Гальваномагнитные и термоэлектрические свойства многокомпонентных твердых растворов *n*-типа на основе халькогенидов Bi и Sb

© Л.Н. Лукьянова, В.А. Кутасов, В.В. Попов, П.П. Константинов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: lidia.lukyanova@mail.ioffe.ru

(Поступила в Редакцию 26 июля 2005 г.)

Исследованы гальваномагнитные и термоэлектрические свойства многокомпонентных твердых растворов *n*-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z с замещениями атомов (Sb \rightarrow Bi и Se, S \rightarrow Te). В рамках многодолинной модели энергетического спектра определены главные компоненты тензора эффективных масс (m_1 , m_2 , m_3) для изотропного механизма рассеяния носителей заряда в составах $0.08 \le x \le 0.4$ и $0.06 \le y = z \le 0.15$. Проведен анализ влияния изменений параметров поверхности постоянной энергии на термоэлектрическую эффективность в зависимости от состава и концентрации носителей в твердых растворах.

Работа частично поддержана проектами Российского фонда фундаментальных исследований № 03-02-17605а и 04-02-17612а.

PACS: 72.10.Fk, 72.20.Jf, 72.20.Pa

Многокомпонентные твердые растворы на основе халькогенидов висмута и сурьмы (Bi, Sb)₂(Te, Se, S)₃ с замещениями атомов (Sb \rightarrow Bi и Se, S \rightarrow Te) в катионной и анионной подрешетках Bi₂Te₃ являются высокоэффективными термоэлектрическими материалами как для области температур ниже, так и выше комнатной при оптимальных концентрациях носителей заряда и составах твердого раствора [1-7]. Исследования термоэлектрических свойств твердых растворов $n-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ с целью получения высокоэффективных материалов для интервала температур (77-350 К) были выполнены в [6,7]. Анализ термоэлектрической эффективности Z в этих работах проводился на основе данных, полученных при исследовании подвижности µ0, теплопроводности кристаллической решетки к_L и эффективной массы плотности состояний m/m_0 в зависимости от температуры, состава и концентрации носителей заряда в твердых растворах $n-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$. Характер зависимостей эффективной массы *m/m*₀ определяется изменениями отношений компонентов тензора эффективных масс *m_i/m_i* и связан с различной анизотропией поверхности постоянной энергии твердых растворов. На величину *m/m*⁰ также оказывает влияние изменение процесса рассеяния носителей заряда, поскольку рассматриваемые материалы с низкими концентрациями электронов относятся к той области, где начинается заполнение дополнительной зоны в зоне проводимости твердых растворов на основе Bi₂Te₃ [8], в то время как при высоких концентрациях дополнительная зона уже заполнена. Поэтому исследование гальваномагнитных свойств, позволяющее получить информацию о параметрах поверхности постоянной энергии, представляет интерес для выяснения причин, способствующих повышению термоэлектрической эффективности твердых растворов n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z.

1. Многодолинная модель энергетического спектра

Рассматриваемые материалы, как и все твердые растворы на основе Bi_2Te_3 , характеризуются анизотропией кинетических эффектов вследствие особенностей кристаллической структуры и химических связей. Зонная структура таких соединений описывается в рамках многодолинной модели энергетического спектра, в которой компоненты тензоров сопротивления ρ_{ijkl} для случая изотропного рассеяния носителей заряда связаны с параметрами *и*, *v*, *w*, определяющими форму эллипсоидов постоянной энергии [9,10],

$$\frac{\rho_{312}}{\rho_{123}} = \frac{(w+uv)(1+u)}{4uv},\tag{1}$$

$$\frac{\rho_{11}\rho_{1133}}{\rho_{123}^2} = \frac{1+u^2}{4u\beta_d} - 1,$$
(2)

$$\frac{\rho_{11}\rho_{1122}}{\rho_{123}^2} = \frac{(3w + uw + uw + 3u^2v)(1+u)}{16\beta_d u^2} - \frac{2v}{a^2(1+u)},$$
(3)

$$\rho_{11}\rho_{1111}/\rho_{123}^2 = (w - 5uw + 3uv + u^2v)(1 + u/16\beta_d u^2),$$
(4)

где $a = \rho_{312}/\rho_{123}$ и $b = \rho_{123}^2/\rho_{11}$.

