Анализ поведения коэффициента термоэдс в системе YBa_{2-x}La_xCu₃O_y. Корреляция между параметрами зонного спектра в нормальной фазе и критической температурой

© В.Э. Гасумянц, Е.В. Владимирская, И.Б. Патрина*

Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия * Институт химии силикатов Российской академии наук,

195155 Санкт-Петербург, Россия

(Поступила в Редакцию 21 февраля 1997 г.)

Проведено исследование коэффициента термоэдс в системе $YBa_{2-x}La_xCu_3O_y$ (x = 0-0.5). Анализ полученных результатов на основе модели узкой зоны позволил выявить тенденции в изменении основных параметров зонного спектра с ростом содержания лантана. Обнаружено, что зависимость ширины проводящей зоны от содержания лантана имеет слабый минимум при x = 0.05-0.1, положение которого коррелирует с положением максимума на концентрационных зависимостях критической температуры и степени ортором-бичности образцов. На основе полученных результатов и их сравнения с данными для замещений Fe, Co \rightarrow Cu сделан вывод о том, что главным фактором, влияющим на свойства системы $YBa_2Cu_3O_y$ при неизовалентных замещениях различных катионов, является возрастание разупорядочения подсистемы цепочечного кислорода, вызванное увеличением содержания примеси.

Для изучения свойств различных материалов, в частности, высокотемпературных сверхпроводников, широко применяется метод легирования. Сравнительный анализ свойств образцов с различными направленными изменениями состава в применении к ВТСП системе YBa₂Cu₃O_y (Y-123) позволяет получать информацию о роли и механизме влияния различных структурных элементов решетки на сверхпроводимость и другие свойства данного соединения.

Несмотря на то, что сверхпроводящие свойства $YBa_2Cu_3O_y$, как и других ВТСП соединений, обусловлены наличием в их структуре плоскостей CuO_2 , интерес представляет изучение влияния не только дефицита кислорода и частичного замещения меди другими металлами, но и неизовалентных замещений других катионов. Это связано с тем, что при легировании такого рода происходит введение избыточного заряда, что оказывает существенное влияние на структурные и сверхпроводящие свойства, а также концентрацию носителей заряда и, в целом, на свойства электронной системы в нормальной фазе.

Влияние примесей на свойства твердых растворов типа $Y_{1-x}M_xBa_2Cu_3O_y$, $YBa_{2-x}M_xCu_3O_y$, $YBa_2Cu_{3-x}M_xO_y$ зависит от соотношения валентностей замещающего и замещаемого элементов. Так, с помощью частичной замены катионов решетки Y-123 ионами разной валентности можно в широких пределах варьировать значение кислородного индекса, которое в зависимости от типа и степени замещения может как увеличиваться выше стехиометрического значения y = 7 в случае замены Fe³⁺, Co^{3+} , $Al^{3+} \rightarrow Cu^{2+}$ [1–3], Eu^{3+} , $La^{3+} \rightarrow Ba^{2+}$ [4–8], так и уменьшаться при замещении $Ca^{2+} \rightarrow Y^{3+}$ [5,9].

В наших предыдущих работах показано, что анализ поведения транспортных коэффициентов на основе модели узкой зоны позволяет получить информацию об изменении параметров зонного спектра при различных отклонениях от стехиометрии [10–12]. При исследовании влияния дефицита кислорода [10,11] и неизовалентных замещений Fe, Co \rightarrow Cu [10,12] нами было показано, что определяющее воздействие на свойства нормальной фазы, сверхпроводимость и параметры зонного спектра YBa₂Cu₃O_y оказывает состояние кислородной подсистемы, а именно содержание и характер распределения атомов цепочечного кислорода. Поскольку замещения типа Ln³⁺ \rightarrow Ba²⁺, где Ln — редкоземельный элемент, также приводят аналогично случаю Fe, Co \rightarrow Cu к увеличению кислородного индекса у выше его стехиометрического значения, представляет несомненный интерес сравнение этих двух способов воздействия на кислородную подсистему.

