(x)$ сплавов GdZn_xCu_{1-x} не подчиняется правилу Нордгейма–Курнакова

$$\rho_{\rm NK}(x) = 4\rho_{\rm NK}^{\rm max} x(1-x),\tag{1}$$

согласно которому $1/4\rho_{\rm NK}^{\rm max} d\rho_{\rm NK}/dx|_{x\to 0;1} = \pm 1$ и $1/4\rho_{\rm NK}^{\rm max} d^2 \rho_{\rm NK}/dx^2|_{x\to 0;1} = -2$ [7]. Как видно из рис. 2, в действительности мы имеем значения $1/4\rho_{\rm NK}^{\rm max} d\rho_0/dx|_{x\to 0;1} \sim \pm 2$, а $1/4\rho_{\rm NK}^{\rm max} d^2 \rho_0/dx^2|_{x\to 0;1} = 0$, что соответствует линейной зависимости $\rho_0(x)$ с большим углом наклона. Фактически, отсутствие отрицательного квадратичного по x члена в (1) как раз и приводит при x = 0.45 к огромной величине остаточного сопротивления $\rho_0^{\rm max} \sim 0.7 \,\mu\Omega$, превышающего почти на порядок обычные для металлических сплавов значения $\rho_0 \sim 0.1 \,\mu\Omega$.

2) Электросопротивление в парамагнитной области температур ($T \ge 300 \,\mathrm{K}$) линейно убывает с уменьшением концентрации цинка при x < 0.6. Казалось бы, величина $\rho(x)$ при T = 300 К должна оставаться постоянной, так как сопротивление в основном определяется фононным $\rho_{\rm ph}$ и магнитным $\rho_{\rm m}$ вкладами. При этом фононный вклад не зависит от x, что следует из практически одинакового наклона кривых $\rho(T)$ при $T > T_C$ и T_N [4,5], а магнитная составляющая должна быть постоянной, поскольку рассеяние идет только на спинах ионов Gd, величина и концентрация которых для всех сплавов GdZn_xCu_{1-x} остаются неизменными.

3) Выделение на основе стандартной методики спинразупорядоченной части сопротивления (см., например, [8])

$$\rho_{\rm mm} = \rho - (\rho_0 + \rho_{\rm ph}) \tag{2}$$

дает довольно необычный результат: $\rho_{mm}(x) = 0$ при x < 0.45, т.е. в антиферромагнитных сплавах (рис. 1, 2).

Сочетание указанных особенностей $\rho(x)$ мы объясняем в настоящей работе на основе следующих исходных положений, которые соответствуют имеющимся экспериментальным представлениям о сплавах $GdZn_xCu_{1-x}$.

1) Значительный спиновый беспорядок сохраняется в сплавах с $x \leq 0.5$ вплоть до самых низких температур, о чем свидетельствуют сильный парапроцесс и наличие слабого спонтанного момента при T = 4.2 К даже в сплавах с x < 0.2 [1–3]. Это ведет к большой величине спинового рассеяния и соответственно $\rho_0(x)$. Отсюда ясно, что при переходе в парамагнитную область температур изменение спинового беспорядка мало́ и слабо влияет на поведение $\rho(x, T)$. Обычный способ выделения спиновой составляющей при этом дает уменьшенную величину, в частности близкую к нулю при тех значениях x, когда уже в области низких температур степень спинового беспорядка велика (т.е. при x < 0.5).

2) Положение 1, однако, не согласуется со сравнительно малым низкотемпературным сопротивлением антиферромагнитных сплавов. При малых $x \sim 0.1$ имеем $\rho_0(x) \sim 0.1 \,\mu\Omega$, в то время как максимальное магнитное сопротивление при полном спиновом беспорядке составляет $\rho_{\rm mm} \sim 0.7 \,\mu\Omega$ (это следует из измерений $\rho_{\rm mm}$ для коллинеарного ферромагнетика GdZn, а также из величины $\rho_0^{\rm max}$).