Параметр вырождения β_d , определяющий механизм рассеяния носителей заряда, имеет вид: $\beta_d = I_1^2/I_0I_2$, где I_n

$$I_n = \left(\frac{e}{m}\right)^n \frac{e^2}{3\pi^2 m} \left(\frac{2m}{\pi^2}\right)^{3/2} \frac{1}{|\alpha_{ij}|^{1/2}} \int\limits_0^\infty \tau^{n+1} \varepsilon^{3/2} \frac{\partial f_0}{\partial \varepsilon} d\varepsilon.$$
(5)

Параметры *u*, *v*, *w* связаны с компонентами тензора обратных эффективных масс: $u = \alpha_{11}/\alpha_{22}$, $v = \alpha_{33}/\alpha_{22}$, $w = v - (\alpha_{23}/\alpha_{22})^2$. Тензор обратных эффективных масс определен по отношению к кристаллографическим осям в виде

$$\overset{\leftrightarrow}{\alpha} = m_0 \overset{\leftrightarrow}{T} (\theta) \overset{\leftrightarrow}{m}^{-1} \vec{T}^{-1} (\theta),$$
 (6)

где

$$\operatorname{tg} 2\theta = \frac{2\sqrt{v-w}}{v-1}.$$
(7)

 θ — угол наклона главных осей эллипсоидов постоянной энергии по отношению к кристаллографическим осям второго порядка (бинарным осям). Отношения компонентов тензоров эффективных масс m_i/m_j с учетом (6), (7) могут быть представлены в удобном для расчета виде

$$\frac{m_1}{m_3} = \frac{w/u}{vs^2 + 2cs\sqrt{v - w} + c^2},$$
(8)

$$\frac{m_3}{m_2} = \frac{s^2 v + 2cs\sqrt{v - w} + c^2}{s^2 - 2cs\sqrt{v - w} + c^2v},$$
(9)

где $s = \sin \theta$, $c = \cos \theta$.

Эксперимент и обсуждение результатов

2.1. Гальваномагнитные свойства. В работе проведены исследовния гальваномагнитных коэффициентов (ГМК) (компонентов тензоров магнетосопротивления ρ_{iikl} и коэффициента Холла ρ_{iik}) в твердых растворах *n*-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z ($0 \le x \le 0.4$, 0.06 < y < 0.15, 0 < z < 0.15) при различных концентрациях носителей заряда. Слитки твердых растворов были получены методом направленной кристаллизации и состояли из монокристаллических зерен, вытянутых вдоль оси роста. Гальваномагнитные свойства измерены на монокристаллических образцах, вырезанных из таких зерен, в магнитных полях напряженностью *H* до 28 kOe. Измерения гальваномагнитных коэффициентов проводились при температурах 77 и 300 К на образцах 1-4 (табл. 1).

Таблица 1. Электропроводность σ , коэффициент Зеебека α при 290 и 77 К в твердых растворах n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z образцов 1–4

N₂	x, y, z	Τ,Κ	$\sigma, \ \Omega \ {\rm cm}^{-1}$	$\alpha, \mu V K^{-1}$
1	0.08, 0.06, 0.06	290	455	280
		77	4170	137
2	0.08, 0.06, 0.06	290	1045	186
		77	5020	65
3	0.4, 0.06, 0	290	375	278
		77	2000	135
4	0.2, 0.15, 0.15	290	515	243
		77	1570	110

На рис. 1 и 2 представлены зависимости компонентов тензоров магнетосопротивления ρ_{ijkl} и коэффициента Холла ρ_{ijk} , измеренные при различных направлениях векторов напряженности электрического и магнитного полей, в зависимости от величины H в интервале 10–28 kOe для образцов 1–4 (табл. 1). Зависимости $\rho_{ijkl}(H)$ ослабевают с ростом H и температуры для всех исследованных образцов 1–4 (табл. 1), большее ослабление $\rho_{ijkl}(H)$ наблюдалось для коэффициентов ρ_{1122} и ρ_{1111} (рис. 1).