Для изучения влияния неизовалентного замещения бария на свойства У-123 многие авторы используют в качестве примеси лантан, поскольку ионные радиусы Ва $(r_i = 1.35 \text{ Å})$ и La $(r_i = 1.33 \text{ Å})$ очень близки. Увеличение содержания La в YBa_{2-x}La_xCu₃O_y вызывает рост значений у до у \approx 7.13 при x = 0.46 [6] или $y \approx 7.2$ при x = 0.5 [5]. Важной особенностью влияния лантана является наличие максимума орторомбического искажения b - a при содержаниях La от $x_c = 0.05$ [7,8] до $x_c = 0.1$ [6], причем его положение коррелирует с положением максимума на зависимости $T_c(x)$, наблюдающегося в районе $x \approx 0.05 - 0.06$ [7,13] или $x \approx 0.1$ [6,14]. Очевидной причиной возрастания величины b - a с ростом содержания лантана при $x \leq x_c$ авторы [6] считают происходящее в этом диапазоне дозаполнение кислородом позиций O(1) в цепочках Cu(1)O. При $x \ge x_c$ дополнительные атомы кислорода заполняют вакансии О(5), что и приводит к уменьшению орторомбического искажения вплоть до перехода к тетрагональной структуре. Отметим, что средняя формальная валентность

Таблица 1. Содержание кислорода и параметры элементарной ячейки в образцах YBa_{2-x}La_xCu₃O_y

x	у	<i>a</i> , Å	<i>b</i> , Å	b-a, Å	<i>c</i> , Å
0.0	6.95	3.822	3.885	0.063	11.670
0.05	6.98	3.820	3.894	0.074	11.655
0.1	6.99	3.823	3.895	0.072	11.650
0.2	7.03	3.819	3.890	0.071	11.650
0.3	7.10	3.828	3.879	0.051	11.640
0.4	7.14	3.857	3.857	0	11.600
0.5	7.17	3.853	3.853	0	11.580

меди (FAVC), с изменением которой многие авторы связывают падение критической температуры в Y-123 при легировании, монотонно возрастает с ростом x во всем диапазоне концентраций лантана. Таким образом, если при $x > x_c$ и возможно говорить о наличии корреляции между значениями FACV и T_c [6,7], то в начальной области возрастание T_c нельзя связать с ростом формальной концентрации носителей.

Работ, посвященных исследованию транспортных свойств в системе $YBa_{2-x}La_xCu_3O_y$, крайне мало. Известно, что изменения абсолютных величин удельного сопротивления ρ и вида зависимости $\rho(T)$ с ростом содержания La в целом аналогичны изменениям, происходящим с ростом дефицита кислорода в Y-123. В [13] отмечается уменьшение ширины сверхпроводящего перехода ΔT при росте содержания La до $x = x_c$. Коэффициент термоэдс в $YBa_{2-x}La_xCu_3O_y$ систематически не исследовался.

В связи с вышеизложенным целью данной работы является исследование поведения коэффициента термоэдс в образцах $YBa_{2-x}La_xCu_3O_y$ (x = 0-0.5), его анализ на основе модели узкой зоны и получение данных о трансформации зонного спектра и связи его параметров со значением критической температуры, а также сравнение полученных результатов с данными для неизовалентных замещений цепочечной меди.

1. Исследованные образцы

Однофазные керамические образцы состава $YBa_{2-x}La_xCu_3O_y$ (x = 0-0.5) были изготовлены стандартным методом твердофазного синтеза из оксидов иттрия, лантана и меди и карбоната бария. Заключительная обработка проводилась в течение 2 h в атмосфере проточного кислорода при температуре $T = 450^{\circ}$ C с последующим медленным охлаждением (со скоростью порядка 2°C/min) до комнатной температуры.

Однофазность образцов контролировалась методами рентгеновской дифракции и визуальной микроскопии с точностью не ниже 1%, а содержание кислорода определялось методом иодометрического титрования с точностью $\pm 0.01 - 0.02$. Данные по значениям кислородного индекса и параметров решетки приведены в табл. 1.

Видно, что увеличение содержания лантана приводит к последовательному росту у. Рентгенографический анализ показал, что при малых x параметр решетки a меняется слабо, b увеличивается, при этом величина орторомбического искажения b - a возрастает, достигая максимума при x = 0.05-0.1. При дальнейшем увеличении x величина параметра b начинает уменьшаться, а значение a расти, и в области $x \approx 0.4$ наблюдается переход от орторомбической симметрии к тетрагональной. Параметр c монотонно падает во всем диапазоне исследованных концентраций лантана. Обнаруженные тенденции в изменении значений параметров решетки и содержания кислорода хорошо согласуются с данными других авторов (см. [5-8]).

