Взаимосвязь T_c и дефектной структуры неодим-цериевого куприта $Nd_{2-x}Ce_xCuO_{4-y}$

© В.И. Воронин, А.Е. Карькин, Б.Н. Гощицкий, А.Ю. Зуев*, Т.П. Родионова*, А.Н. Петров*

Институт физики металлов Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия *Уральский государственный университет, 620083 Екатеринбург, Россия

(Поступила в Редакцию 27 июня 1997 г.)

Методом порошковой нейтронной дифракции исследована дефектная структура неодим-цериевого куприта $Nd_{2-x}Ce_xCuO_{4\pm y}$ (x = 0.15). Показано, что в сверхпроводящих образцах наряду с кислородными вакансиями в O2-узлах присутствует небольшое количество внедренных атомов кислорода, расположенных между ионами меди и неодим/церием, которое контролирует электрический заряд в плоскостях Cu–O. Установлено распределение кислорода по узлам кристаллической решетки соединения $Nd_{2-x}Ce_xCuO_{4\pm y}$ (x = 0.15), методом валентных сумм определен средний заряд медных ионов и найдена корреляция между зарядом медь-кислородной плоскости и T_c .

Неодим-цериевый куприт Nd_{2-x}Ce_xCuO_{4±v} занимает особое положение в ряду медьсодержащих высокотемпературных сверхпроводящих соединений (ВТСП) по нескольким причинам. Во-первых, в отличие от других ВТСП-купритов носителями заряда в нем являются электроны [1-3]. Во-вторых, сверхпроводимость наблюдается в довольно узком интервале концентраций Се (0.14 < x < 0.17). Наконец, даже внутри этого диапазона концентраций церия температура сверхпроводящего перехода (Т_с) весьма чувствительна к кислородной стехиометрии. Кристаллическая решетка данного соединения тетрагональная (Т') и близка по расположению атомов к решетке $La_{2-x}Sr_xCuO_{4-y}$ (x > 0.10) [1]. Структура T' соединений $Nd_{2-x}Ce_xCuO_{4-y}$ (рис. 1) состоит из чередующихся медь-кислородных плоскостей CuO₂, в которых ионы Cu имеют квадратное окружение из ионов кислорода (О1-узлы), и "сандвича", образованного слоями ионов кислорода (О2-узлы) и лежащими между ними неодим-цериевыми ионами.

Проблемы взаимосвязи температуры сверхпроводящего перехода, кислородной нестехиометрии и структуры Nd_{2-x}Ce_xCuO_{4±v} привлекают внимание многих исследователей. Однако сведения о содержании кислорода в зависимости от термодинамических условий в неодимцериевом куприте, полученные методами термогравиметрии (ТГА) и химическим анализом (иодометрия), довольно противоречивы. Одни авторы [4,5] полагают, что величина кислородного индекса даже после обработки в чистом кислороде не превышает четырех. Другие [6-8] считают, что после отжига в кислороде образцы содержат избыточный кислород, который занимает межузельные позиции в решетке оксида меди. Предполагается, что при отжиге в атмосфере инертного газа общее содержание кислорода в образце Nd_{1.85}Ce_{0.15}CuO_{4-v} уменьшается (у > 0), что ведет к дополнительному увеличению концентрации носителей заряда в решетке и возникновению сверхпроводимости. Заметим, что оптимальный уровень допирования не может быть достигнут только варьированием концентрации церия или только отжигом в кислороде [9].

Однако методы ТГА и иодометрического титрования позволяют получить лишь данные об общем содержании кислорода в образцах, тогда как метод нейтронной дифракции позволяет определить распределения кислорода и дефектов кислорода в решетке. Так, например, с помощью порошковой нейтронной дифракции на сверхпроводящих и несверхпроводящих образцах

Рис. 1. Кристаллическая структура *T'*. *1* — Си, *2* — Nd/Ce, *3* — O1, *4* — O2, *5* — O3.

