05;06;12

Перенос носителей заряда в базе диода с локальной неоднородностью рекомбинационных свойств

© А.М. Иванов, Н.Б. Строкан, В.Б. Шуман

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург

Поступило в Редакцию 5 февраля 1997 г.

В базе p^+ —*n*-диода создана неоднородность рекомбинационных свойств в виде слоя радиационных дефектов. Прослежено и объяснено рекомбинацией в слое изменение эффективного времени жизни дырок, измеряемого методом инъекции-экстракции.

В настоящем сообщении рассматривается p^+ -*n*-диод, смещенный в обратном направлении. Наблюдается перенос в базе диода заряда неравновесных дырок, инжектированных каким-либо образом. Например, предварительным пропусканием прямого тока либо за счет импульсной ионизации ядерными частицами. Исследуется вопрос, какой заряд перетечет через плоскость p^+ -*n*-перехода в случае, когда в базе локально нарушена однородность рекомбинационных свойств. В наших опытах неоднородность геометрически представляет собой слой некоторой ширины δ .

1. Упомянутый выше процесс переключения диода из прямого в обратное направление детально исследовался в литературе (см., например, монографию [1]). Получила описание форма обратного тока с характерной "полочкой" (см. фрагмент рис. 1). Для связи длительности последней T со временем жизни τ выведена формула

. ...

$$\operatorname{erf}(T/\tau)^{1/2} = I_{\text{for}}/(I_{\text{for}} + I_{\text{rev}}), \tag{1}$$

где $I_{\rm for}$ и $I_{\rm rev}$ — токи прямой и обратной фазы соответственно. Полученная еще в 60-х годах зависимость (1) лежит в основе ставшего классическим метода определения τ в p^+ -*n*-структурах.

Поскольку величина $T(\tau)$ определяет инерционность восстановления сопротивления обратной ветви диода, предпринимались меры по снижению значений τ . Основные исследования этого направления [2,3]

79

связаны с однородным уменьшением τ в базе диода путем введения глубоких уровней, в частности с проникающими β - и γ -излучениями. Альтернативой однородному снижению τ является облучение коротко-пробежными частицами — протонами, α -частицами. Так, для α -частиц естественного распада с энергией ≈ 5 МэВ можно считать, что все первично созданные дефекты сосредоточены в узком слое в конце пробега частицы. Такой результат получается при математическом моделировании торможения α -частицы для первично созданных вакансий и междоузельных атомов [4,5].

В ходе дальнейшей миграции дефектов и образования комплексов с примесями первоначальное распределение меняется незначительно. Это было установлено непосредственным определением профиля дефектов методом нестационарной емкостной спектроскопии глубоких уровней (DLTS) [5,6]. Соответственно сказанному вводимые центры рекомбинации в случае облучения коллимированным пучком оказываются расположенными в узком сравнительно с пробегом частицы слое δ , т.е. сугубо неравномерно по объему базы.

В наших опытах использовались α -частицы с энергией 5.25 МэВ с пробегом R = 25.7 мкм. Облучению подвергались диоды из Si, имевшие *n*-базу толщиной 350 мкм, с концентрацией фосфора $1.2 \cdot 10^{14}$ см⁻³ и диффузионный p^+ -слой толщиной 1.7 мкм, с поверхностной концентрацией бора $\cong 10^{20}$ см⁻³. Исходное время жизни в диодах $\tau_0 \cong 20$ мкс. Все опыты происходили при комнатной температуре. Облучение велось с малых доз, причем контроль дозы осуществлялся самой p^+ -*n*-структурой. Для этого диод использовался в режиме детектора. Наблюдалось поведение времени жизни τ , измеряемого по указанному выше методу (см. формулу (1)). В измерениях использовались плотности прямого тока $\cong 300$ мА/см².