2. Результаты электрофизических измерений

На всех образцах были исследованы температурные зависимости удельного сопротивления $\rho(T)$ и коэффициента термоэдс S(T) в интервале температур $T = T_c - 300$ К по методике, описанной в [12]. Некоторые результаты электрофизических измерений и данные о значениях критической температуры, определенных по резистивному сверхпроводящему переходу, приведены в табл. 2. Удельное сопротивление для всех образцов линейно падает при уменьшении температуры, при этом наклон зависимостей $\rho(T)$ монотонно уменьшается по мере увеличения содержания лантана (см. отношение $\rho_{300\,\text{K}}/\rho_{100\,\text{K}}$ в табл. 2). На рис. 1 показана зависимость величины T_c ($\rho = 0$) от содержания лантана. Максимальное значение критической температуры наблюдается в образцах с x = 0.05 - 0.1, дальнейшее увеличение содержания лантана приводит к монотонному падению Т_с. При этом ширина сверхпроводящего перехода, несколько уменьшаясь по сравнению с нелегированным $YBa_2Cu_3O_v$ в образце с x = 0.05, затем последовательно возрастает (табл. 2). Обнаруженное изменение параметров сверхпроводящего перехода хорошо согласуется с литературными данными [6,7,13,14] и, кроме того, качественно совпадает со случаем замещения Со -> Си, где

Рис. 1. Зависимость значения критической температуры от содержания лантана в YBa_{2-x}La_xCu₃O_y.

x	$\rho_{300\mathrm{K}},\mathrm{m}\Omega\cdot\mathrm{cm}$	$\rho_{100\mathrm{K}},\mathrm{m}\Omega\cdot\mathrm{cm}$	$ ho_{ m 300K}/ ho_{ m 100K}$	T_c^m , K	$\Delta T, \mathbf{K}$	T_c^0 , K	$S_{300 \text{ K}}, \mu \text{V/K}$
0.0	3.8	1.7	2.53	89.7	3.0	87.3	0.8
0.05	3.5	1.5	2.33	89.8	1.1	88.8	1.3
0.1	1.6	0.7	2.20	91.2	3.2	89.5	6.3
0.2	2.9	1.4	2.07	90.5	5.8	86.9	9.3
0.3	4.2	2.1	2.00	84.2	8.7	76.8	16.6
0.4	2.9	1.5	1.93	73.5	10.9	62.8	18.5
0.5	4.8	2.8	1.71	57.3	11.6	50.9	39.7

Таблица 2. Результаты электрофизических измерений образцов YBa_{2-x}La_xCu₃O_y

увеличение содержания примеси также вызывает рост значений кислородного индекса [12]. Следует отметить, что именно концентрации лантана x = 0.05-0.1 соответствует максимум орторомбичности образцов и наиболее близкое к стехиометрическому значению содержание кислорода (ср. данные в табл. 1 и 2).

Температурные зависимости коэффициента термоэдс для исследованных образцов приведены на рис. 2. Они демонстрируют типичные особенности S(T), характерные для ВТСП-системы Y-Ba-Cu-O: постоянство или слабое изменение S в области высоких температур для образцов с малыми отклонениями от стехиометрии (до x = 0.2) и наличие на кривой S(T) максимума при T = 120 - 200 К. С ростом содержания лантана происходит существенное увеличение абсолютного значения коэффициента термоэдс (см. рис. 2, табл. 2) и смещение максимума на зависимости S(T) в область более высоких температур, сопровождающееся его расширением. Таким образом, характер трансформации зависимостей S(T) в образцах YBa_{2-x}La_xCu₃O_y в целом аналогичен случаю роста дефицита кислорода или содержания неизовалентной примеси Fe и Co, замещающей медь, в YBa₂Cu₃O_v.

Сравнение полученных экспериментальных результатов с описанными в [10,12] данными для замещений Fe, Co \rightarrow Cu показывает, что абсолютные значения S в образцах YBa_{2-x}La_xCu₃O_y увеличиваются заметно слабее, чем для образцов, легированных железом или кобальтом при соответствующих уровнях замещений. Одновременно с этим и зависимость $T_{c}(x)$ в первом случае существенно более слабая. Таким образом, можно утверждать, что наблюдается устойчивая корреляция между значениями S и T_c при увеличении уровня легирования при неизовалентных замещениях в различных подрешетках: более сильному росту значений коэффициента термоэдс соответствует и более резкое падение величины критической температуры. Кроме того, обращает на себя внимание тот факт, что зависимости $\rho(T)$ для образцов YBa_{2-x}La_xCu₃O_y сохраняют линейный вид вплоть до x = 0.5, в то время как в образцах $YBa_2Cu_{3-x}M_xO_v$ (M = Fe, Co) в области низких температур они имеют полупроводниковый характер при высоких уровнях замещений ($x \ge 0.2$ и ≥ 0.3 для M = Fe и Co соответственно [12]). Этот факт свидетельствует о том, что процесс локализации состояний при увеличении содержания примеси происходит в $YBa_{2-x}La_xCu_3O_y$ менее интенсивно, чем для $YBa_2Cu_{3-x}M_xO_y$ (M = Fe, Co).