При уменьшении коэффициента термоэдс, т.е. увеличении концентрации электронов в твердом растворе (табл. 1), наблюдается снижение величин ρ_{iikl} и ослабление зависимости $\rho_{iikl}(H)$ (кривые 1,2 на рис. 1, b, c; кривые 5, 6, 3, 4 и 7, 8 на рис. 1). Исключение составляют зависимости $\rho_{1133}(H)$ при комнатной температуре для образцов 1 и 2 (табл. 1) одинакового состава (кривые 1, 2 на рис. 1, a). Возможно, это связано с неоднородностями состава или несовершенством структуры образца (например, разориентацией плоскостей спайности), которые могут оказывать влияние на величину магнетосопротивления в образце 2 с большей концентрацией электронов по сравнению с образцом 1. Рост количества замещенных атомов в твердом растворе (образец 4 в табл. 1; кривые 4, 8 на рис. 1) также приводит к большему ослаблению зависимости $\rho_{iikl}(H)$.

На рис. 2 представлены зависимости компонентов тензора коэффициента Холла ρ_{123} и ρ_{312} от H для образцов 1–4 при 290 и 77 К. Для коэффициентов ρ_{ijk} также наблюдаются зависимости от величины магнитного поля для всего исследованного интервала магнитных полей, как и для коэффициентов ρ_{ijkl} . На зависимости ρ_{ijk} в образцах 1–4 различного состава и концентрации электронов оказывают влияние изменения механизма рассеяния носителей заряда от магнитного поля для различной ориентации образца при измерении ГМК. Так, изменение вида зависимостей ρ_{ijk} при 77 и 290 К можно связать с влиянием анизотропии рассеяния электронов при низких температурах в твердых растворах $n-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Sey}S_z$ по аналогии с составами $n-\text{Bi}_2\text{Te}_{3-y}\text{Sey}$ [11].

В области магнитных полей < 10 kOe зависимости ГМК от H в твердых растворах n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z более резкие и похожи на аналогичные зависимости, которые наблюдаются в сплавах Bi_{1-x}Sb_x [12], однако в рассматриваемых материалах изменения ГМК в магнитном поле более слабые. Характер магнитополевых зависимостей ГМК в кристаллах Bi–Sb обусловлен сложной зонной структурой и участием в явлениях переноса электронов и дырок L-экстремумов, а также дырок T-экстремумов [12,13]. Такое объяснение магнитополевых зависимостей ГМК может быть применимо и для материалов на основе Bi₂Te₃ [14].

2.2. Параметры эллипсоидов постоянной энергии. Параметры, определяющие форму эллипсоидов постоянной энергии (u, v, w) и процессы рассеяния (β_d) (табл. 2), были определены в результате решения

Рис. 1. Зависимости компонентов тензоров магнетосопротивления ρ_{1133} (*a*), ρ_{1122} (*b*) и ρ_{1111} (*c*) в твердых растворах *n*-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z при 290 (*1*-4) и 77 К (5-8). *1*, 5 и 2, 6 — Bi_{1.92}Sb_{0.08}Te_{2.88}Se_{0.06}S_{0.06}, 3, 7 — Bi_{1.6}Sb_{0.4}Te_{2.94}Se_{0.06}, 4, 8 — Bi_{1.8}Sb_{0.2}Te_{2.7}Se_{0.15}S_{0.15}. Для кривых 5 и 7 на части *а* масштаб справа.

Рис. 2. Зависимости компонентов тензора коэффициента Холла ρ_{123} (1-4) и ρ_{312} (5-8) в твердых растворах *n*-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z при 290 (*a*) и 77 K (*b*). 1, 5 и 2, 6 — Bi_{1.92}Sb_{0.08}Te_{2.88}Se_{0.06}S_{0.06}, 3, 7 — Bi_{1.6}Sb_{0.4}Te_{2.94}Se_{0.06}, 4, 8 — Bi_{1.8}Sb_{0.2}Te_{2.7}Se_{0.15}S_{0.15}.