Для объяснения этого противоречия, на наш взгляд, необходимо привлечь представления теории протекания для многофазных систем. При этом в соответствии с экспериментальными данными [2,3] предполагается, что в интервале $0.2 \le x \le 0.8$ в образцах присутствуют *A*- и *F*-фазы, к которым добавляется спинразупорядоченная *P*-фаза типа спинового стекла, доминирующая при $x \sim 0.5$. В этом случае низкоомная *F*-, а может быть, и часть *A*-фазы с малым спиновым беспорядком шунтируют высокоомную *P*-фазу, существенно уменьшая наблюдаемое сопротивление $\rho_0(x)$.

3) Зависимость $\rho(x)$, через магнитную составляющую сопротивления, определяется также изменением с концентрацией цинка величины *sf*-обменного интеграла $I_{sf}(x)$ [8]. Поскольку в "чистой" *A*-фазе ($x \leq 0.2$) $T_N = 142$ K, а в "чистой" *F*-фазе (x = 1) $T_C = 268$ K, изменение $\rho_{mm}(x)$ за счет этого фактора должно быть связано с отношением T_N/T_C . Более конкретный вид такой зависимости, казалось бы, можно получить из кривой $\rho(x)$ в парамагнитной области температур. Поскольку при T = 300 K все сплавы находятся в *P*-состоянии (рис. 1), без учета зависимости $I_{sf}(x)$ следует ожидать $\rho(x) \cong$ const. Однако, как видно из рис. 2, при увеличение x практически от 0 до

Рис. 1. Фазовая диаграмма магнитного состояния сплавов $\operatorname{GdZn}_x\operatorname{Cu}_{1-x}$. 1 — точки Нееля T_N , 2 — точки Кюри T_C , 3 — температуры T_f , соответствующие переходу из коллинеарных ферро- или антиферромагнитного состояний в состояние типа возвратного спинового стекла, 4 — парамагнитные температуры Кюри Θ_P .

Рис. 2. Электросопротивление сплавов $\text{GdZn}_x\text{Cu}_{1-x}$. I — сопротивление в парамагнитной области температур при $T = 300 \text{ K} > T_C$ и T_N , 2 — остаточное сопротивление ρ_0 , измеренное при T = 4.2 K, 3 — спин-разупорядоченное сопротивление ρ_{mm} , вычисленное по формуле (2), 4 — сопротивление ρ^{th} , полученное согласно (11).

0.6 на самом деле наблюдается линейный рост $\rho(x)$. Можно предположить, что изменение сопротивления, обусловленное концентрационной зависимостью $I_{sf}^{2}(x),$ величины оценивается из отношения $ho(x = 0)/
ho(x > 0.6) \sim T_N/T_C = 142/268 \sim 0.5$ (при x > 0.6 величина $\rho(x)$ остается постоянной). Экспериментально определяемое значение $ho(x = 0) /
ho(x = 1) \sim 0.4$ несколько меньше. При этом следует отметить, что для проведенной оценки нельзя использовать кривые $T_C(x)$, $T_N(x)$, а также $\Theta_P(x)$, которые резко изменяются в середине интервала изменения концентрации x (при $x \sim 0.5$), что обусловлено компенсацией положительного и отрицательного вкладов от молекулярных полей, создаваемых ионами Cu и Zn, окружающими магнитные ионы Gd в сплавах GdZn_xCu_{1-x}.

2. Схема расчета

В соответствии с изложением предыдущего раздела нам необходимо вычислить электросопротивление трехфазной системы, состоящей из А-, F- и P-фаз. Сопротивление каждой из них определяется формулой

$$\rho_j = \rho_i^j + \rho_m^j + \rho_{\rm ph}^j, \tag{3}$$

где $j = A, F, P, \rho_i^j$ — остаточное примесное сопротивление отдельной фазы, ρ_m^j — магнитное сопротивление, связанное с рассеянием на неоднородных спинах за счет обменного взаимодействия их с носителями тока, $\rho_{\rm ph}^j$ — фононная часть сопротивления. Как показывает

X_j		x											
	0	0.1	0.2	0.3	0.4	0.45	0.5	0.6	0.7	0.8	0.9	1	
X_F	0	0.0	0.01	0.058	0.173	0.258	0.359	0.583	0.781	0.902	0.947	1	
X_A	1	0.962	0.797	0.552	0.316	0.222	0.148	0.061	0.036	0.043	0.048	0	
X_P	0	0.038	0.193	0.390	0.511	0.520	0.492	0.356	0.183	0.055	0.005	0	

Таблица 1. Результаты расчета по формуле (5) относительного объема магнитных фаз в сплавах $GdZn_xCu_{1-x}$

эксперимент, составляющая $\rho_{\rm ph}^{j}$ практически не зависит от концентрации *x* и удовлетворительно описывается обычной теорией. Сопротивление ρ_{i}^{j} , по-видимому, мало́ относительно других вкладов. Поэтому далее сосредоточим внимание на $\rho_{\rm m}^{\rm i}(x)$.

