Влияние Ti на гальваномагнитные свойства монокристаллов $Sb_{2-x}Ti_xTe_3$

© В.А. Кульбачинский, Г.В. Земитан, Ч. Драшар, П. Лостак

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

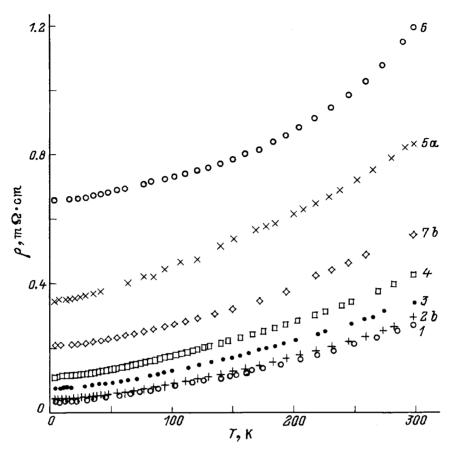
(Поступила в Редакцию 24 июня 1997 г. В окончательной редакции 13 ноября 1997 г.)

Исследованы параметры кристаллической решетки, эффект Холла, эффект Шубникова–де Гааза, термоэдс у монокристаллов $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ в зависимости от содержания титана в диапазоне 0 < x < 0.04. Показано, что увеличение содержания титана уменьшает исходную концентрацию дырок в образцах без существенного изменения энергетического спектра.

Теллуриды висмута (Bi₂Te₃) и сурьмы (Sb₂Te₃) и смешанные кристаллы на их основе широко применяются в термоэлектрических приборах. Кристаллическая решетка Sb₂Te₃ представляет собой набор сложных слоевквинтетов, которые чередуются в последовательности Te(1)-Sb-Te(2)-Sb-Te(1), где цифры (1) и (2) обозначают различные положения атомов Те в решетке. В работах по исследованию валентной зоны Sb₂Te₃ [1-4] было установлено наличие двух валентных зон и справедливость шестиэллипсоидной модели Драббла-Вольфа [5] для описания поверхности Ферми верхней валентной зоны [6-10]. Характерные точечные дефекты, связанные с расположением атомов Sb в местах Те (антиструктурные дефекты), приводят к р-типу проводимости монокристаллов Sb₂Te₃ и к высокой концентрации дырок (до $10^{20}\,{\rm cm}^{-3}$). Легирование атомами металлов Sb₂Te₃ позволяет получать материалы с требуемыми физическими параметрами, такими как электро- и теплопроводность, подвижность дырок, тремоэдс, что чрезвычайно важно при разработке термоэлектрических устройств. Введение в подрешетку Sb атомов металлов, например In, увеличивает полярность связи Sb-Te, что приводит к уменьшению концентрации антиструктурных дефектов, а следовательно, и концентрации дырок [6-10]. Однако подвижность дырок в кристаллах In_xSb_{2-x}Te₃ резко уменьшается с ростом концентрации In.

В настоящей работе исследуется влияние титана на гальваномагнитные свойства в области температур $4.2 < T < 300\,\mathrm{K}$, эффект Шубникова-де Гааза, параметры решетки, термоэдс у монокристаллов $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ при изменении содержания титана $(0\leqslant x\leqslant 0.04)$.

1. Образцы и методика измерений


Монокристаллы $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ были выращены в два этапа. Вначале синтезировался поликристаллический TiTe_2 из элементов Te и Ti чистоты 99.999%, взятых в стехиометрическом соотношении, при температуре $1100^{\circ}\mathrm{C}$ в течение 5 дней. Анализ показал, что в этих условиях синтезируется монофазный TiTe_2 . Далее использовалась смесь Sb , Te и TiTe_2 в соотношении, которое соответствовало атомному составу $(\mathrm{Sb} + \mathrm{Ti})/\mathrm{Te} = 2/3$ и про-

изводился синтез поликристаллов $Sb_{2-x}Ti_xTe_3$ в течение двух дней при температуре 800°C. Направленный рост монокристаллов осуществлялся модифицированным методом Бриджмена в градиенте температур 400 К/ст со скоростью 0.13 ст/h. Выращенные монокристаллы отжигались при $T = 730^{\circ}\mathrm{C}$ и освобождались от ампулы. Ось C всегда была перпендикулярна направлению движения в печи. Первоначальная концентрация Ті определялась по загрузке в ампулу и уточнялась микрозондовым анализом. Из слитков электроискровым методом вырезались образцы размером $0.8 \times 0.8 \times 5$ mm, к которым подпаивались шесть контактов (два токовых и четыре потенциальных). При измерениях ток направлялся по бинарной оси, магнитное поле В было параллельно тригональной оси. Для создания магнитного поля до 10 Т использовался сверхпроводящий соленоид.