Как принято в опытах подобного рода, рассматривается величина $1/\tau = 1/\tau_{\rm изм} - 1/\tau_0$, где $\tau_{\rm изм}$ и τ_0 — измеряемое и начальное значения времени жизни. В случае облучения электронами и γ -квантами величина $1/\tau$ пропорциональна дозе Ф. Однако наблюдаемая нами зависимость имела сильную нелинейность, а далее вышла на насыщение (рис. 1). Анализ измерения $1/\tau$ показывает, что в интервале доз α -частиц $\Phi = 5 \cdot 10^8 - 10^{10}$ см⁻² ход $1/\tau(\Phi)$ близок к квадратичной зависимости.

Для объяснения такого поведения $1/\tau$ логично сделать следующее предположение. В условиях неоднородного введения дефектов по длительности "полочки" фазы обратного тока определяется не сама

Рис. 1. Обратная величина времени жизни дырок в базе диода в зависимости от дозы облучения α -частицами. Измерения методом инъекции-экстракции (см. формулу (1)). Плотность прямого тока 0.3 А/см². Фрагмент — типичная форма тока в цепи диода при переключении из прямого ($I_{\rm for}$) в обратное ($I_{\rm rev}$) направления.

величина τ в базе, а ее эффективное значение. Напомним, что формула (1) соответствует случаю протяженной базы сравнительно с длиной диффузионного смещения $L_D = (D\tau)^{1/2}$, где коэффициент диффузии дырок в Si $D = 11.6 \text{ см}^2/\text{с}$. Для начальных значений $\tau_0 \cong 20$ мкс имеем $L_D \approx 150$ мкм и условие вывода формулы (1) выполняется удовлетворительно. По мере введения дефектов в базе на глубине $\cong 25$ мкм начинает выстраиваться слой с пониженным τ . Каждая α -частица создает область нарушений в виде конуса, расширяющегося к концу пробега. Площадь его основания составляет по порядку величины 10^{-8} см², таким образом дефекты отдельных частиц начинают перекрываться при дозах $\geq 10^8$ см⁻². Можно полагать, что в области используемых нами доз $\Phi \geq 2 \cdot 10^9$ см⁻² дефекты образуют слой со

средней плотностью $M = k \cdot \Phi/\delta$, где k — число пар Френкеля на одну α -частицу, избежавших рекомбинации в треке и образовавших в слое глубокий центр; δ — ширина слоя. Принимая k = 2 [7], $\delta = 5$ [5] мкм, имеем для дозы $2.5 \cdot 10^9$ см⁻² $M = 1 \cdot 10^{13}$ см⁻³.

Слой с указанными характеристиками нарушает условия исходной модели, так как вблизи $p^+ - n$ -перехода на расстоянии $W \ll L_D$ создается сток для дырок. В пределе слой δ можно рассматривать как плоскость со скоростью поверхностной рекомбинации $S \to \infty$. Последнее сводит ситуацию к случаю "тонкого" диода с тыловым контактом рекомбинационного типа. Решение такой задачи в литературе имеется [8]. В [1] приведена приближенная формула, которая связывает длительность полочки и глубину расположения слоя W:

$$T \cong \ln[0.8 \cdot (1 + I_{\rm for}/I_{\rm rev})] \cdot W^2/(2.5 \cdot D).$$
(2)

Для наших измерений это означает, что $1/\tau = f(\Phi)$ должна выйти на насыщение. Это будет соответствовать моменту падения τ в слое δ до уровня, формально описываемого $S = \infty$.

Действительно, в области доз $\Phi \approx 2 \cdot 10^{10}$ см⁻² отчетливо наблюдалось насыщение (рис. 1). При этом величину τ в слое можно оценить как $\tau = (V_{\rm th} \cdot \sigma \cdot M)^{-1}$. Принимая для тепловой скорости $V_{\rm th} = 3 \cdot 10^7$ см/с и сечение захвата $\sigma = 3 \cdot 10^{-15}$ см², получаем $\tau \approx 1.4 \cdot 10^{-7}$ с. Отличие на два порядка от начального значения (которое сохраняется в основной неповрежденной части базы) оказывается достаточным для интенсивного стока дырок в нарушенный слой. Это подтверждается и количественной оценкой. Так, подставив в выражение (2) длительность полочки T = 0.2 мкс, получаем W = 22.3 мкм. Это значение хорошо согласуется с координатой центра слоя $R - \delta/2 = 25.7 - 2.5 = 23.2$ мкм.