Будем рассматривать нашу систему как состоящую из непрерывной последовательности кластеров разного сорта GdZn_xCu_{1-x}, где число атомов Cu и Zn, окружающих атомы Gd, меняется от 0 до 8 для каждого сорта, причем вероятность определенной конфигурации Cu_nZn_{8-n} зависит от концентрации *x*. Количественно эти вероятности описываются биномиальными коэффициентами $C_n^8 = 8!/n!(8 - n)!$, так что при концентрации *x* вероятность данного окружения будет

$$X_n(x) = C_n^8 x^n (1-x)^{8-n}.$$
 (4)

Из формулы (4) следует, что при любой концентрации *x* имеется конечная вероятность $X_n(x) \neq 0$ для всех типов окружения *n*, 8 – *n* (*n* = 0, ..., 8). При таком подходе для системы сплавов GdZn_xCu_{1-x} можно рассматривать все девять возможных состояний *n*, считая каждое из них отдельной конфигурацией, обладающей определенными физическими характеристиками. Таким образом, рассматриваемые сплавы представляют собой микрогетерогенную, но макрооднородную систему, которая может быть описана в рамках теории протекания.

Для упрощения математического решения задачи мы разобьем все возможные значения n на три группы, что соответствует и физической ситуации. Фазу, соответствующую значениям n = 0, 1, 2, будем рассматривать как A-фазу, n = 3, 4 — как P-фазу (спин-стекольную), n = 5, 6, 7, 8 — как F-фазу. Тогда объем каждой фазы X_j для данного x будет определяться следующим выражением:

$$X_j = \sum_{n=n_j}^{n_j} C_n^8 (1-x)^{8-n} x^n,$$
 (5)

где n_j и n'_j — начальное и конечное значения n для A-, P- и F-фаз. При этом

$$\sum_{j} X_{j} = 1.$$

Вычисленные согласно (5) значения $X_j(x)$ приведены в табл. 1.

Имея явное выражение (5) для концентрационной зависимости объема фаз, мы можем вычислить теперь

зависимость от концентрации магнитной восприимчивости $\chi_i(x)$ для каждой из фаз и полную восприимчивость

$$\chi^{\rm th} = \sum_{j} \chi_j(x). \tag{6}$$

При этом будем рассматривать относительную величину $\chi_j(x)/\chi_j(x_j)$, где $\chi_j(x_j)$ — значения $\chi_j(x)$ в некоторой реперной точке x_j , подбираемой из соображений удобства сравнения с экспериментом. Такими точками, очевидно, являются $x_j = x_A = 0$ для *A*-фазы, $x_j = x_F = 1$ для *F*-фазы, а для *P*-фазы точка $x_j = x_P = 0.45$, где экспериментально полученная зависимость $\chi(x)$ имеет максимум.

Тогда $\chi_i(x)$ можно записать в виде

$$\chi_j(x) = \chi_j(x_j) X_j(x) [X_j(x_j) t_j(x)]^{-1},$$
 (7)

где $t_j(x) = T_j(x)/T_j^{\max}$, $T_j(x) = T_N(x)$ или $T_C(x)$ соответственно для *A*- или *F*-фазы, а для *P*-фазы $t_P(x) = 1$. Кривые $T_j(x)$ изображены на рис. 1, T_j^{\max} — их максимальные значения. Введение множителя $t_j(x)$ в (7) соответствует учету обменного взаимодействия в приближении молекулярного поля при вычислении восприимчивости. Для случая *P*-фазы молекулярное поле равно нулю, и множитель $t_P(x)$ в формуле (7) не учитываем.