Параметры кристаллической решетки a и c и объем элементарной ячейки V в зависимости от измерений концентрации атомов Ti у $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ приводятся в табл. 1. Как видно из этой таблицы, оба параметра и объем элементарной ячейки уменьшаются при увеличении x. Для образцов $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ с семью разными составами $(0.001\leqslant x\leqslant 0.04)$ были исследованы термоэдс при комнатной температуре, зависимости сопротивления от температуры при $4.2 < T < 300\,\mathrm{K}$, эффект Холла, а также магнитосопротивление и эффект Шубникова–де Гааза. Некоторые параметры исследованных образцов приведены в табл. 2.

Таблица 1. Параметры решетки a и c монокристаллов $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ при комнатной температуре

x	Концентрация атомов Ti, $10^{19} \mathrm{cm}^{-3}$	a, nm	c, nm	V, nm ³
0 0.001 0.007	0 0.14 0.97	0.42648(3) 0.42657(4) 0.42649(3)	3.0443(2) 3.0440(2)	0.47973(9) 0.47950(7)
0.01 0.02 0.04	6.2 10.1 19.0	0.42641(4) 0.42635(3) 0.42633(3)	3.0441(2)	0.47920(7)

Рис. 1. Температурные зависимости сопротивления образцов $Sb_{2-x}Ti_xTe_3$. Номера у кривых соответствуют номерам образцов в табл. 2.


2. Результаты измерений и их обсуждение

На рис. 1 приведены зависимости сопротивления исследованных образцов от температуры, которые указывают на характерное для теллурида сурьмы с большой концентрацией дырок уменьшение сопротивления при понижении температуры. С ростом содержания титана сопротивление образцов увеличивается для всех температур. Это связано с тем, что увеличение содержания титана уменьшает концентрацию дырок в кристаллах. Это следует как из увеличения сопротивления, так и из данных по зависимости коэффициента Холла от содержания Ті (табл. 2). Интересной особенностью обладают зависимости коэффициента Холла от температуры для большинства образцов: при понижении температуры ко-

Tao/inta 2. Trapamerpsi oopasilos 50_{2-x} 11_x 10_3									
Номер образца	x	$ ho^{300}/ ho^{4.2}$	$R_h^{4.2}$, cm ³ /C	R_h^{300} , cm ³ /C	$\mu_h^{4.2}$, $m^2/V \cdot s$	$\mu_h^{300},$ $\mathrm{m^2/V\cdot s}$	Термоэдс, μV/K (при 300 K)		
1	0.001	7.91	0.082	0.082	0.2412	0.0305	80		
2a	0.003	6.86	0.035	_	_	_	_		
2b	0.003	6.70	0.094	0.080	0.2186	0.0277	_		
3	0.007	4.46	0.090	0.168	0.1184	0.0496	103		
4	0.01	3.87	0.091	0.216	0.0827	0.0507	95		
5 <i>a</i>	0.02	2.41	0.131	0.363	0.0379	0.0436	99		
5 <i>b</i>	0.02	3.29	0.061	_	_	_	_		
6	0.03	1.81	0.098	_	0.0144	_	_		
7 <i>a</i>	0.04	2.60	0.034	_	_	_	_		
7h	0.04	2.44	0.049	0.107	0.0191	0.0170	94		

Таблица 2. Параметры образцов Sb_{2-x}Ti_xTe₃

Примечание. $\rho^{300}/\rho^{4.2}$ — отношение сопротивлений при температурах 300 и 4.2 K, $R_h^{4.2}$ и R_h^{300} — коэффициенты Холла, $\mu_h^{4.2}$ и μ_h^{300} — холловские подвижности (при температуре 4.2 и 300 K соответственно).