 $Nd_{2-x}Ce_{x}CuO_{4-y}$ (x = 0.155) было показано существование кислородных вакансий в решетке [10]. Неясным, однако, остается вопрос о размещении в кристаллической решетке сверхстехиометрического кислорода, который был обнаружен методами ТГА [6,11] Авторы рабои иодометрического титрования [7]. ты [12] применили метод нейтронографии для решения этого вопроса на поликристаллических образцах Nd2-rCerCuO4-v и показали возможность частичного размещения ионов кислорода в позиции ОЗ (рис. 1), которая полностью занята в решетке La_{2-x}Sr_xCuO_{4-y} так называемым "апикальным" кислородом (Т-структура). Эти заключения были в дальнейшем подтверждены нейтронно-дифракционными исследованиями как на монокристаллах чистого соединения Nd₂CuO_{4-v} [13] и допированного церием Nd_{1.85}Ce_{0.15}CuO_{4-y} [14], так и на поликристаллах Nd_{1.9}Ce_{0.1}CuO_{4-v} [15]. Причем исследования показали присутствие вакансий в узлах О1 и О2 наряду с небольшим количеством "апикального" кислорода в позициях ОЗ. Модель образования дефектов в Nd_{1.9}Ce_{0.1}CuO_{4-v}, учитывающая одновременно присутствие в структуре куприта неодима-церия вакансий кислорода в кристаллографических позициях и "межузельных" ионов кислорода (ОЗ), была предложена в [15]. Расчет валентного состояния катионов в $Nd_{1.9}Ce_{0.1}CuO_{4-y}$ методом валентных сумм из анализа длин связи катион-кислород [16] дал дополнительное доказательство одновременного присутствия в решетке и вакансий, и межузельного кислорода.

Таким образом, свойства $Nd_{2-x}Ce_xCuO_{4-y}$, в том числе и сверхпроводимость, определяются одновременно содержанием церия и содержанием кислорода. Кислородная же стехиометрия формируется уже после синтеза соединения условиями отжига образцов, трудно контролируется и зачастую выпадает из поля зрения исследователей. К сожалению, пока имеется мало работ, в которых последовательно было бы проведено изучение распределения ионов кислорода в дефектной решетке $Nd_{2-x}Ce_xCuO_{4-y}$ и его влияния на сверхпроводимость образцов.

Цель настоящей работы состояла в исследовании реального распределения кислрода в решетке соединений $Nd_{1.85}Ce_{0.15}CuO_{4-y}$ с фиксированным содержанием церия (x = 0.15), влияющего на валентность меди, и обнаружении корреляции между зарядом атомов меди и температурой перехода в сверхпроводящее состояние.

1. Методика эксперимента

Кристаллическая структура изучалась методами рентгеновской (дифрактометр Дрон-УМ1 с медным излучением) и нейтронной дифракции ($\lambda = 1.515$ Å). Нейтронограммы при комнатной температуре были получены с использованием дифрактометра Д 7*a* на атомном реакторе ИВВ-2М. Для улучшения углового разрешения ($\Delta d/d = 0.3\%$) использовался двойной монохроматор: пиролитический графит (отражающая плоскость 002) — германий (333). Уточнение структурных параметров проводилось методом полнопрофильного анализа Ритвелда с использованием программы "Fullprof" [17]. Температура сверхпроводящего перехода T_c определялась методом *ас*-восприимчивости (частота 1 kHz).

Неодим-цериевый куприт состава Nd_{1.85}Ce_{0.15}CuO_{4−у} готовился по стандартной керамической технологии в интервале температур 1223–1423 К в три стадии с промежуточными перетираниями реакционной смеси. Образцы для исследований предварительно отжигались при 1000°С в течение 24 h в средах с различным давлением кислорода: PO₂ = 0.0015 (образец № 1), 0.0026 (№ 2), 0.03 (№ 3) и 1 аtm (№ 4), после чего образцы резко закаливались.