Результаты вычисления $\chi_j(x)$ и $\chi^{\text{th}}(x)$ по формулам (6) и (7) представлены в табл. 2 и на рис. 3. Видно, что согласие расчетных значений $\chi^{\text{th}}(x)$ с экспериментальными данными $\chi(x)$ вполне удовлетворительное. Лишь в интервале $0.6 \leq x \leq 0.9 \chi^{\text{th}}(x)$ несколько превышает значения $\chi(x)$. Очень показательным является совпадение положения максимумов $\chi^{\text{th}}(x)$ и $\chi(x)$, что обусловлено исключительно существованием максимума относительного объема *P*-фазы в точке $x_P = 0.45$. Это подтверждает справедливость разбиения отдельных атомных конфигураций по фазам в формуле (5) и является сильным аргументом в пользу всей предлагаемой модели.

Перейдем теперь к рассмотрению электросопротивления. Из общих соображений очевидно, что между его магнитной составляющей и магнитной восприимчивостью существует связь. Для рассматриваемых сплавов это следует и из эксперимента при сравнении данных, представленных на рис. 2 и 3. В таком случае можно использовать концентрационные зависимости $\chi_j(x)$ для вычисления $\rho_m^j(x)$. Однако прямая пропорциональность между магнитными вкладами в χ и ρ имеет место только

Таблица 2. Результаты расчета магнитной восприимчивости χ (в EMU/g) по формулам (4)–(7) для сплавов GdZn_xCu_{1-x}

X	x											
	0	0.1	0.2	0.3	0.4	0.45	0.5	0.6	0.7	0.8	0.9	1
χ_A χ_F χ_P	1.7 0 0	1.68 0.003 0.124	1.50 0.035 0.636	1.11 0.097 1.29	0.909 0.193 1.69	0.706 0.248 1.71	0.527 0.301 1.62	0.295 0.356 1.18	0.217 0.387 0.603	0.298 0.340 0.182	0.384 0.292 0.016	0 0.25 0
$\chi^{ ext{th}}$	1.70	1.81	2.17	2.49	2.79	2.67	2.45	1.83	1.21	0.82	0.693	0.25

для *Р*-фазы. Поэтому мы будем считать, что магнитная часть сопротивления *Р*-фазы описывается соотношением

$$\rho_{\rm m}^P(x) = r_P(x_P)(1+\tau x)\chi_P(x)/X_P(x), \qquad (8)$$

где $\chi_P(x)$ вычисляется по формуле (7).

Параметр $\tau = (T_C - T_N)/T_N = 0.89$ введен в выражение (8) для учета концентрационной зависимости обменного интеграла I_{sf} , определяющего амплитуду рассеяния электронов проводимости на спинах Gd.

Параметр $r_P(x_P)$ в (8) аналогично восприимчивости, рассчитываемой по формуле (7), определяется в реперной точке.

С теоретической точки зрения связь между $\rho_{\rm m}(x)$ и $\chi(x)$ основывается на известных соотношениях [9]

$$\rho_{\rm m}(x) = B(\overline{S^2} - \overline{S}^2), \quad \chi(x) = D(\overline{S^2} - \overline{S}^2). \tag{9}$$

Причем выражение (9) для $\chi(x)$ можно получить, например, из уравнения Гинзбурга–Ландау. Формулы (9) хорошо применимы в *P*-состоянии. Однако при низких температурах в магнитоупорядоченном состоянии соотношения (9) могут иметь более сложный характер.

Рис. 3. Магнитная восприимчивость χ (1) и спонтанная намагниченность M_s (2) сплавов $\text{GdZn}_x\text{Cu}_{1-x}$, определенные при T = 4.2 K. 3 — восприимчивость χ^{th} , вычисленная согласно выражениям (6) и (7).

Следует также иметь в виду, что в $\chi_A(x)$ при больших полях значительный вклад вносит схлопывание моментов магнитных подрешеток *А*-фазы, которое не влияет на сопротивление. Поэтому мы будем использовать выражения (9) только для *Р*-фазы.

