Структура люминесценции автолокализованного экситона в кристаллах α -Al₂O₃

© Б.Р. Намозов, М.Э. Фоминич, В.В. Мюрк*, Р.И. Захарченя

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Institute of Physics, EE2400 Tartu, Estonia

Кристаллы оксида алюминия α -Al₂O₃ — лейкосапфир (сапфир) характеризуются яркой самоактивированной люминесценцией с максимумом интенсивности при 7.5 eV (165 nm). В работе [1] предполагалось, что полоса люминесценции при 7.5 eV, является свечением электрон-дырочной рекомбинации. В наших работах [2,3] относительно полосы люминесценции при 7.5 eV в сапфире были выдвинуты предположения о свечении автолокализованных экситонов (АЛЭ) с одноцентровой дырочной структурой O⁻.

Исследования длинноволнового края фундаментального поглощения (ДКФП) показали (см. рис. 1, кривые 5-7), что он подчиняется известному правилу Урбаха с характерными параметрами $E_0 = 9.0 \, \text{eV}$, $\alpha_0 = 10^5 \,\mathrm{cm}^{-1}, \ \sigma_0 = 0.64$ [3]. На рис. 1 (кривая 8) приведен спектр люминесценции кристаллов сапфира, из которого видно, что коротковолновой спад полосы люминесценции 7.5 eV перекрывается с урбаховским хвостом экситонного поглощения. В коротковолновой области этого свечения наблюдается особенность — "плечо" при 9.0 eV, спектрально совпадающая с E₀. Полоса с максимумом при 7.5 eV имеет полуширину 0.8 eV, и ее интенсивность при температурах $T \ge 45 \,\mathrm{K}$ обнаруживает тушение с энергией активации $E_a \approx 0.025 \, \text{eV}$. Квантовый выход люминесценции в полосе при 7.5 eV, составляет не менее 20% при возбуждении фотонами 9.0 eV.

Кинетические измерения свечения полосы 7.5 eV (см. вставку в рис. 1) показали присутствие трех компонентов затухания τ (22 nS, 230 nS и \geq 2000 nS) люминесценции с незначительными (\leq 100 meV) спектральными отличиями [4]. Их температурные зависимости выявили близкие значения энергии активации ~ 25, ~ 20 и ~ 18 meV, соответственно. В быстром (~ 22 nS) компоненте свечения выделяется более половины светосуммы.

В интервале температур от 4 K до 110 K степень линейной поляризации этого свечения меняется слабо от 35% до 30% (при наблюдении перпендикулярно оптической оси кристалла), и начинает резко снижаться при температуре кристалла \geq 110 K. Отметим также, что интенсивность свечения полосы рентгенолюминесценции при 7.5 eV в направлении параллельно C_3 в несколько раз больше, чем перпендикулярно C_3 .

Люминесценция полосы 7.5 eV эффективно возбуждается на краю собственного поглощения, а именно, в области спектра 8.9–9.25 eV (см. рис. 1, кривая 4). Из рисунка видно, что длинноволновый край спектра возбуждения полосы 7.5 eV совпадает с урбаховским хвостом ДКФП. Там же, для сравнения, приведена область спектра экситонного поглощения (R) и спектр возбуждения люминесценции Ce³⁺ при 5 K. При комнатной температуре спектр возбуждения люминесценции Ce³⁺ подобен спектру возбуждения полосы 7.5 eV. Коротковолновый спад спектра возбуждения полосы 7.5 eV совпадает с ростом спектра создания термостимулированной люминесценции (электрон-дырочных пар) при 5 K, а также спектра возбуждения свечения цериевых центров (рис. 1, кривая 2).

Кристаллы α -Al₂O₃ со сложной структурой $(D_{3d}^6 - R3c)$ и с 10 атомами в элементарной ячейке по типу химической связи относятся к ионным, хотя ковалентность в них составляет примерно 20%. Отметим, что важной особенностью данной структуры является более низкая симметрия позиций анионов (кислорода) — C_2 чем катионов — Al³⁺ (C_3). Согласно расчетам [5], валентная зона образуется из 2*p*-состояний кислорода, причем в кристаллическом поле столь низкой симметрии — C_2 происходит полное расщепление *p*-состояний. При координационном числе 4 одна из *p*-орбиталей кислорода оказывается несвязывающего типа, а другая повернута под углом 45° к оптической оси — C_3 .

Сравнивая спектры фотопроводимости со спектром отражения, авторы [6] пришли к выводу, что пик отражения при 9.2 eV в сапфире имеет экситонную природу. Известно, что параметр σ_0 характеризует силу электронфононного взаимодействия [7]. ДКФП сапфира формируется экситонным состоянием с сильным электронфононным взаимодействием, приводящим к автолокализации, о чем свидетельствует малая величина $\sigma_0 = 0.64$.