2. Результаты измерений

Проведенные рентгенодифракционные исследования показали. что все исследованные образны Nd_{1.85}Ce_{0.15}CuO_{4-y} однофазными являются c T'. тетрагональной кристаллической структурой Структурные параметры (координаты атомов, числа заполнения позиций, амплитуды тепловых колебаний и статических смещений атомов) были получены из нейтронограмм путем последовательных приближений расчетных и экспериментальных данных. Типичная нейтронограмма приведена на рис. 2.

В первом приближении считали, что $Nd_{1.85}Ce_{0.15}CuO_{4-v}$ относится к чистой T'-структуре, в которой все атомы кислорода располагаются лишь в О1- и О2-узлах, а индивидуальные температурные факторы для каждого атома изотропны. Ранее [18] мы показали, что введение в расчет анизотропных тепловых колебаний и статических смещений атомов в соединении $La_{2-x}Sr_xCuO_{4-y}$ улучшает сходимость с экспериментом, анизотропное отражая изменение параметров кристаллической решетки при допировании стронцием или при облучении быстрыми нейтронами. Поэтому при дальнейшем уточнении мы ввели анизотропные факторы Дебая-Валлера для всех атомов. Наконец, наилучшая подгонка к эксперименту (минимальные значения *R*-факторов) была достигнута введением дополнительной кислородной позиции — "межузельных" атомов кислорода в ОЗ-позициях (рис. 1). Поскольку их количество незначительно, заполнение ОЗ-позиций *n*(O3) и их положение (*z*-координату) определяли последовательным фиксированием n(O3) и z с небольшим шагом и последующим анализом факторов сходимости, добиваясь их минимальных величин.

Подобные процедуры уточнения структурных параметров Nd_{1.85}Ce_{0.15}CuO_{4-y} были выполнены для всех образцов. Уточненные структурные параметры сведены в табл. 1. Образец № 4 довольно значительно отличался от предыдущих трех уже по значениям параметров элементарной ячейки. Уточнение заполнения кислородных узлов в ячейке образца № 4 выявило отличие их заселенности от первых трех, а именно позиция O2 была занята полностью, тогда как в позициях O1 имелись вакансии.

Рис. 2. Нейтронограмма соединения Nd_{1.85}Ce_{0.15}CuO_{4-y} № 2. Кружки — эксперимент, верхняя линия — расчетная, нижняя — разность между экспериментом и расчетом.

Величины *T_c*, определенные по началу сверхпроводящего перехода температурных зависимостей *ас*-восприимчивости, также приведены в табл. 1.

Рассмотрим структурные особенности образцов $Nd_{2-x}Ce_xCuO_{4-y}$ с разным содержанием допирующего элемента. Литературные [12,19,20] и наши данные по зависимости параметров кристаллической решетки Nd_{2-r}Ce_rCuO_{4-v} от концентрации ионов церия показали, что уменьшение объема ячейки с ростом концентрации церия связано в основном с уменьшением параметра c от 12.15 (x = 0) до 12.07 Å (x = 0.15), тогда как параметр а не меняется с точностью до второго знака после запятой (3.94 ± 0.01 Å). Это связано с особенностями кристаллической структуры, так как хорошо известно, что симметрия, тип и размеры ионных соединений определяются в значительной мере относительными размерами ионов, радиусы которых в свою очередь зависят от их ближайшего окружения [21,22]. В Т'-структуре атомы меди (рис. 1) имеют квадратное окружение из ионов кислорода (О1-позиция) в плоскости (координационное число