Как показывают оценочные расчеты, вклады $\rho_m(x)$ в *A*- и *F*-фазах при *T* = 4.2 К оказываются значительно меньше (примерно на порядок) вклада в *P*-фазе. Это позволяет нам в первом приближении при низких температурах пренебречь составляющими ρ_m^A и ρ_m^F . Учитывая далее примесное сопротивление ρ_i и вклад Нордгейма– Курнакова $\rho_{NK}(x)$, связанный со случайным замещением атомов Cu атомами Zn, во всех фазах имеем

$$\rho_j(x) = \rho_{\rm NK}(x) + \rho_{\rm ph} + \rho_i^J(x) + \rho_{\rm m}^j(x), \qquad (10)$$

где составляющие $\rho_{NK}(x)$ и $\rho_m^P(x)$ определяются по формулам (1) и (8), а $\rho_m^A(x)$ и $\rho_m^F(x) \approx 0$.

1) Н и з к и е т е м п е р а т у р ы (T = 4.2 K). Отметим прежде всего, что при $T \rightarrow 0 \text{ K}$ магнитная составляющая $\rho_m^P \neq 0$ ввиду остаточного спинового беспорядка ионов Gd, сопутствующего атомному беспорядку ионов Cu и Zn. Более того, зависимость $\rho_m^P(x)|_{T\rightarrow 0}$ в основном и определяет кривую $\rho_0(x)$ на рис. 2. Однако из-за многофазности системы $\rho_m(x)|_{T\rightarrow 0}$ не может быть описана аналогично правилу Нордгейма–Курнакова, а имеет более сложный вид. В теории протекания получено обобщение известной для двухфазного случая формулы Оделевского–Кондорского [10]. Для трехфазной системы в приближении эффективной среды, когда одна из фаз является непроводящей, в [10] приводится аналитическое выражение

$$\sigma_{\text{eff}} = 1/\rho^{\text{th}} = \left[(3X_1 - 1)\sigma_1 + (3X_2 - 1)\sigma_2 \right]/4 + \left\{ \left[(3X_1 - 1)\sigma_1 + (3X_2 - 1)\sigma_2 \right]^2 / 16 + (2 - 3X_3)\sigma_1\sigma_2 / 4 \right\}^{1/2}.$$
(11)

Здесь X_1 и X_2 — объемы проводящих фаз с электропроводностями σ_1 и σ_2 , а X_3 — объем непроводящей фазы ($\sigma_3 = 0$). В общем случае ($\sigma_3 \neq 0$) теория приводит к более сложному кубическому уравнению. Предполагая, что $\sigma_3 \ll \sigma_1$ и σ_2 для системы GdZn_xCu_{1-x} будем считать приближенно справедливой формулу (11), в которой индекс 1 соответствует *F*, индекс 2 — *A*, индекс 3 — *P*.

Кроме того, в отличие от обычной схемы в соответствии с (10) положим $\sigma_1 = \sigma_F(x)$, а $\sigma_2 = \sigma_A(x)$.

Прежде чем перейти к численному расчету σ_{eff} по формуле (11) во всем интервале *x*, рассмотрим некоторые аналитические результаты в предельном случае. Относительный объем третьей фазы в пределе протекания равен $X_3^c = X_p^c = 2/3$. Тогда, как это следует из выражения (11), $\sigma_{\text{eff}} \rightarrow 0$, соответственно $\rho^{\text{th}} = \sigma_{\text{eff}}^{-1} \rightarrow \infty$. Как показывает расчет X_p по формуле (5), его максимальное значение при x = 0.45 равно 0.52, т.е. $[X_p^c - X_p(x = 0.45)] = \delta = 0.14 \ll 1$. Это дает возможность разложения по δ , что в линейном приближении и при условии $\sigma_1 = \sigma_2$ приводит формулу (11) к простому выражению

$$\rho^{\rm th} = \sigma_{\rm eff}^{-1} = \frac{2}{3} \rho_P(x) \frac{1}{\delta(x)}.$$
 (12)

Формула (12) хорошо описывает ход концентрационной зависимости сопротивления вблизи предела протекания для двухфазной системы и сразу позволяет сделать грубые оценки величины максимума $\rho^{\text{th}}(x)$. Если, как это имеет место, например, в нашем случае, согласно (10),

$$\rho_A(x) = \rho_{\rm NK}(x) + \rho_{\rm ph} + \rho_i^A(x),$$

$$\rho_F(x) = \rho_{\rm NK}(x) + \rho_{\rm ph} + \rho_i^E(x),$$
(13)

