Экситонная люминесценция твердых растворов Cd_{1-x}Fe_xTe

© С.А. Пермогоров, Т.П. Суркова*, Л.Н. Тенишев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

*Институт физики металлов Уральского отделения Российской академии наук,

620219 Екатеринбург, Россия

Оптические спектры твердых растворов $Cd_{1-x}Fe_x$ Те вблизи края фундаментального поглощения существенно изменяются по сравнению со спектрами нелегированного CdTe. Характер изменения спектров фотолюминесценции (ФЛ) с увеличением концентрации Fe связан с изменением каналов излучательной рекомбинации.

Железо и другие примеси переходных металлов — самые распространенные неконтролируемые примеси в пирокозонных полупроводниках II–VI, и их роль в рекомбинационных процессах чрезвычайно важна. Физические свойства $Cd_{1-x}Fe_xTe$ существенно зависят от положения энергетического уровня Fe^{2+} относительно энергетических зон кристалла. Предполагается [1–3], что донорный уровень изоэлектронной примеси замещения Fe_{Cd} расположен в запрещенной щели при энергии

 $E_c = 1.45 \text{ eV}$. При существенном увеличении концентрации Fe энергетическое положение этого уровня будет совпадать с краем валентной зоны твердого раствора [4]. Представляется интересным сравнить, как изменяется при этом характер излучательных процессов.

Исследованные в работе монокристаллы $Cd_{1-x}Fe_x$ Те были выращены методом Бриджмена. Измерения ФЛ и отражения света были выполнены на образцах во всем диапазоне растворимости Fe 0 < x < 0.04 в

Рис. 1. Спектры ФЛ кристаллов $Cd_{1-x}Fe_x$ Те для образцов с различным содержанием Fe. Спектры получены при T = 5 K при возбуждении He–Ne-лазером. Штриховой линией показан спектр чистого CdTe (×10), в котором хорошо видна донорно-акцепторная фотолюминесценция (DAP).

Рис. 2. Спектры экситонного отражения света кристаллов $Cd_{1-x}Fe_xTe$ для образцов с различным содержанием железа. Спектры получены при T = 5 K.

Рис. 3. Температурное тушение $\Phi Л$ кристаллов $Cd_{1-x}Fe_xTe$.

температурном интервале 5–250 К. В качестве источника возбуждения использовался Не–Ne-лазер. Оптические спектры регистрировались монохроматором ДФС-12 и фотоумножителем, связанным с системой счета фотонов.

Спектры ФЛ и экситонного отражения показаны на рис. 1, 2. Некоторые характеристики образцов и оптических спектров представлены в таблице. Как видно из рис. 1, спектры ФЛ Сd_{1-x}Fe_xTe и CdTe качественно отличаются. Для нелегированного кристалла CdTe наблюдаются несколько каналов излучательной рекомбинации. Существенный вклад в ФЛ дают излучение свободного экситона ($E_x = 1.5964 \, \text{eV}$), экситонов, связанных на доноре $(D^0, x) = 1.5931 \, \text{eV}$ и акцепторе $(A^0, x) = 1.5899 \,\mathrm{eV}$, а также донорно-акцепторная $\Phi \Pi$ и их LO фононные повторения [5]. Напротив, в спектрах излучения $Cd_{1-x}Fe_x$ Te с концентрацией Fe $3.5 \cdot 10^{19}$ cm⁻³ наблюдается только одна полоса излучения, максимум которой близок к положению максимума экситонной линии отражения (рис. 2). С увеличением концентрации Fe суммарная интенсивность ФЛ уменьшается, и она не регистрируется для наивысшей концентрации Fe $x = 8 \cdot 10^{20} \, {\rm cm}^{-3}$. В тоже время линия экситонного

Положение линии свободного экситона E_{FE} , ширина линии экситонного отражения $\Delta = (E_{FE}^{\min} - E_{FE}^{\max})$, и энергия активации температурного тушения ФЛ E_{act} кристаллов $Cd_{1-x}Fe_x$ Те. E_{FE} и Δ приведены для T = 5 K

Концентрация Fe, cm^{-3}	E_{FE} , eV	Δ , meV	$E_{\rm act}$, meV
0	1.5964	1.0	23.0
$1 \cdot 10^{17}$	1.5963	1.53	19.8
$3 \cdot 10^{18}$	1.5967	1.96	14.2
$3.5 \cdot 10^{19}$	1.5992	3.05	10.6
$4 \cdot 10^{20}$	1.6157	7.4	_
$8 \cdot 10^{20}$	1.6527	30.0	—

отражения, заметно уширяясь, сдвигается в сторону больших энергий и остается довольно узкой.