Обсуждение экспериментальных результатов

Полученные экспериментальные результаты были проанализированы на основе феноменологической модели электронного транспорта в случае узкой проводящей зоны [10]. В основе модели лежит предположение о наличии в зонном спектре ВТСП-материалов узкого (порядка 0.1 eV) пика плотности состояний в окрестности уровня Ферми. Как показано в [10], в рамках этого предположения можно получить аналитические выражения для температурных зависимостей кинетических коэффициентов и использовать затем экспериментальные температурные зависимости коэффициента термоэдс для определения трех модельных параметров, характеризующих свойства системы носителей заряда в нормальной фазе. Этими параметрами является степень заполнения зоны электронами F, равная отношению числа электронов к полному числу состояний в зоне, полная эффективная ширина проводящей зоны W_D и эффективная ширина интервала делокализованных состояний W_{σ} . Выражение для коэффициента термоэдс в рамках данной модели выглядит следующим образом:

$$S = -\frac{k_B}{e} \Biggl\{ \frac{W_{\sigma}^*}{\sinh W_{\sigma}^*} \Biggl[\exp(-\mu^*) + \operatorname{ch} W_{\sigma}^* - \frac{1}{W_{\sigma}^*} (\operatorname{ch} \mu^* + \operatorname{ch} W_{\sigma}^*) \ln \frac{\exp(\mu^*) + \exp(W_{\sigma}^*)}{\exp(\mu^*) + \exp(-W_{\sigma}^*)} \Biggr] - \mu^* \Biggr\}, \quad (1)$$

где

$$\mu^* \equiv \mu/k_B T = \ln \frac{\sinh(FW_D^*)}{\sinh[(1-F)W_D^*]},$$
(2)

 μ — химический потенциал, k_B — постоянная Больцмана, e — заряд электрона, $W_D^*\equiv W_D/2k_BT,$ $W_\sigma^*\equiv W_\sigma/2k_BT.$

Проведенный нами ранее анализ транспортных свойств в системе YBa₂Cu₃O_y при различном содержании кислорода [10,11] и частичной замене меди переходными металлами (железом и кобальтом) [10,12]

Рис. 2. Температурные зависимости коэффициента термоэдс в YBa_{2-x}La_xCu₃O_y.

показал, что отклонение от стехиометрии приводит к росту степени заполнения, расширению проводящей зоны и одновременному уменьшению отношения W_{σ}/W_D , что свидетельствует об увеличении степени локализации состояний. Эти эффекты связывались нами с ростом разупорядочения в подсистеме цепочечного кислорода. При этом расширение проводящей зоны, приводящее к падению значения плотности состояний на уровне Ферми, хорошо коррелирует с уменьшением значения Т_с. Поскольку, как уже отмечалось, увеличение содержания лантана воздействует на кислородную подсистему аналогично замещениям Fe, Co \rightarrow Cu, представляет интерес проследить за трансформацией зонного спектра в YBa_{2-x}La_xCu₃O_y и сравнить влияние лантана, с одной стороны, и железа и кобальта — с другой, на параметры проводящей зоны и критическую температуру.

Используя формулы (1) и (2), мы получили расчетные зависимости S(T), хорошо совпадающие с экспериментальными, и определили значения модельных параметров для всех исследованных образцов. На рис. 3 и 4 представлены полученные концентрационные зависимости энергетических размеров зоны и степени ее заполнения электронами для системы YBa_{2-x}La_xCu₃O_y. Степень заполнения возрастает с ростом х практически линейно и достаточно слабо (см. рис. 3). Обнаруженный слабый рост F может объясняться незначительной недокомпенсацией избыточного заряда, вносимого в систему при замещении $La^{3+} \rightarrow Ba^{2+}$, ростом содержания кислорода, как видно из данных табл. 1. Что касается энергетических размеров зоны, в целом значения W_D и W_σ увеличиваются. Однако, необходимо отметить одну существенную особенность. Как видно из рис. 4, согласно нашим расчетам, для $YBa_{2-x}La_xCu_3O_y$ при x = 0.1 име-

Рис. 3. Зависимость степени заполнения зоны электронами от содержания лантана в YBa_{2-x}La_xCu₃O_y.