системы уравнений (1)–(4) из данных по ГМК, измеренным в магнитном поле напряженностью H = 25 kOe.

Расчеты проводились методом минимизации целевой функции χ (*u*, *v*, *w*, β_d), определяющей качество оптимизации варьируемых параметров, как и для твердых растворов *p*-Bi_{2-x}Sb_xTe_{3-y}Se_y в [15]. Из решения системы уравнений (1)–(4) следует, что целевая функция χ имеет единственный минимум, т.е. система уравнений (1)–(4) имеет единственное решение.

Величины параметров поверхности постоянной энергии u, v, w и β_d , представленные в табл. 2, указывают на изменение формы эллипсоидных поверхностей и степени вырождения в зависимости от состава, температуры и концентрации электронов в твердых растворах. Эти параметры были использованы для расчета отношений компонентов тензора эффективных масс m_i/m_j и угла θ в соответствии с выражениями (6)–(9).

В табл. 2 приведены отношения m_i/m_j , главные компоненты тензора эффективных масс m_1 , m_2 , m_3 и угол θ в образцах 1–4 при 290 и 77 К. Величины m_1 , m_2 , m_3 были определены в соответствии с выражением, применимым для изотропного рассеяния носителей заряда: $m = p^{2/3}(m_1, m_2, m_3)^{1/3}$, где p — число долин, m — усредненная эффективная масса, определенная при исследовании термоэлектрических свойств в твердых растворах n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z [7]. Компоненты m_1 , m_2 , m_3 определяют кривизну эллипсоидов постоянной энергии и характеризуют различное сжатие по отно-

$n-\operatorname{Bi}_{2-x}\operatorname{Sb}_x\operatorname{Te}_{3-y-z}\operatorname{Se}_y\operatorname{S}_z$													
N₂	Т,К	и	υ	w	eta_d	m_1/m_3	m_3/m_2	m_1/m_2	$ heta^0$	m/m_0	m_1	m_3	m_2
1	290	2.22	0.9	0.46	0.25	0.12	6.7	0.75	35	0.77	0.035	0.31	0.045
	77	1.95	0.86	0.3	0.44	0.1	8.8	0.8	37	0.62	0.021	0.23	0.027
2	290	3.25	1.6	1.43	0.22	0.1	4.0	0.435	44	1.55	0.12	1.07	0.27
	77	1.33	1.65	0.82	0.37	0.075	2.75	0.2	42	1.6	0.17	2.39	0.87
3	290	1.22	0.55	0.05	0.25	0.3	2.3	0.65	34.5	0.8	0.1	0.37	0.16
	77	4.0	0.5	1.5	0.77	0.18	4.8	0.85	35.5	0.7	0.05	0.28	0.06
4	290	0.27	0.93	0.2	0.23	0.1	2.2	0.25	41	0.85	0.12	1.03	0.47
	77	14.6	0.6	3.12	0.19	0.2	1.5	0.3	41	0.83	0.16	0.84	0.56

Таблица 2. Параметры эллипсоидов постоянной энергии в твердых растворах n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z в образцах 1-4

Рис. 3. Схематическое изображение эллипсоидов постоянной энергии в n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z. Образец 1 — a, образец 4 — b.

шению к главным осям (X', Y', Z'), которое зависит от концентрации носителей заряда, состава твердого раствора и температуры.

На рис. З приведено схематическое изображение эллипсоидов постоянной энергии для твердых растворов $n-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$ с различными составами и концентрациями электронов (образцы 1 и 4).

В работе используется система координат [10], в соответствии с которой эллипсоиды центрированы в плоскости отражения (*ZY*). Кристаллографическая ось *Z* направлена по *C*₃, параллельно оси роста. Ось *X* направлена по бинарной, а ось *Y* — по биссекторной кристаллографическим осям. Ось эллипсоида *Y'* повернута на угол θ по отношению к биссекторной оси *Y* в плоскости (*ZY*). Поворот оси *Y'* в плоскости (*ZY*) происходит вокруг бинарной оси *X* (рис. 3).