а $\rho_{\rm ph}|_{T\to 0} \sim 0$ и примесное сопротивление не сильно отличается для *F*- и *A*-фаз, то $\rho^{\rm th}(x)$ растет как $(2/3)\frac{1}{\delta(x)}$ вблизи x = 2/3. Тогда для типичного значения $\rho_{\rm NK}^{\rm max} \sim 0.1 \,\mu\Omega$ в формуле (1) получаем согласно (12) для максимального значения $\rho^{\rm th} \sim 0.47 \,\mu\Omega$, т.е. почти пятикратное увеличение сопротивления вблизи порога протекания по сравнению с вкладом Нордгейма–Курнакова.

Таким образом, основной физический результат нашего расчета заключается в том, что присутствие высокоомной Р-фазы при $x \sim 0.45$ приводит к значительному росту $\rho^{\text{th}} \sim 1/\delta$ в середине интервала концентраций. Применимость формулы (11) с $\sigma_3 = 0$ можно оценить, используя связь $\rho_m^p(x)$ с $\chi_P(x)$ по формуле (8). B табл. 3 приведены результаты вычисления парциальных сопротивлений $\rho_A(x)$, $\rho_F(x)$ и $\rho_P(x)$ по формулам (8) и (13). При этом параметр $r_P(x_P)$ подбирался из условия примерного совпадения величины $\rho_P(x)$ и $\chi_P(x)$ с экспериментальным значением $\rho_0(x)$ и $\chi_P(x)$ при x = 0.45. Из табл. З видно, что почти во всем интервале концентраций величина $\rho_P(x)$ значительно превышает $\rho_A(x)$ и $\rho_F(x)$. Это и оправдывает приближение $\sigma_3 = 0$ в выражении (11).

Для получения более точных, чем по формуле (12), данных во всем интервале *x* следует провести расчет ρ^{th} по формуле (11). Результаты такого расчета приведены в табл. 3 и на рис. 2. Из этого рисунка видно, что согласие с экспериментом вполне удовлетворительное. В отличие от оценок по формуле (12) в численном расчете учитывались и примесные части $\rho_i^A(x)$ и $\rho_i^F(x)$, величины которых оценивались из экспериментального остаточного сопротивления в точках x = 0 и 1. Значение $\rho_i^F(x = 1) = 0.025 \,\mu\Omega$ ввиду его малости слабо влияет на конечный результат. Большое значение $\rho_i^A(x = 0) = 0.136 \,\mu\Omega$, возможно, обусловлено добавочной А-фазой с T_N = 40 K в сплавах на основе антиферромагнетика GdCu [6]. Однако остается не совсем ясным, до каких значений х сохраняется эта добавочная фаза и как ее объем зависит от х. В расчете мы считали, что эта фаза присутствует практически для всех х, где существует основная А-фаза, т. е. использовали соответствующее выражение (10) при постоянном $\rho_i^A(x)$. При этом конечный вклад от $\rho_i^A(x)$ в полное сопротивление ρ^{th} падает с ростом *x* пропорционально уменьшению объема $X_A(x)$ для *А*-фазы. Хорошее совпадение величин $\rho^{\text{th}}(x)$ и экспериментальной $\rho_0(x)$ в максимуме при x = 0.45 получается при значении $\rho_i^A(x) = 0.1 \, \mu \Omega$, что незначительно отличается от экспериментально определенного $\rho_i^A(x=0) = 0.136 \,\mu\Omega$.

Следовательно, в рамках простой модели теории протекания (11) удается описать зависимость $\rho_0(x)$, используя только лишь экспериментальные значения остаточных сопротивлений $\rho_i^A(x = 0)$ и $\rho_i^F(x = 1)$, а также вклад Нордгейма–Курнакова $\rho_{NK}(x)$. Интересно отметить вытекающие из теории предсказания поведения Наиболее чувствительно $\rho^{\text{th}}(x)$ к параметру $\rho^{\text{th}}(x)$. $\delta(x)$, определяющему близость высокоомной *P*-фазы к пределу протекания. Для сплавов GdZn_xCu_{1-x} величина $\delta(x = 0.45) = 0.14$. Увеличение объема А-фазы может привести к значительному росту $\rho^{\text{th}}(x)$. В связи с этим желательно провести исследования систем RZn_xCu_{1-x} с R = Tb, Dy и другими редко-земельными элементами, для которых чистые R-металлы являются антиферромагнетиками, в силу чего можно ожидать увеличение А-фазы в соединениях RZn_rCu_{1-r} . Резкое изменение $\rho^{\text{th}}(x)$ может также вызвать добавление примесей, увеличивающих значения $\rho_i^A(x)$ и $\rho_i^F(x)$.