Спектрально-кинетические данные выявили характерные особенности широкополосной люминесценции кристаллов сапфира с максимумом при 7.5 eV: 1) высокий квантовый выход (20%), 2) большой стоксов сдвиг, 3) отсутствие селективных полос в области прозрачности кристалла, 4) наличие в кинетике компонента с экспоненциальным законом затухания, 5) генетическая связь с областью экситонного поглощения, 6) замораживание передачи энергии к примесным центрам. Как известно, таким набором свойств обладают полосы люминесценции АЛЭ в щелочно-галоидных кристаллах [8]. На основе этих характеристик мы можем утверждать, что полоса свечения 7.5 eV есть проявление АЛЭ в α -Al₂O₃. Наблюдаемая нами особенность при 9.0 eV совпадает

Рис. 1. Оптические спектры кристаллов α -Al₂O₃ на краю фундаментального поглощения: 1 — спектр поглощения, 2 — спектр возбуждения свечения цериевых центров при 5 K, 3 — спектр создания ТСЛ при 5 K, 4 — спектр возбуждения люминесценции полосы 7.5 eV, 5-7 — спектр урбаховского края фундаментального поглощения при 80, 200 и 300 K соответственно, 8 — спектр люминесценции. На вставке приведена температурная зависимость трех компонентов кинетики затухания полосы люминесценции при 7.5 eV.

с состоянием свободного экситона. Независимость ее интенсивности от температуры и достаточно короткое время жизни (< 0.3 nS) указывают на "горячий" характер свечения. Следовательно, автолокализация экситона в сапфире происходит безбарьерно.

Рансиман предположил, что два σ -компонента свечения ориентированы параллельно, а другие σ - и π -компоненты — перпендикулярно оптической оси [1]. Наши прямые измерения подтвердили предположение Рансимана, что линейная поляризация (π -компонент) свечения направлена перпендикулярно оптической оси. Определенное нами значение степени линейной поляризации свечения $\sim 30\%$ (T = 5 K) и 35% (T = 80 K) в направлении перпендикулярно C_3 в кристалле указывает на присутствие также свечения σ -характера.

Температурные зависимости светосуммы и поляризации свечения АЛЭ указывают на механизмы, влияющие на релаксацию электронных возбуждений в кристалле. Температурное тушение интенсивности свечения при $T \ge 45$ К вызвано, скорее всего, ветвлением электронных возбуждений [9]. В интервале температур от 5 К до 110 К степень линейной поляризации свечения АЛЭ слабо меняется, что аналогично температурному ходу быстрого (22 nS) компонента свечения. Из этого следует, что компонент свечения АЛЭ с наиболее коротким временем затухания имеет π -характер поляризации перпендикулярно C_3 , и естественно, σ -характер параллельно C_3 .

Приведенные выше факты подтверждают правомочность гипотезы об образовании в кристаллах сапфира АЛЭ с дырочной компонентой О⁻. Ион О⁻ имеет термы ${}^{2}P_{1/2}$ и ${}^{2}P_{3/2}$, которые в кристаллическом поле расщепляются. Экситон, образованный из такой дырки и *s*-электрона, имеет состояния с термами ${}^{3}P_{2}$, ${}^{3}P_{1}$, ${}^{3}P_{0}$

и ${}^{1}P_{1}$. Мы считаем, что эти термы полностью расщепляются в ходе релаксации экситона в АЛЭ. В зависимости от состояния АЛЭ характер люминесцентного перехода является: запрещенным — ${}^{3}P_{1}$, частично разрешенным — ${}^{3}P_{2}$, ${}^{3}P_{0}$ и разрешенным — ${}^{1}P_{1}$.

В элементарной ячейке сапфира можно выделить квазимолекулу Al₄O, где каждый ион Al³⁺ связан с ионом O²⁻. При создании экситона в квазимолекуле O²⁻ Al₄O электрон переходит от иона кислорода к одному из четырех ионов алюминия, и может вращаться вокруг кислорода. В ходе релаксации дырка смещается из равновесного положения в сторону одной из связей Al–O. Электрон в свою очередь также локализуется около смещенной из положения равновесия дырки. Сопоставление поляризационных и кинетических параметров свечения позволяет говорить о том, что в интервале температур 6 K $\leq T \leq$ 110 K AЛЭ в первую очередь аннигилирует из состояния ¹*P*₁. При температурах ниже 50 K в свечении АЛЭ проявляются и состояния ³*P*₂, ³*P*₀. Запрещенному

Рис. 2. Энергетическая структура автолокализованного экситона.

переходу из состояния ${}^{3}P_{1}$ соответствует случай, когда дырка локализована на несвязывающей орбитали иона кислорода (рис. 2).

Авторы благодарны Б.П. Захарчене за постоянное внимание к работе.

Работа поддержана грантами РФФИ № 95-02-047760а и МНТП № 5-15.

Список литературы

- [1] W.A. Runciman. Solid State Commun. 6, 537 (1968).
- [2] А.И. Кузнецов, Б.Р. Намозов, В.В. Мюрк. ФТТ 27, 10, 3030 (1985).
- [3] А.И. Кузнецов, Б.Р. Намозов, В.В. Мюрк. Изв. АН ЭССР. Физика. Математика **36**, 193 (1987).
- [4] В.В. Мюрк, К.М. Исмаилов. ФТТ 35, 2, 498 (1993).
- [5] I.P. Batra. J. Phys. C.: Sol. Stat. Phys. 15, 5399 (1982).
- [6] Э.Р. Ильмас, А.И. Кузнецов. ФТТ 14, 6, 1464 (1972).
- [7] M.V. Kurik. Phys. Stat. Sol. 8, 9 (1971).
- [8] Ch.B. Lushchik. In: Excitons / Ed. E. Rashba and M. Sturge. North-Holland, Publ. Conf. (1982). P. 505.
- [9] V. Murk, B. Namozov, N. Yaroshevich. Rad. Measur. 24, 4, 371 (1995).