Рис. 2. Зависимость холловской подвижности μ_h в образцах $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ от концентрации Ті при температуре 4.2 К.

эффициент Холла R_h уменьшается до $\approx 77\,\mathrm{K}$ и далее почти не изменяется. В случае одного типа носителей тока это приводило бы к парадоксальному увеличению их концентрации при понижении температуры. Для двух типов дырок, "легких" и "тяжелых", существование которых установлено ранее в теллуриде сурьмы [1,2] и параметры которых измерены в [1,3,4,7,9], такое поведение $R_h(T)$ удается количественно описать. При этом подвижности легких и тяжелых дырок растут с понижением температуры, а концентрации не изменяются. Холловские подвижности μ_h в зависимости от содержания титана в образцах представлены на рис. 2. Как и в случае легирования In [7–9], величина μ_h уменьшается в $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ с ростом x, но не столь существенно, как в $\mathrm{In}_x\mathrm{Sb}_{2-x}\mathrm{Te}_3$.

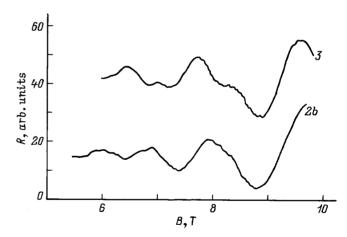
Измерения термоэдс при комнатной температуре показали, что ее величина незначительно уменьшается при увеличении концентрации титана в образцах. Эти данные приведены в табл. 2.

Для исследования энергетического спектра образцов $Sb_{2-x}Ti_{x}Te_{3}$ применялся эффект Шубникова-де Гааза. На рис. 3 приведены в качестве примера осцилляции поперечного магнитосопротивления при направлении магнитного поля вдоль оси C (т.е. перпендикулярно слоям) у двух образцов $Sb_{2-x}Ti_{x}Te_{3}$ с x=0.003 (No 2) В этой ориентации совпадают все u x = 0.007.шесть экстремальных сечений S поверхности Ферми. Обратим внимание на наблюдающееся в осцилляциях спиновое расщепление. На рис. 4 показана зависимость сечения S от содержания титана x. Как видно из этого рисунка, сечение уменьшается с ростом х. Для количественного сравнения результатов измерений эффекта Холла и эффекта Шубникова-де Гааза необходимо знать анизотропию поверхности Ферми. Исследовать угловую зависимость экстремальных сечений в $In_xSb_{2-x}Te_3$ не удалось, так как диапазон магнитных полей слишком мал. Количественные оценки можно сделать, учитывая результаты работ [1,3]. Эллипсоидальная непараболическая модель удовлетворительно описывает энергетический спектр легких дырок Sb_2Te_3 . В этой модели закон дисперсии может быть записан в виде

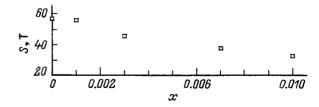
$$E(k) = \hbar^2 / 2m \left(\alpha_{11} k_1^2 + \alpha_{22} k_2^2 + \alpha_{33} k_3^2 + \alpha_{23} k_2 k_3 \right), \quad (1)$$

где компоненты тензора обратных эффективных масс α_{ij} зависят от энергии, а k_1, k_2, k_3 параллельны бинарной, биссекторной или тригональной осям кристалла соответственно. Угол наклона θ эллипсоида выражается через α_{ij} следующим образом:

$$tg(2\theta) = 2\alpha_{23}/(\alpha_{33} - \alpha_{22}), \tag{2}$$


а период осцилляций Шубникова-де Гааза $\Delta(1/B)$ связан с параметрами α_{ij} формулой

$$\Delta(1/B) = e\hbar/m_0 E_F \left[\left(\alpha_{22}\alpha_{33} - \alpha_{23}^2 \right) \cos^2 \alpha \right.$$


$$\left. + \alpha_{11}\alpha_{33}\cos^2 \beta + \alpha_{11}\alpha_{22}\cos^2 \gamma \right.$$

$$\left. - 2\alpha_{11}\alpha_{23}\cos \beta \cos \gamma \right]^{1/2}, \tag{3}$$

где $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — косинусы углов между магнитным полем и осями 1, 2, 3. В монокристаллах $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$, согласно исследованному нами эффекту Шубникова-де Гааза, поверхность Ферми легких дырок может быть описана шестиэллипсоидной моделью. Угол

Рис. 3. Осцилляции Шубникова–де Гааза поперечного магнитосопротивления при T=4.2~K и магнитном поле, направленном параллельно оси C, в образцах $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3~\mathrm{Ne}~2~b$ и 3.