2) В ы с о к и е т е м п е р а т у р ы $(T > T_N, T_C)$. В рамках представлений, изложенных в предыдущем разделе, можно теперь объяснить поведение сопротивления $\rho(x)$ в парамагнитной области температур и, в частности, кажущееся отсутствие спин-разупорядоченного вклада $\rho_{\rm mm}$ в антиферромагнитных сплавах. При $T > T_N$ и T_C рассматриваемая система сплавов становится в магнитном отношении однофазной, а следовательно, $\rho(x)$ должно описываться обычными формулами.

Для количественного определения $\rho_{\rm mm}$ можно было бы воспользоваться снова теорией эффективной среды для многофазных систем, как и в предыдущем разделе, но с переходом к однофазному пределу. При этом необходимо было бы заменить формулу (11), которая соответствует частному случаю трехфазной системы с $\sigma_3 = \sigma_P = 0$, соответствующей формулой для конечной величины $\sigma_3 \neq 0$. Однако данный случай требует решения кубического уравнения (см. [10] и ссылки там). Поэтому мы ограничимся здесь более простой, но наглядной интерпретацией.

Таблица 3. Результаты расчета электросопротивления ρ (в $\mu\Omega$) по формулам (8), (10), (11), (13)–(15) для сплавов GdZn_xCu_{1-x}

ρ	X											
	0	0.1	0.2	0.3	0.4	0.45	0.5	0.6	0.7	0.8	0.9	1
$ ho_A$	0.16	0.22	0.26	0.25	0.25	0.23	0.21	0.17	0.15	0.15	0.15	0.025
$ ho_F$	0.025	0.06	0.09	0.11	0.13	0.13	0.14	0.14	0.13	0.11	0.08	0.04
$ ho_P$	0.52	0.60	0.67	0.73	0.79	0.82	0.84	0.88	0.91	0.94	0.95	0.96
$ ho_{ m m}^P X_p$	0	0.02	0.11	0.24	0.34	0.36	0.35	0.27	0.15	0.05	0.005	0
$ ho^{ ext{th}}$	0.16	0.24	0.36	0.56	0.86	0.79	0.59	0.3	0.18	0.12	0.08	0.04
$ ho_{ m mm}$	0.08	0.01	0.08	0.18	0.45	0.63	0.49	0.51	0.57	0.73	0.59	0.52
$ ho_{ m m}^{ m tot}$	0	0.02	0.11	0.24	0.35	0.46	0.46	0.45	0.53	0.5	0.59	0.66

Учитывая, что почти при всех x, за исключением лишь самых концов интервала $x \cong 0$ и $\cong 1$, основной вклад в остаточное сопротивление $\rho_0(x)$ вносит именно его магнитная часть, соответствующая его высокоомной *P*-фазе (см. табл. 3), мы можем в качестве грубого варианта определения $\rho_{\rm mm}$ воспользоваться следующим выражением:

$$\rho_{\rm mm}(x) = \rho(T > [T_N, T_C], x) - \rho_{\rm NK}^{\rm max} - \rho_i(x = 1) - \rho_{\rm ph}.$$
(14)

Значения $\rho_{\rm mm}(x)$, вычисленные согласно формуле (14), где под $\rho(T > T_N, T_C)$ понимаются экспериментальные значения $\rho(x)$ при T = 300 K, под $\rho_{\rm NK}$ — величина $4\rho_{\rm NK}^{\rm max}x(1-x) = 0.4x(1-x)$, под $\rho_i(x=1) = 0.025 \,\mu\Omega$ — остаточное сопротивление ферромагнетика GdZn, а для $\rho_{\rm ph}$ (T = 300 K) взята одинаковая для всех x величина 0.45 $\mu\Omega$, приведены в табл. 3.