КЧ = 4), каждый ион О1 окружен двумя медными и четырьмя неодимовыми атомами (КЧ = 6). B "сандвиче" ионы неодима соседствуют с четырьмя ионами кислорода в позиции О2 и на более дальнем расстоянии с четырьмя ионами О1, расположенными в базисной плоскости, тогда как ближайшими соседями О2-ионов являются лишь четыре катиона Nd. Радиусы ионов [21,22] равны: $r(Cu^{2+}) = 0.57$ Å, $r(Cu^{1+}) = 0.60$ Å для KЧ = 4, $r(O^{2-}) = 1.40$ Å для KЧ = 6 и $r(O^{2-}) = 1.38$ Å для KЧ = 4, $r(Nd^{3+}) = 1.01$ Å для КЧ = 8. Известно, что параметр решетки в перовските при отклонении радиусов ионов от идеальных соотношений определяется одним из трех условий: $2(r_A + r_O)$, $2\sqrt{2}(r_B + r_O)$ или $2\sqrt{2}r_O$ [23]. Используя приведенные выше значения радиусов для $Nd_{2-x}Ce_{x}CuO_{4-y}$, получаем следующие соотношения: $2(r_A + r_O) < 2\sqrt{2}(r_B + r_O) < 2\sqrt{2}r_O$. Рассмотрим базисную плоскость CuO₂. Действительно, параметр решетки, получающийся из расстояния в ней кислород-кислород, больше ($a = 2\sqrt{2}r(O^{2-}) = 3.96$ Å), чем из расстояния медь-кислород $(2r(Cu^{2+}/Cu^{1+}) + 2r(O^{2-}) = 3.94 \text{ Å}).$

Параметр	Образец				
	Nº 1	Nº 2	Nº 3	Nº 4	
a,Å	3.93956(15)	3.93889(15)	3.94628(12)	3.92806(17)	
c,Å	12.06644(58)	12.06502(59)	12.08171(50)	12.02967(67)	
c/a	3.0629	3.063	3.0615	3.0625	
$V, Å^3$	187.273	187.187	188.150	185.613	
T_c, \mathbf{K}	20.4	18.3	16.5	_	
Nd/Ce z	0.35268(13)	0.35250(13)	0.35225(12)	0.35268(15)	
$\beta_{11} = \beta_{22}$	0.0068(9)	0.0061(9)	0.0035(8)	0.0100(11)	
β_{33}	0.0002(1)	0.0003(1)	0.0001(1)	0.0002(1)	
Cu $\beta_{11} = \beta_{22}$	0.0067(14)	0.0076(13)	0.0056(13)	0.0039(15)	
β_{33}	0.0010(1)	0.0012(1)	0.0010(1)	0.0008(1)	
O1 β_{11}	0.0094(17)	0.0083(16)	0.0078(15)	0.0082(24)	
β_{22}	0.0219(19)	0.0216(19)	0.0118(16)	0.0024(21)	
β_{33}	0.0013(1)	0.0017(1)	0.0014(1)	0.0018(2)	
n	2	2	2	1.968(27)	
O2, O3 $\beta_{11} = \beta_{22}$	0.0029(16)	0.0054(16)	0.0040(16)	0.0168(17)	
β_{33}	0.0013(1)	0.0011(1)	0.0006(1)	0.0005(1)	
n	1.924(30)	1.941(29)	1.911(27)	2	
O3 z	0.165(9)	0.165(9)	0.165(9)	0.165(9)	
n	0.023(10)	0.011(9)	0.041(9)	0.016(13)	
$n\left(\mathrm{O}\right)$	3.937(30)	3.952(30)	3.952(27)	3.984(13)	
у	0.063(30)	0.048(30)	0.048(27)	0.016(13)	
R_p	3.17	3.22	3.08	3.75	
R_{wp}	4.15	4.25	4.10	4.93	
R_B	2.62	2.61	2.29	3.26	
R_f	2.52	2.81	2.72	3.16	