Для образца 1 с низкой концентрацией носителей заряда и малым количеством замещенных атомов в подрешетках теллурида висмута (x = 0.08, y = z = 0.06) компоненты эффективных масс m_1 и m_2 близки по величине, т. е. эллипсоиды близки к эллипсоидам вращения вокруг оси X' (рис. 3, *a*).

С увеличением количества замещенных атомов (x = 0.4, y = 0.06, z = 0) при низкой концентрации носителей (образец 3) компоненты тензора эффективных масс возрастают, и эллипсоиды сильнее вытянуты по оси Z', оставаясь сжатыми по X' и Y', причем $m_2 > m_1$. Полученная ориентация эллипсоидов постоянной энергии, когда эллипсоиды вытянуты по оси Z, совпадает с данными для n-Bi₂Te₃, полученными в слабых [10] и сильных магнитных полях [16].

Рост концентрации носителей в составе при x = 0.08, y = z = 0.06 (образец 2) приводит к возрастанию анизотропии поверхности постоянной энергии: эллипсоиды значительно сильнее вытянуты по оси Z' по сравнению с образцами 1 и 2. Наибольшее сжатие наблюдается по оси X'.

C ростом концентрации носителей и количества замещенных атомов (${\rm Bi} \rightarrow {\rm Sb}$) в твердом растворе (образец 4) различие между компонентами m_2 и m_3 уменьшается, вследствие чего поверхности постоянной энергии приобретают форму чечевицы (рис. 3, *b*).

Образцам 1 и 3 (табл. 1) соответствуют высокие значения коэффициента Зеебека и низкие концентрации электронов, близкие к концентрациям, при которых происходит заполнение дополнительной зоны в зоне проводимости твердых растворов на основе Bi₂Te₃ [7,8].

Для этих образцов характерна меньшая анизотропия поверхности постоянной энергии по сравнению с образцом 2 с более высокой концентрацией электронов, при которых дополнительная зона заполнена. Изменение угла θ при сравнении образцов с низкими и высокими концентрациями носителей также можно связать с заполнением дополнительной зоны в зоне проводимости в твердых растворах (табл. 2).

Таким образом, полученные изменения параметров эллипсоидов m_1, m_2, m_3 указывают на изменение формы эллипсоидальных поверхностей постоянной энергии с ростом концентрации электронов и количества замещенных атомов (Sb \rightarrow Bi и Se, S \rightarrow Te) в твердых растворах. 2.3. Термоэлектрические свойства. Кроме исследований ГМК в твердых растворах $n-Bi_{2-x}Sb_{x}Te_{3-y-z}Se_{y}S_{z}$ были также проведены измерения термоэлектрических свойств а, о и теплопроводности к на образцах с оптимальными составами и концентрациями электронов для низкотемпературной области (80 < T < 200 K) и интервала температур (300 < T < 350 K). В результате исследования термоэлектрических свойств были получены экспериментальные зависимости эффективности Z от температуры, состава и коэффициента Зеебека в твердых растворах $n-\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$, оптимизированных для области низких температур (до 200 К) (рис. 4) и в интервале 300-350 К (рис. 5).

Характер изменения термоэлектрической эффективности Z в зависимости от температуры, концентра-

Рис. 4. Зависимости термоэлектрической эффективности Z от температуры, состава и коэффициента Зеебека в твердых растворах n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z, оптимизированных для области температур < 200 K.

Рис. 5. Зависимости термоэлектрической эффективности *Z* от температуры, состава и коэффициента Зеебека в твердых растворах n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z, оптимизированных для интервала температур 300–350 К.

ции носителей заряда и состава твердых растворов *n*-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z рассматривался в [6,7] с помощью анализа подвижности μ_0 , эффективной массы плотности состояний m/m_0 и теплопроводности кристаллической решетки κ_L .

При низких температрах увеличение эффективности Z наблюдалось в составах с малым количеством замещенных атомов (x = 0.08 и y = z = 0.06) в образцах с низкими концентрациями носителей заряда, которым соответствуют величины коэффициента Зеебека около (-285)–(-290) μ V K⁻¹ при комнатной температуре.