Из этой таблицы следует, что даже при такой грубой оценке величина $\rho_{mm}(x) \sim 0.5 \,\mu\Omega$ теперь хорошо сохраняется в большей части всего интервала $x \ge 0.45$. Согласно изложенному выше, при концентрациях x < 0.45 можно считать, что уменьшение $\rho_{mm}(x)$ наступает в соответствии с уменьшением величины обменного вза-имодействия I_{sf} . В эксперименте наблюдается более сильное падение $\rho(x)$ при x < 0.3. Однако следует заметить, что на экспериментальной зависимости $\chi(x)$ точка x = 0.3 сильно выпадает (рис. 3), а начиная с $x \le 0.2$, кривая $\rho_0(x)$ на рис. 2 и другие свойства сплавов GdZn_xCu_{1-x} искажаются из-за возникновения добавочной *A*-фазы, обусловленной структурной неустойчивостью антиферромагнетика GdCu (см. подробнее [1–6]).

Интересно сравнить величину $\rho_{mm}(x)$, вычисленную по формуле (14), с величиной магнитного сопротивления $\rho_m^P(x)$, определенного независимым образом согласно выражению (8) с использованием его пропорциональности восприимчивости. Составляющая $\rho_m^P(x)$ является той частью магнитного сопротивления, которая, по существу, связана со спиновым беспорядком при T = 4.2 К. В этом случае полное магнитное сопротивление, очевидно, определяется величиной $\rho_m^P(x)X_P(x)$ и высокотемпературной частью ρ_{mm} , получаемой стандартным способом согласно (2), т. е.

$$\rho_{\rm m}^{\rm tot}(x) = \rho_{\rm m}^p(x)X_P(x) + \rho_{\rm mm}.$$
(15)

В табл. 3 приведены значения $\rho_{\rm m}^{\rm tot}(x)$, полученные по формулам (2) и (15). Видно, что и здесь мы имеем картину, аналогичную случаю вычисления $\rho_{\rm mm}(x)$ согласно выражению (14).

Таким образом, корректное определение концентрационной зависимости магнитной части сопротивления микронеоднородного сплава должно учитывать как зависимость от концентрации *x* обменного взаимодействия, определяющего амплитуду рассеяния носителей тока на спиновом беспорядке, так и шунтирование высокоомных фаз низкоомными. На основе предположения о сохранении спинового беспорядка в системе сплавов GdZn_xCu_{1-x} при низких (T = 4.2 K) температурах удается объяснить концентрационную зависимость сопротивления $\rho(x)$ и выделить из него магнитную составляющую $\rho_m(x)$. Для количественного описания используются корреляция между $\rho(x)$ и магнитной восприимчивостью $\chi(x)$ при низких температурах и формулы теории протекания.

Авторы благодарны участникам семинара лаборатории низких температур Института физики металлов УрО РАН за обсуждение, а также Н.Г. Бебенину и Р.В. Поморцеву за полезные критические замечания.

Список литературы

- Ю.Н. Циовкин, Н.И. Коуров, И.И. Пиратинская. ФММ 67, 6, 1097 (1989).
- [2] Н.И. Коуров, Ю.Н. Циовкин, Т. Мыдляж. ФНТ 16, 9, 1164 (1990).
- [3] Ю.Н. Циовкин, Н.И. Коуров. ФММ 71, 5, 91 (1990).
- [4] Н.И. Коуров, Ю.Г. Карпов. ФММ 72, 12, 50 (1991).
- [5] Н.И. Коуров Ю.Н. Циовкин. ФММ 75, 6, 62 (1993).
- [6] Н.И. Коуров. ФНТ 16, 6, 749 (1990).
- [7] Ю.П. Ирхин, В.Ю. Ирхин. Электронное строение и физические свойства переходных металлов. УрГУ, Свердловск (1989). 115 с.
- [8] К. Тейлор, М. Дарби. Физика редкоземельных соединений. Мир, М. (1974). 374 с.
- [9] С.В. Вонсовский. Магнетизм. Наука, М. (1971). С. 1032.
- [10] Е.А. Митюшов, П.В. Гельд, Г.А. Адамеску. Обобщенная проводимость и упругость макрооднородных гетерогенных материалов. Металлургия, М. (1992). 144 с.