Таблица 1. Структурные параметры соединений Nd_{1.85}Ce_{0.15}CuO_{4-у}

П р и м е ч а н и е. *a*, *c* — параметры ячейки, *V* — объем, β_{11} , $\beta_{22} = 2\pi^2 \langle u_{11}^2, u_{22}^2 \rangle / a^2$, $\beta_{33} = 2\pi^2 \langle u_{33}^2 \rangle / c^2$ — анизотропные тепловые параметры, *n*-заполнение частных позиций, *n* (O) — общее содержание кислорода в ячейке, *y* — дефицит кислорода, *R*_p, *R*_{wp}, *R*_B, *R*_f — факторы сходимости [17]. Пространственная группа *I4/mmm*: Cu (2*a*) — 0, 0, 0, Nd/Ce (4*e*) — 0, 0, *z*, O1 (4*c*) — 0.5, 0, 0, O2 (4*d*) — 0, 0.5, 0.25, O3 (4*e*) — 0, 0, *z*.

В плоскостях, образованных ионами кислорода O2, параметр *а* должен был бы быть равным $2\sqrt{2}r(O^{2-}) = 3.903$ Å, так как здесь O2 окружен лишь четырьмя ионами Nd. Таким образом, величина параметра *а* в соединениях Nd_{2-x}Ce_xCuO_{4-y} контролируется размещением ионов кислорода в CuO₂-плоскости.

Меньшие экспериментальные значения параметров решеток *a* = 3.94 Å (образцы № 1-3) по сравнению с расчетными (3.96 Å) можно связать с большой величиной амплитуд смещения О1 и их анизотропией (табл. 1). Такая сильная анизотропия смещений О1 может быть вызвана изменением локальной симметрии окружения атомов меди, понижением ее до ромбической. Такое понижение симметрии от тетрагональной (I4/mmm) до ромбической (Стса), действительно, наблюдалось при замещении ионов Nd ионами Tb [19] или Gb [24] в составах $(Nd/Ln)_{1.85}Ce_{0.15}CuO_{4-\nu}$, где Ln = Tb, Gb. Нам не удалось обнаружить дополнительные рефлексы, поэтому мы предположили существование некоррелированных статических смещений атомов О1 наряду с тепловыми колебаниями. Такое предположение основывается на результатах нейтронографических низкотемпературных измерений монокристаллов Nd_{18.5}Ce_{0.15}CuO_{4-v}, изученных в работе [14], в которой большие анизотропные амплитуды смещений О1 наблюдались и при температуре 11 К. Мы предположили, что ионы кислорода статистически распределены в позиции с координатами (0.5, 0 + y, 0 + z). Расчет дал следующие значения координат О1, например, для образца № 1: у ~ 0.024 и $z \sim 0.0053$, соответственно все амплитуды тепловых колебаний $\langle \beta_{ii} \rangle$ стали близки друг другу и к амплитудам колебаний Nd/Ce и Cu. Такой же эффект наблюдался и для образцов № 2 и 3. На рис. 3 приведены зависимости параметров а, с от амплитуды смещения атомов О1, показывающие явную корреляцию между ними. Обращает на себя внимание тот факт, что с учетом смещений ионов кислорода O1 $\langle u_{ii} \rangle$ длины связи Cu-O1 выравниваются во всех трех сверхпроводящих образцах: $L(Cu-O1) = 1.9744 \pm 0.0006$ Å. Можно предположить возможность статистического поворота квадрата ионов кислорода вокруг атомов меди подобно тому, как это наблюдалось в [19,20]. Расчеты показывают, что связь Nd-O2 достаточно жесткая, и поэтому $L(Nd-O2) = 2.3300 \pm 0.0003$ Å для всех составов Nd_{2-x}Ce_xCuO_{4-v}. В свою очередь связи Nd-O1 относительно более мягкие, значения L(Nd-O1) для них равны 2.676 ± 0.003 (x = 0) и 2.656 ± 0.002 Å

Рис. 3. Зависимость параметров решетки соединения $Nd_{1.85}Ce_{0.15}CuO_{4-y}$ с разным содержанием кислорода от амплитуды статического смещения атомов кислорода в позиции O1.