Рис. 4. Зависимость энергетических размеров проводящей зоны от содержания лантана в YBa_{2-x}La_xCu₃O_y.

ется слабый минимум на зависимостях $W_D(x)$ и $W_{\sigma}(x)$. Как указывалось выше, именно при этом содержании лантана на зависимости $T_c(x)$ наблюдается максимум и содержание кислорода максимально приближается к значению у = 7. Эти факты могут быть объяснены следующим образом. Вследствие дозаполнения атомами дополнительного кислорода позиций O(1) при малом содержании лантана, при $x \approx 0.1$ достигается максимальная степень упорядочения кислородной подсистемы (о чем свидетельствует максимальная степень орторомбичности и минимальная ширина сверхпроводящего перехода, см. табл. 1, 2). Это и является причиной существования минимума на концентрационных зависимостях зонных параметров, что, в свою очередь, приводит к максимальному значению плотности состояний на уровне Ферми $D(E_F)$ и, соответственно, наибольшей величине критической температуры. Дальнейшее увеличение х сопровождается заполнением кислородных вакансий О(5), что ведет к появлению и последовательному увеличению разупорядочения кислородной подсистемы. Это вызывает рост значений W_D и W_σ , уменьшение отношения W_{σ}/W_D и приводит, согласно нашим выводам о связи между значениями W_D и T_c , к падению величины критической температуры.

Таким образом, наблюдаемое изменение критической температуры в $YBa_{2-x}La_xCu_3O_y$ находится в хорошем соответствии с характером трансформации зонного спектра во всем диапазоне концентраций лантана. В свою очередь зависимости $W_D(x)$, $W_{\sigma}(x)$ и F(x) могут быть непротиворечиво объяснены на основе анализа структурных изменений в решетке, происходящих при введении лантана. Выявленная корреляция между немонотонными изменениями степени упорядочения атомов цепочечного кислорода и ширины проводящей зоны является дополнительным аргументом в пользу реализации в $YBa_2Cu_3O_y$ механизма андерсоновской локализации состояний.

Обнаруженная взаимосвязь между изменением зонных параметров и критической температурой аналогична выявленной при исследовании свойств YBa₂Cu₃O_v с различным содержанием кислорода [10,11] или уровнем замещения меди 3*d*-металлами [10,12]. Главным фактором, влияющим на свойства системы $YBa_{2-x}La_xCu_3O_y$, так же как и при замещениях Fe, Co -> Cu, оказываются увеличение содержания кислорода выше его стехиометрического значения (у > 7) и возрастание вызванного этим разупорядочения подсистемы цепочечного кислорода с ростом содержания примеси. Все количественные различия между зависимостями F(x), $W_D(x)$ и $W_{\sigma}(x)$ для образцов указанных серий могут быть объяснены на основе анализа изменений состояния кислородной подсистемы, вызванных различными примесями, с учетом их валентности и кислородной координации. Это подтверждает сделанный нами ранее вывод об определяющем воздействии состояния кислородной подсистемы на параметры зонного спектра и значение критической температуры в YBa₂Cu₃O_v.

Таким образом, в ходе исследования влияния частичного замещения бария лантаном на транспортные и сверхпроводящие свойства системы YBa₂Cu₃O_y получены следующие основные результаты.

1) Ha зависимости $T_c(x)$ для образцов $YBa_{2-x}La_xCu_3O_y$ наблюдается максимум при $x = 0.05 \div 0.1$, положение которого соответствует значению кислородного индекса $y \approx 7$ и максимуму орторомбичности образцов, что свидетельствует о том, что кислородная подсистема при этом содержании лантана является наиболее упорядоченной.

2) С ростом содержания лантана в $YBa_{2-x}La_xCu_3O_y$ происходит увеличение абсолютных значений коэффициента термоэдс и смещение максимума на зависимости S(T) в сторону более высоких температур. Качественно характер трансформации зависимостей S(T) в $YBa_{2-x}La_xCu_3O_y$ аналогичен случаям роста дефицита кислорода в $YBa_2Cu_3O_y$ или возрастания содержания неизовалентных примесей Fe и Co, замещающих медь, хотя рост абсолютных значений S в случае замещения бария лантаном заметно слабее, чем для образцов, допированных железом или кобальтом при соответствующих уровнях замещений.