Значения Z в твердых растворах *n*-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z близки к величинам, полученным в составах *n*-Bi₂Te_{3-y}Se_y [11,17] в интервале температур 80–150 К, и достигают $Z = 2 \cdot 10^{-3}$ К⁻¹ при 80 К для оптимальных значений α . В образце с низкой концентрацией электронов, но с большим количеством замещенных атомов (x = 0.16 и y = z = 0.06) термоэлектрическая эффективность уменьшается (провал на поверхности (Z, α , T), изображенной на рис. 4). С уменьшением α эффективность Z в области низких температур снижается.

В работе [7] было показано, что такое поведение термоэлектрической эффективности в твердых растворах n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z при низких температурах определяется высокой подвижностью носителей (μ_0), что связано с низкой концентрацией электронов и малым количеством замещенных атомов в твердом растворе. К росту эффективности приводит также уменьшение решеточной теплопроводности κ_L и ослабление ее температурной зависимости $\kappa_L(T)$ вследствие бо́льших искажений кристаллической решетки Bi₂Te₃ при введении атомов S по сравнению с замещениями Se \rightarrow Te, что связано с различием ковалентных радиусов атомов S и Se [3,5,6].

Как следует из рис. 5, оптимальными для интервала температур 300-350 К являются составы, в которых

количество замещенных атомов возрастает от x = 0.12, y = z = 0.09 до x = 0.16, y = z = 0.12. В этих составах величины коэффициента Зеебека при комнатной температуре находятся в интервале $230-190 \,\mu \, \mathrm{V \, K^{-1}}$.

На рис. 6 приведены температурные зависимости термоэлектрической эффективности Z для твердых растворов $n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ с термоэлектрическими свойствами, близкими к свойствам образцов, на которых были проведены измерения ГМК. В образце с низкой концентрацией электронов при замещениях атомов Sb \rightarrow Bi и Se + S \rightarrow Te, когда x = 0.08 и y = z = 0.06, термоэлектрическая эффективность возрастает в области низких температур 80-220 К (кривая 1 на рис. 6) по сравнению с образцом с большим количеством замещенных атомов (кривая 2 на рис. 6). Увеличение количества замешенных атомов при низких концентрациях носителей заряда в твердом растворе приводит к снижению величины Z из-за снижения подвижности, которое происходит с ростом числа рассеивающих центров, несмотря на увеличение эффективной массы [7] (кривая 2 на рис. 6).

В образцах с высокими концентрациями электронов увеличение Z при температурах вблизи и выше комнатной (до 350 K) наблюдалось в составах с замещениями атомов в больших количествах, чем в составах, оптимальных для низких температур (кривые 3 и 4 на рис. 6). При температуре 350 K в этих образцах произведение $ZT \approx 1$, что указывает на высокую эффективность рассматриваемых твердых растворов. На рост эффективности образцов с оптимальными свойствми для интервала температур 300-350 K оказывает влияние увеличение эффективной массы m/m_0 наряду с низкой решеточной теплопроводностью κ_L [7].

Рис. 6. Температурные зависимости термоэлектрической эффективности Z в твердых растворах $\text{Bi}_{2-x}\text{Sb}_x\text{Te}_{3-y-z}\text{Se}_y\text{S}_z$. $n, 10^{19} \text{ cm}^{-3}$: (x = 0.08, y = z = 0.06) 1 - 0.4, (x = 0.2, y = z = 0.06) 2 - 0.5, (x = 0.16, y = z = 0.12) 3 - 2.8, (x = 0.12, y = z = 0.09) 4 - 2.7.

И

430 (1958). [10] L.P. Caywood, G.R. Miller. Phys. Rev. 2, 8, 3210 (1970).