(x = 0.15). Благодаря этому замещение трехвалентного Nd четырехвалентным Ce с меньшим ионным радиусом приводит к значительному сокращению решетки вдоль *c*-направления.

Иная, чем у сверхпроводящих образцов № 1-3, картина распределения кислорода по ячейке наблюдается в несверхпроводящем образце № 4, отожженном в потоке чистого кислорода. Во-первых, параметры решетки этого образца значительно меньше. Во-вторых, в несверхпроводящем образце имеются вакансии в узлах О1 и О2, а амплитуда смещений ионов кислорода О1 больше вдоль связи Cu-O, а не в перпендикулярном направлении. В-третьих, колебания О2 сильно анизотропны с максимальной амплитудой смещений в плоскости ab. Наконец, колебания атомов Nd/Ce также сильно анизотропны с максимальной амплитудой смещений в плоскости аb, причем общее содержание кислорода в ячейке близко к четырем (табл.1), а факторы сходимости более высоки по сравнению со сверхпроводящими образцами № 1-3. Это указывает не только на нарушение стехиометрии по кислороду, но и на возникновение вакансий в Nd/Се-подрешетке или на изменение их соотношения. Действительно, такое допущение приводит к улучшению сходимости, но при этом уменьшается концентрация кислорода и в О2. Такая модель качественно объясняет структурные особенности этого образца, а именно меньшие величины параметров решетки, что необычно

для окисленных образцов, так как при окислении обычно параметры несколько увеличивались [12–15]. Поскольку на основе настоящих данных нельзя сделать однозначный выбор: присутствуют ли вакансии в Nd-подрешетке либо изменилось соотношение Nd/Ce-ионов в узле, мы не стали проводить дальнейшее уточнение структуры этого образца.

Важным остается вопрос о наличии дополнительного кислорода в узлах решетки ОЗ. Для исследуемых образцов Nd_{1.85}Ce_{0.15}CuO_{4-v} на основе экспериментальных значений длин связи катион-кислород (табл. 2) методом валентных сумм было проведено дополнительное тестирование электронейтральности кристаллической ячейки, как в предыдущей работе для состава Nd_{1.9}Ce_{0.1}CuO_{4±v} [15]. Оказалось, что электрический баланс положительного и отрицательного электрического заряда в кристаллической ячейке требует введения дополнительного "апикального" кислорода в ОЗ-узлы. Полученные результаты с учетом статических смещений атомов О1 приведены в табл. 3. Видно, что для образцов № 1-3 соблюдается электронейтральность ячейки с высокой точностью (< 0.02), тогда как для образца № 4 разность положительного и отрицательного зарядов очень велика. Эта разность, по-видимому, связана с нарушенной в процессе отжига стехиометрией и по

Таблица 2. Длины связи катион–анион (Å) в кристаллической ячейке соединений $Nd_{1.85}Ce_{0.15}CuO_{4-y}$

	Nº 1	Nº 2	Nº 3	Nº 4
Nd-O1	2.6531(8)	2.6544(8)	2.6612(8)	2.6452(12)
Nd-O2	2.3272(6)	2.3255(6)	2.3276(6)	2.3203(12)
Nd-O3	2.265(3)	2.262(2)	2.265(2)	2.017(3)
Nd-O3	2.794(3)	2.793(2)	2.798(2)	2.814(3)
Cu-O1	1.9698(1)	1.9694(1)	1.9731(1)	1.9640(1)
Cu-O2	3.6028(1)	3.6023(1)	3.6078(1)	3.5919(1)
Cu-O3	1.991(3)	1.991(3)	1.994(3)	2.226(3)
$\langle Cu-O1 \rangle$	1.9742	1.9739	1.9748	—

Примечание. $\langle Cu-O1 \rangle$ — длина связи с учетом статического смещения атомов кислорода О1 — (0.5, 0 + y, 0 + z).