3) На основе анализа зависимостей S(T) в рамках модели узкой зоны выявлены тенденции в изменении параметров зонного спектра $YBa_{2-x}La_xCu_3O_y$ с ростом содержания лантана. Степень заполнения зоны электронами линейно возрастает с ростом содержания лантана, а на зависимостях $W_D(x)$ и $W_{\sigma}(x)$ имеется слабый минимум при x = 0.1, после которого значения W_D и W_{σ} возрастают. В целом характер трансформации зонного спектра в $YBa_{2-x}La_xCu_3O_y$ аналогичен случаям роста дефицита кислорода или замещений Fe, Co \rightarrow Cu.

4) Зависимости $W_D(x)$, $W_{\sigma}(x)$, F(x) и $T_c(x)$, так же, как и в случае неизовалентных замещений цепочечной меди, коррелируют с характером структурных изменений, происходящих в решетке $YBa_2Cu_3O_y$ при введении лантана, прежде всего, с изменением состояния кислородной подсистемы. Тем самым, получено дополнительное подтверждение определяющего характера воздействия разупорядочения цепочечного кислорода на транспортные свойства в нормальной фазе, сверхпроводимость и параметры зонного спектра в ВТСП системы $YBa_2Cu_3O_y$.

5) Полученные результаты подтверждают наличие корреляции между характером изменения параметров зонного спектра (прежде всего, ширины проводящей зоны) с одной стороны и значения критической температуры — с другой, обнаруженной ранее для образцов, легированных различными 3*d*-металлами, но в данном случае более яркой, так как изменения обеих этих величин не являются монотонными. Это является дополнительным аргументом в пользу реализации в YBa₂Cu₃O_y при отклонении от стехиометрии механизма андерсоновской локализации состояний.

Список литературы

- J.M. Tarascon, P. Barboux, P.F. Miceli, L.H. Greene, G.W. Hull, M. Eibschutz, S.A. Sunshine. Phys. Rev. B37, 13, 7458 (1988).
- Y. Xu, R. Sabatini, A.R. Moodenbaugh, Yi. Zhu, S.-G. Shyu,
 M. Suenaga, K.W. Dennis, R.W. McCallum. Physica C169,
 3 & 4, 205 (1990).
- [3] X.Y. Zhou, H. Zhang, Q.R. Zhang. Phys. Stat. Sol. (a) **119**, *2*, K145 (1990).
- [4] V.E. Gasumyants, V.I. Kaidanov, E.V. Vladimirskaya. Chin. J. Phys. 31, 6, 999 (1993).
- [5] A. Tokiwa, Y. Syono, M. Kikuchi, R. Suzuki, T. Kajitani, N. Kobayashi, T. Sasaki, O. Nakatsu, Y. Muto. Jap. J. Appl. Phys. 27, 6, L1009 (1988).
- [6] R. Liang, M. Itoh, T. Nakamura, R. Aoki. Physica C157, 1, 83 (1989).
- [7] A. Manthiram, J.B. Goodenough. Physica C159, 6, 760 (1989).
- [8] В.С. Грунин, И.Б. Патрина, М.М. Пивоваров, М.В. Разумеенко, Н.П. Баранская, И.А. Дроздов, В.Л. Макаров. СФХТ 3, 10, 110 (1990).
- [9] B. Fisher, J. Genossar, C.G. Kuper, L. Patlagan, G.M. Reisner, A. Knizhnik. Phys. Rev. B47, 10, 6054 (1993).
- [10] V.E. Gasumyants, V.I. Kaidanov, E.V. Vladimirskaya. Physica C248, 2 & 3, 255 (1995).

- [11] В.Э. Гасумянц, С.А. Казьмин, В.И. Кайданов, В.И. Смирнов, Ю.М. Байков, Ю.П. Степанов. СФХТ 4, 7, 1280 (1991).
- [12] Е.В. Владимирская, В.Э. Гасумянц, И.Б. Патрина. ФТТ 37, 7, 1990 (1995).
- [13] J.J. Neumeier. Appl. Phys. Lett. 61, 15, 1852 (1992).
- [14] R.G. Buckley, D.M. Pooke, J.L. Tallon, M.R. Presland, N.E. Flower, M.P. Staines, H.L. Johnson, M. Meylan, G.V.M. Williams, M. Bowden. Physica C174, 4–6, 383 (1991).