Температурные аномалии релаксаций статической фотоупругости в кристаллах триглицинсульфата (ТГС)

© Б.Г. Мыцык, Н.М. Демьянишин

Институт космических исследований Академии наук Украины, 290601 Львов, Украина

(Поступила в Редакцию 28 мая 1997 г.)

Исследована релаксация статической фотоупругости кристаллов ТГС. Амплитуды релаксаций существенно анизотропны, включая изменение знака. Обнаружены температурные аномалии амплитуд релаксаций. Предложен механизм фотоупругих релаксаций и их температурных аномалий, в основе которого лежит пьезокалорический эффект. Приведены соответствующие расчеты.

Статической фотоупругости сегнетоэлектриков посвящено много работ (например, [1-4]), изучена также природа их температурных аномалий [5]. Вместе с тем абсолютно не уделялось внимания релаксациям фотоупругости, т.е. изменениям во времени оптических параметров кристалла (разности хода, двулучепреломления, показателя преломления), подвергнутого действию фиксированного по величине механического напряжения. По-видимому, в первую очередь причинами отсутствия работ по релаксациям фотоупругости являются сложность и прецизионность соответствующей экспериментальной методики. В частности, при использовании известного поляризационно-оптического метода изучения индуцированных изменений разности хода [6] в настоящей работе были обеспечены следующие условия эксперимента: 1) стабильность интенсивности источника монохроматического излучения на уровне < 0.1%; 2) стабилизация температуры образца с погрешностью ~ 0.001°, чем обеспечивалась температурная стабильность разности хода Δ_k на уровне $\sim 0.1\%$ от индуцированной Δ_k ; 3) жесткость механической части установки для исключения незначительных перемещений и поворотов во времени нагруженного образца.

Относительная амплитуда релаксации определена в работе как

$$\beta_{km} = \left(\delta \Delta_{km}^{\text{rel}} / \delta \Delta_{km}\right) \cdot 100\%,$$

где $\delta \Delta_{km}^{\text{rel}}$ — абсолютная релаксация разности хода, $\delta \Delta_{km}$ — разность хода, индуцированная механическим напряжением σ_m ; индексы k, m принимают значения 1, 2, 3 и указывают на направления распространения света и действие одностороннего давления вдоль соответствующих осей оптической индикатрисы X_1 , X_2 , X_3 кристаллов TГС.

Релаксации изучались путем определения изменений во времени интенсивности света *I* на линейном участке зависимости [6]

$$I_k = I_{\max} \sin^2(\pi \Delta_k / \lambda) \tag{1}$$

при действии на образец неизменяющегося во времени механического напряжения σ_m (λ — длина световой волны). По измеренным релаксационным изменениям

интенсивности света $\delta I_{km}^{\text{rel}}$ на основе (1) рассчитывались величины $\delta \Delta_{km}^{\text{rel}}$. Индуцированные разности хода $\delta \Delta_{km}$ определялись на основе известного соотношения $\delta \Delta_{km} = -\pi_{km}^0 d_k \sigma_m/2$ по известным пьезооптическим коэффициентам π_{km}^0 [7] и действующим величинам σ_m . Величины π_{km}^0 дополнительно измерялись и в настоящей работе методом полуволновых напряжений или методом Сенармона. Знак β_{km} определен положительным, если направления изменения индуцированной $\delta \Delta_{km}$ и релаксационной $\delta \Delta_{km}^{\text{rel}}$ разностей хода совпадают, и отрицательным, если ным, если $\delta \Delta_{km}^{\text{rel}}$ уменьшает $\delta \Delta_{km}$.

На рис. 1 приведен пример релаксационных зависимостей разностей хода $\beta_{km}(t)$ (t — время). Видно, что максимальные амплитуды релаксации, определенные в области насыщения зависимостей $\beta_{km}(t)$, существенно анизотропны как по величине, так и по знаку. Причем $\beta_{km}(t)$ не зависят от величины прикладываемых механических напряжений в пределах значений $\sigma_m = (20-100) \cdot 10^5$ N/m², используемых в настоящей работе.

На рис. 2 показаны зависимости максимальных амплитуд релаксации разностей хода β_{km} от температуры. Зависимости $\beta_{km}(T)$ при приближении к фазовому переходу (ФП) со стороны сегнетоэлектрической фазы существенно увеличиваются по абсолютной величине, а значения β_{km} вдали от ФП соответствуют значениям, экстраполированным из параэлектрической фазы. Наиболее очевидным механизмом фотоупругих релаксаций является изменение индуцированной разности хода вследствие пьезокалорического эффекта, а именно быстрое дей-

Рис. 1. Пример релаксационных зависимостей $\beta_{km}(t)$ для кристаллов ТГС при T = 308 К, $\lambda = 0.63 \,\mu$ m. $1 - \beta_{13}$, $2 - \beta_{23}$, $3 - \beta_{31}$, $4 - \beta_{12}$, $5 - \beta_{32}$, $6 - \beta_{21}$.

Рис. 2. Температурная зависимость амплитуд релаксаций β_{km} для кристаллов ТГС. $1 - \beta_{13}, 2 - \beta_{23}, 3 - \beta_{31}$. Сплошная линия — эксперимент, штриховая — расчет.