Таблица 3. Расчетное процентное содержание ионов Cu¹⁺, Cu²⁺, зарядовое состояние узлов меди V (Cu) и неодимцериевых узлов V (Nd/Ce), общий положительный (+), отрицательный заряд ячейки (-), их разность Δ и вклад в валентность Cu от апикального кислорода δV (Cu–O3)

	Nº 1	Nº 2	Nº 3	Nº 4
Cu ¹⁺ ,%	27.5	28.7	24.6	25.9
Cu ²⁺ ,%	72.5	71.3	75.4	74.1
V (Cu)	1.725	1.713	1.754	1.741
V (Nd/Ce)	3.079	3.086	3.075	3.199
(+)	7.882	7.884	7.904	8.133
(-)	7.894	7.900	7.920	7.960
Δ	0.012	0.016	0.016	0.179
δV (Cu–O3)	0.019	0.010	0.041	0.013

кислороду, и по Nd/Ce, как уже отмечалось выше. Обращает внимание на себя тот факт, что расчетное значение валентности Nd/Ce-узла (3.199) оказалось значительно выше величины 3.075, характерной для исследуемого состава 1.85Nd + 0.15Ce. Такой результат, по нашему мнению, еще раз подтверждает применимость метода валентных сумм для оценки зарядового состояния катионов в ионных соединениях.

На рис. 4 приведена зависимость T_c от параметров решетки соединения Nd_{1.85}Ce_{0.15}CuO_{4-v}. Как видно, наблюдается корреляция между Тс и параметрами решетки. Сами значения параметров, как показано выше, определяются конкретным расположением ионов кислорода в ячейке. Особая роль "апикального" кислорода в соединениях La_{2-x}Sr_xCuO_{4-v} и YBa₂Cu₃O_{7-v} для возникновения сверхпроводимости подчеркивалось во многих работах, в том числе и наших [18,24]. В соединении Nd_{1.85}Ce_{0.15}CuO_{4-у} "апикальный" кислород O3 способствует перераспределению заряда между "сандвичем" O2-Nd/Ce-O2 и плоскостью Cu-O1, контролируя таким образом валентное состояние ионов меди. На рис. 5, а показана зависимость Т_с от заряда медных ионов, а на рис. 5, b — от концентрации "апикального" кислорода в решетке. Следовательно, и в соединениях Nd_{1.85}Ce_{0.15}CuO_{4-v} важна роль "апикального" кислорода ОЗ, который контролирует эффективный заряд в СиО2-плоскости, внося искаженяи в кристаллическую решетку неодим-цериевого куприта.

Рис. 4. Зависимость T_c от параметров решетки. 1 — наши данные, 2 - [12], 3 - [19], 4 - [25].

Рис. 5. Зависимость T_c от валентного состояния атомов меди (*a*) и от чисел заполнения ОЗ-позиции ("апикального" кислорода") (*b*). *1* — наши данные, *2* — [12].

Таким образом, в настоящей работе получены следующие основные результаты.

Методом нейтронной дифракции проведено детальное изучение структурных особенностей кристаллической решетки соединений неодим-цериевого куприта состава Nd_{1.85}Ce_{0.15}CuO_{4-v} в зависимости от кислородной стехиометрии. Определено содержание кислорода в ячейке, обнаружены значительные анизотропные смещения атомов кислорода и их влияние на параметры кристаллической решетки. Подтверждено, что сверхпроводимость возникает в восстановленных образцах с недостатком кислорода. Установлено существование "апикального" кислорода (узлы ОЗ) в решетке, а также отмечена его важная роль в формировании зарядового состояния СиО2-плоскостей. Продемонстрирована возможность дополнительного контроля заполнения узлов решетки кислородом при использовании метода валентных сумм. Найдена зависимость Т_с от валентного состояния атомов меди, которая определяется не только концентрацией кислорода, но и его реальным распределением в кристаллической ячейке.