Рис. 4. Зависимости величины шести совпадающих экстремальных сечений поверхности Ферми S в образцах $\mathrm{Sb}_{2-x}\mathrm{Ti}_x\mathrm{Te}_3$ от содержания титана x при направлении магнитного поля параллельно оси C.

наклона эллипсоидов возьмем $\approx 50^\circ$, как и в чистом $\mathrm{Sb_2Te_3}$ [3]. Для расчета концентраций дырок в верхней валентной зоне мы использовали формлуы (1)—(3). Расчет с параметрами энергетического спектра α_{ij} , определенными в работе [3], показывает, что изменение концентрации дырок может быть описано уменьшением энергии Ферми в $\mathrm{Sb_2}_{-x}\mathrm{Ti}_x\mathrm{Te_3}$ в рамках модели жестких зон, т.е. если считать, что анизотропия и углы наклона эллипсоидов поверхности Ферми не изменяются при изменении концентрации дырок.

Таким образом, в работе установлено, что введение атомов Ті в подрешетку Sb понижает концентрацию исходных дырок в Sb_2Te_3 , т.е. Ті ведет себя как донор. Возможно, как и индий, титан подавляет образование антиструктурных дефектов, что и обусловливает его донорное действие. Подвижность носителей тока в монокристаллах $Sb_{2-x}Ti_xTe_3$ уменьшается в несколько раз при максимальном x=0.04, в то время как в $Sb_{2-x}In_xTe_3$ она падает на два порядка [9,10]. Увеличение концентрации Ті понижает энергию Ферми в $Sb_{2-x}Ti_xTe_3$, но энергетический спектр остается прежним: для верхней валентной зоны (легкие дырки) поверхность Ферми остается шестиэллипсоидной.

Работа поддержана Российским фондом фундаментальных исследований (грант № 96-15-96500) и грантом HTECH.CRG 960850 HATO.

Список литературы

- [1] A. von Middendorf, K. Dietrich, G. Landwehr. Solid State Commun. 13, 443 (1973).
- [2] М.П. Полоцкий, Т.С. Гудкин, З.М. Дашевский, В.И. Кайданов, И.В. Збигнев. ФТП **8**, *5*, 1044 (1974).
- [3] H. Kohler, A. Freudenberger. Phys. Stat. Sol. (b) 195, 195 (1977).
- [4] M. Storder, H.T. Langhammer, H. Sobota, V. Riedel. Phys. Stat. Sol. (b) 104, 513 (1981).
- [5] J.R. Drable, R. Wolf. Proc. Roy. Soc. 69, 443B, 1101 (1956).
- [6] P. Lostak, R. Novotny, J. Kroutil, Z. Stary. Phys. Stat. Sol. (a) 104, 841 (1987).
- [7] P. Lostak, Z. Stary, J. Horak, J. Pancir. Phys. Stat. Sol. (a) 115, 87 (1989).
- [8] V.A. Kulbachinskii, M. Inoue, M. Sasaki, H. Negishi, W.X. Gao. Proc. XIV Int. Conf. on Thermoelectrics. St. Petewrsburg, Russia (1995). P. 151.
- [9] В.А. Кульбачинский, А.Н. Чайка, З.М. Дашевский, П. Лостак, Я. Хорак. ФТТ **37**, *7*, 1997 (1995).
- [10] V.A. Kulbachinskii, Z.M. Dashevskii, M. Inoue, M. Sasaki, H. Negishi, W.X. Gao, P. Lostak, J. Horak, A. de Visser. Phys. Rev. B 52, 10 915 (1995).