ствие σ_m приводит к адиабатическому изменению температуры на величину $\delta T^{\rm rel}$, пропорциональную величине σ_m . В дальнейшем температура образца за определенное время τ (время релаксации) вследствие теплообмена с внешней средой становится равной температуре внешней среды. Это релаксационное изменение температуры обусловливает термооптическое изменение разности хода и соответственно релаксацию интенсивности света I_k , регистрируемого в эксперименте. Такой механизм фотоупругой релаксации подтверждается расчетами на основе следующего соотношения:

$$\delta\Delta_{km}^{\rm rel} = \delta T_m^{\rm rel} d\Delta_k(T) / dT, \qquad (2)$$

где индекс *m* при δT_m^{rel} обозначает зависимость пьезокалорического эффекта от направления действия од319

ностороннего давления. Значения температурных производных разностей хода $d\Delta_k(T)/dT$ определены из данных [8], а значения $\delta T_m^{\rm rel}(T)$ — на основе температурных зависимостей пьезокалорических коэффициентов $dT_m^{\rm rel}/d\sigma_m$, приведенных в [9]

$$\delta T_m^{\rm rel} = \sigma_m dT_m^{\rm rel} / d\sigma_m. \tag{3}$$

Из рис. 2 видно, что в пределах погрешности обработки графических материалов из [8,9] (5–10%) экспериментальные и расчетные зависимости $\beta_{km}(T)$ совпадают.

Отметим, что величины δT_m^{rel} можно определить также из коэффициентов температурного расширения α_m образцов [10]

$$\delta T_m^{\rm rel} = -(T_0/C_p)\sigma_m \alpha_m, \tag{4}$$

где T_0 — температура образца и внешней среды, C_p — теплоемкость, отнесенная к единице объема кристалла. Для расчетов δT_m^{rel} использованы значения теплоемкости $C_m(T)$ кристаллов ТГС из [11] с учетом того, что $C_p = C_m(T)\rho$, плотность $\rho = 1690 \text{ Kg/m}^3$ взята из [12], а коэффициенты теплового расширения $\alpha_m(T)$ вдоль кристаллофизических осей X_1, X_2, X_3 , совпадающих с осями оптической индикатрисы кристаллов ТГС, определены путем преобразования компонент тензора второго ранга $\alpha_m(T)$ из данных [13], где приведены коэффициенты $\alpha_m(T)$ вдоль осей X, Y, Z, развернутых на угол 18° вокруг оси $X_2 \equiv b$ относительно осей X_1 и X_3 оптической индикатрисы.

Различия зависимостей δT_m^{rel} , определенных по (3) и (4), не превышают 5%. Однако на рис. 2 мы привели расчетные зависимости $\beta_{km}(T)$, исходя из зависимостей δT_m^{rel} , определенных по (4), так как в отличие от [9] в [13] четко указана система координат, в которой определены коэффициенты $\alpha_m(T)$.

Обратим внимание на то, что относительные амплитуды релаксаций β_{12} и β_{13} при температуре T = 293 К изменяют знак, что обусловлено в соответствии с (2) изменением знака пьезокалорического эффекта при этой температуре [8]. Зависимость $\beta_{23}(T)$ изменяет знак при T = 303 К, несмотря на то что при указанной температуре инверсия знака δT^{rel} отсутствует. В данном случае изменение знака $\beta_{23}(T)$ обусловлено, согласно (2), изменением знака производной $d\Delta_2(T)/dT$ при T = 303 К. Последнее подтверждено в настоящей работе экспериментально, так как по температурной зависимости $\Delta_2(T)$, приведенной в [8], невозможно точно определить температуру инверсии знака производной $d\Delta_2(T)/dT$.

В заключение отметим, что нами исследована также фотоупругая релаксация кристаллов ТГС с примесью ионов хрома (ТГС + Сг³⁺, 0.1% хрома в растворе). Для таких концентраций хрома не обнаружено изменений в пределах 10% ни в температурных зависимостях пьезооптических коэффициентов, ни в зависимостях $\beta_{km}(T)$ по сравнению с чистыми кристаллами ТГС [7].

Список литературы

- Б.Г. Мыцык, В.А. Ромашко, Я.И. Шопа. ФТТ 35, 8, 2272 (1993).
- [2] Б.Г. Мыцык, В.А. Ромашко, Я.А. Сеглиныш. ФТТ 33, 10, 2857 (1991).
- [3] О.Г. Влох, А.В. Китык, И.И. Половинко. УФЖ 31, 7, 1051 (1986).
- [4] О.Г. Влох, И.И. Половинко, С.А. Свелеба. Кристаллография 35, 3, 780 (1990).
- [5] С.С. Коцур, Б.Г. Мыцык, В.А. Ромашко. Кристаллография 37, 6, 1517 (1992).
- [6] А.С. Сонин, А.С. Василевская. Электрооптические кристаллы. М. (1971). 328 с.
- [7] Б.Г. Мыцык, Н.А. Романюк. УФЖ 28, 4, 538 (1983).
- [8] Н.Р. Иванов, С.Я. Бендерский, И.Т. Тухтасунов. Изв. АН СССР. Сер. физ. **39**, *4*, 798 (1975).
- [9] K. Imai. J. Phys. Soc. Jap. 38, 836 (1975).
- [10] Ю.И. Сиротин, М.П. Шаскольская. Основы кристаллофизики. Наука, М. (1979). 639 с.
- [11] Б.А. Струков, С.А. Тараскин, В.А. Копцик, В.М. Варикаш. Кристаллография **13**, *3*, 541 (1968).
- [12] W. Pepinski, R. Okaya, B. Yona. Bull. Am. Phys. Soc. Ser. II, 2, 4, 220 (1957).
- [13] J. Stankowski, W. Malinowski. Acta Phys. Pol. A58, 6, 773 (1980).