Данная работа поддержана Государственной научнотехнической программой "Актуальные направления в физике конденсированного состояния", направления "Нейтронные исследования" (проекты № 96-104, 96-305), "Сверхпроводимость" (проект № 96-051) и Российским фондом фундаментальных исследований (грант № 97-03-33632*a*).

Список литературы

- [1] Y. Tokura, H. Takagi, S. Uchida. Nature 337, 345 (1989).
- [2] H. Takagi, S. Uchida, Y. Tokura. Phys. Rev. Lett. 62, 1197 (1989).
- [3] S. Uji, H. Aoki. Physica C199, 231 (1992).
- [4] J.S. Kim, D.R. Gaskell. Physica C209, 381 (1993).
- [5] K. Suzuki, K. Kishio, T. Hasegawa, K. Kitazawa. Physica C166, 357 (1990).
- [6] J.M. Tarascon, E. Wang, L.H. Greene, R. Ramesh, B.G. Bagley, G.W. Hull, C. Miceli, Z.Z. Wang, D. Brawner, N.P. Ong. Physica C162–164, 258 (1989).
- [7] E. Moran, A.I. Nazzal, T.C. Huang, J.B. Torrance. Physica C160, 30 (1989).
- [8] P.W. Klamut. J. Alloys Comp. 194, L5 (1993).
- [9] N.A. Fortune, K. Murata, Y. Yokoyama, M. Ishibashi, Y. Nishinara. Physica C178, 437 (1991).
- [10] F. Izumi, Y. Matsui, H. Takagi, Y. Tokura, H. Asano. Physica C158, 433 (1989).
- [11] E. Wang, J.M. Tarascon, L.H. Greene, G.W. Hull. Phys. Rev. B41, 6582 (1990).
- [12] I. Mangelschots, N.H. Anderson, B. Lebech, A. Wisnievski, C.S. Jacobsen. Physica C202, 369 (1992).
- [13] P.G. Radaelli, J.D. Jorgenson, A.J. Schultz, J.L. Peng, R.L. Greene. Phys. Rev. B49, 15 322 (1994).
- [14] A.J. Schultz, J.D. Jorgenson, J.L. Peng, R.L. Greene. Phys. Rev. B53, 5157 (1996).
- [15] A.N. Petrov, A.Yu. Zuev, T.P. Rodionova, V.I. Voronin. J. Am. Cer. Soc. In press (1997).
- [16] I.D. Brown, D. Altermatt. Acta Cryst. Sect. B41, 244 (1985).
- [17] J. Rodriguez-Carjaval. Physica B192, 55 (1993).
- [18] V. Voronin, A. Mirmelstein, V. Kozhevnikov, B. Goshchitskii. Physica C218, 407 (1993).
- [19] M. Braden, P. Aldermann, P. Schweiss, T. Woisczyk. Phys. Rev. B53, R2975 (1996).
- [20] P. Aldermann, R. Ahrens, G. Czjzek, G. Roth, C. Steinleitner. Phys. Rev. B46, 3619 (1992).
- [21] R.D. Shannon, C.T. Prewitt. Acta Cryst. B25, 925 (1969).
- [22] С.С. Бацанов. ЖНХ 36, 3015 (1991).
- [23] К.С. Александров, А.Т. Анистратов, Б.В. Безносиков, Н.В. Федосеева. Фазовые переходы в кристаллах галоидных соединений ABX₃. Наука, Новосибирск (1981). 264 с.
- [24] V. Voronin, A. Mirmelstein, A. Karkin, A. Tephykh, B. Goshchitskii, A. Ivanov, L. Smirnov. High Press. Res. 14, 139 (1995).
- [25] Chang Fanggao, A. Al-Kheffaji, P.J. Ford, D.A. Ladds, J. Freestone, B. Chapman, Li Manosa, D.P. Almond, G.A. Saunders. Supercond. Sci. Technol. 3, 422 (1990).