Таким образом, мы можем сделать вывод, что эволюция спектров ФЛ с увеличением концентрации Fe обусловлена изменением каналов излучения: от излучения преимущественно экситона, связанного на акцепторе (A^0, x) в нелегированном CdTe к излучению свободного экситона в твердых растворах Cd_{1-x}Fe_xTe. Наблюдаемое уменьшение энергии активации температурного тушения интегральной интенсивности ФЛ (рис. 3) E_{act} от 23 meV для связанного экситона в Cd_{1-x}Fe_xTe подтверждает данный вывод (таблица). Мы полагаем, что наблюдаемое уменьшение концентрации нейтральных акцепторов связано с переходом ионов Fe в другое зарядовое состояние: $2+ \rightarrow 3+$.

Характер изменения спектров ФЛ и отражения с температурой аналогичен их изменению с концентрацией Fe. Можно предположить, что оба фактора влияют на время жизни свободного экситона, и распределение кинетической энергии экситонов имеет выраженный неравновесный характер. Большое различие ширины линий экситонного отражения и линий ФЛ указывает на участие фононов в рекомбинационном процессе.

В нашей предыдущей статье [6] был выполнен анализ формы экситонной линии излучения в $Cd_{1-x}Fe_xTe$. Мы использовали выражение, учитывающее как (A-LO) фононную рекомбинацию, так и резонансное экситонное излучение. Форма экситонной линии ФЛ I(E) описывается выражением

$$I(E) = \frac{[E^{1/2} \exp(-E/kT) + \varphi S(E)](1 + \gamma E)}{(E - \omega_{LO})^2 + \Gamma^2}$$
(1)

где E — кинетическая энергия экситона, S(E) — дополнительный неравновесный вклад в функцию распределения, φ и γ — параметры, описывающие отношение неравновесное/равновесное распределение и процессы с

сохранением/несохранением волнового вектора, соответственно, ω_{LO} — энергия LO-фонона, Γ — затухание экситонного состояния, оцененное из ширины экситонной линии отражения. Предполагается, что неравновесная часть функции распределения свободного экситона воспроизводит плотность состояний в экситонной зоне. Необходимость учитывать неравновесное распределение экситонов проистекает из уменьшения времени жизни экситона в легированных Fe образцах. Частичное несохранение волнового вектора в процессе экситонной рекомбинации обусловлено рассеянием экситонов на примеси Fe и других дефектах. Наилучшее совпадение расчетной кривой и экспериментального спектра ФЛ $(1 \cdot 10^{17} \,\mathrm{cm}^{-3}$ Fe, $T = 30 \,\mathrm{K})$ было получено с параметрами $\varphi = 0.007, \ \gamma = 0.2, \ \Gamma = 1.5 \,\mathrm{meV}$. Аналогичный анализ формы линии излучения при комнатной температуре нелегированных кристаллов CdTe [7] также показал экситонную природу ФЛ и участие фононов в рекомбинационном процессе.

В заключение можно сделать следующие выводы. Образование твердого раствора Cd_{1-x}Fe_xTe приводит к увеличению ширины запрещенной зоны с увеличением концентрации Fe. Одновременно наблюдается уширение линий экситонного отражения и уменьшение интегральной интенсивности ФЛ. Мы полагаем, что эти изменения указывают на уменьшение времени жизни свободного экситона в результате сильного рассеяния на центрах излучательной и безызлучательной рекомбинации. В результате этого распределение кинетических энергий свободного экситона становится существенно неравновесным. При низких уровнях легирования Fe наблюдается уменьшение интенсивности линии излучения экситонов, связанных на нейтральных акцепторах, вследствие уменьшения их концентрации в результате изменения зарядового состояния ионов железа.

Данная работа была частично поддержана РФФИ (проекты 96-02-16496 и 96-02-16933), INTAS (проект 93-3657) и ГНТП "Физика твердотельных наноструктур" (проект 95-1001).

Авторы благодарят А. Мисельского за представление кристаллов $Cd_{1-x}Fe_xTe$.

Список литературы

- [1] A. Mycielski. J. Appl. Phys. 63, 3279 (1988).
- [2] K. Lishka, G. Brunthauer, W. Jantsch. J. Cryst. Growth 72, 355 (1985).
- [3] A.J. Szadkowski. J. Phys. Condens. Matter 2, 9853 (1990).
- [4] B.A. Orlowski, B.J. Kowalski, A. Sarem, A. Mycielski, B. Velicky, V. Chab. In: Proc. 19th Int. Conf. Physics of Semiconductors / Ed. W. Zawadzki. IF PAN Warsaw (1988). P. 1267.
- [5] R. Zanio. In: Cadmium Telluride. Semiconductors and semimetals. Acad Press, N.Y. (1978). V. 13.
- [6] S.A. Permogorov, L.N. Tenishev, T.P. Surkova. Acta Phys. Pol. A82, 702 (1992).
- [7] J. Lee, N.C. Giles, D. Rajavel, C.J. Summers. Phys. Rev. B43, 1668 (1994).