- [11] В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов. ФТТ 41, 2, 187 (1999).
- [12] В.М. Грабов, В.А. Куликов, А.С. Парахин, В.И. Бочегов, Т.В. Дензанова. Сб. докл. VIII Межгосударственного семинара "Термоэлектрики и их применения". Санкт-Петербург, 110 (2002).
- [13] Г.А. Иванов, В.М. Грабов. ФТП 29, 5, 1040 (1995).
- [14] Е.В. Олешко, В.Н. Королышин. ФТТ 27, 9, 2856 (1985).
- [15] Л.Н. Лукьянова, В.А. Кутасов, В.В. Попов, П.П. Константинов. ФТТ 46, 8, 1366 (2004).
- 16 R.B. Mallnson, J.A. Rayne, R.W. Ure. Phys. Lett. 24a, 713 (1967).
- [17] В.А. Кутасов, Л.Н. Лукьянова, П.П. Константинов. ФТТ 42, 11, 1985 (2000).

Результаты ГМК термоэлектрической эффективности твердых растворов $n-Bi_{2-x}Sb_{x}Te_{3-y-z}Se_{y}S_{z}$ позволяют оценить влияние изменений параметров эллипсоидов постоянной энергии на величину Z. Увеличение эффективности Z в области низких температур (до 200 К) наблюдается в составах с малым замещением атомов (x = 0.08 и y = z = 0.06) при низких концентрациях носителей (кривая 1 на рис. 6). В образце такого же состава (табл. 2, № 1) обнаружена более слабая анизотропия поверхности постоянной энергии по сравнению с другими исследованными образцами и эллипсоиды постоянной энергии близки к эллипсоидам вращения вокруг оси Z'.

исследований

В интервале температур 300-350 К эффективность Z возрастает при оптимальных концентрациях электронов с увеличением количества замещенных атомов в твердых растворах (x = 0.16, y = z = 0.12 и x = 0.12, y = z = 0.09) (кривые 3 и 4 на рис. 6) по сравнению с составами, эффективными при низких температурах (кривые 1 и 2 на рис. 6).

Рост Z с увеличением числа замещенных атомов и концентрации электронов в твердых растворах сопровождается вытягиванием эллипсоидов постоянной энергии по оси Z и характеризуется изменением формы поверхности постоянной энергии.

Таким образом, в результате исследований гальваномагнитных и термоэлектрических свойств показано, что изменение анизотропии поверхности постоянной энергии оказывает влияние на термоэлектрическую эффективность в твердых растворах $n-Bi_{2-x}Sb_xTe_{3-y-z}Se_yS_z$ в зависимости от концентрации носителей заряда, состава и температуры. Установленная зависимость между величиной термоэлектрической эффективности Z и анизотропией поверхности постоянной энергии в твердых растворах определяется изменением формы и ориентации главных компонентов тензора эффективных масс m_1 , m_2, m_3 и угла поворота θ .

Список литературы

- [1] Н.Х. Абрикосов, Л.Д. Иванова, Т.Е. Свечникова, Г.А. Иванов, А.С. Парахин, В.К. Воров. Изв. АН СССР. Неорган. материалы 25, 5, 745 (1989).
- [2] В.А. Семенюк, Л.Д. Иванова, Т.Е. Свечникова. Изв. АН СССР. Неорган. материалы 31, 1, 32 (1995).
- [3] В.А. Кутасов, Л.Н. Лукьянова. ФТТ **38**, *8*, 2366 (1996).
- [4] Г.Т. Алексеева, М.В. Ведерников, П.П. Константинов, В.А. Кутасов. ФТП **30**, *5*, 918 (1996).
- [5] M.H. Ettenberg, W.A. Jesser, F.D. Rosi. Proc. XV Int. Conf. on Thermoelectrics. Passadena, CA, USA (1996). P. 52.
- [6] L.N. Luk'yanova, V.A. Kutasov, P.P. Konstantinov. Proc. of the XIX Int. Conf. on Thermoelectrics. Cardiff, UC (2000). P. 391.
- [7] Л.Н. Лукьянова, В.А. Кутасов, П.П. Константинов. Сб. докл. IX Межгосударственного семинара "Термоэлектрики и их применения". Санкт-Петербург 68 (2004).
- [8] H. Köhler, W. Haigis, A. Middendorf. Phys. Stat. Sol. (b) 78, 2,637 (1976).