2. Нам представлялось необходимым проверить, не связана ли сильная зависимость $1/\tau(\Phi)$ с особенностями возникшего спектра дефектов. Имеются в виду концентрация и сечения захвата образовавшихся центров. С этой целью были выполнены DLTS измерения. На рис. 2 представлены спектры DLTS образца. облученного дозой α -частиц $1.4 \cdot 10^9 \text{ см}^{-2}$. В верхней половине запрещенной зоны в общей сложности наблюдаются четыре уровня. Во-первых, дефект E1-A-центр ($E_c - 0.18$ эВ, $\sigma_n = 2 \cdot 10^{-14} \text{ см}^2$). Далее уровень E2 ($E_c - 0.22$ эВ, $\sigma_n = 2 \cdot 10^{-16} \text{ см}^2$), принадлежащий двухкратно отрицательно заряженному состоянию дивакансии. Затем, пик E3 ($E_c - 0.29$ эВ, $\sigma_n = 2 \cdot 10^{-17} \text{ см}^2$), обусловленный парой междоузельный углерод-фосфор. За пик E4 ($E_c - 0.4$ эВ,

Рис. 2. Спектры DLTS образца, облученного дозой α -частиц $\Phi = 1.4 \cdot 10^9$: a — без инжекции, b — с инжекцией неосновных носителей заряда.

 $\sigma_n = 2 \cdot 10^{-16} \text{ см}^2$) ответственны по крайней мере два центра: Е-центр (вакансия-фосфор) и дивакансия (однократно отрицательно заряженное состояние). В нижней половине запрещенной зоны, исследованной в режиме с инжекцией дырок, отчетливо проявляется только центр $C_i - O_i$ междоузельный углерод-междоузельный кислород (H2 = E_v + 0.4 эB, $\sigma_p = 3 \cdot 10^{-14} \text{ см}^2$).

Наблюдавшиеся уровни типичны для *n*-Si. Отметим незначительное присутствие центра H1 (E_v + 0.33 эB, σ_p = 9 · 10⁻¹⁴ см² [9]),

обусловленного одиночным междоузельным углеродом и характерного для чистого Si. Это можно объяснить связыванием C_i с O_i уже за время облучения, которое выполнялось при комнатной температуре, когда миграция C_i высока. Вторым фактором может являться высокая концентрация кислорода в образце [10].

В целом можно сказать, что система уровней дефектов подобна наблюдаемой ранее при облучении α-частицами *n*-Si [9,11]. Картина восстановления времени жизни при изохронном отжиге (в течение часа) показала, что наибольший рост времени жизни происходит при температуре 350°С, что, согласно [9,12], соответствует основному отжигу дефектов, образующих разрушенный слой.

3. Выше мы отмечали, что геометрия расположения дефектов в виде слоя следует из моделирования кинематики торможения α -частиц, а также из эксперимента по профилю возникающих центров методом DLTS [5,6]. Подтвердим указанную конфигурацию дефектов для наших образцов независимо — в опыте по переносу заряда от одиночных α -частиц. При этом p^+ -*n*-структура используется как детектор, т.е. смещается в обратном направлении. Изменяя смещение, возможно управлять величиной области поля p^+ -*n*-диода (*d*) — "рабочей зоной" детектора.

Монохроматические частицы вносят импульс калиброванного по величине заряда электронно-дырочных пар, который регистрируется стандартной для ядерной спектрометрии аппаратурой. Конечной характеристикой является форма спектра амплитуд сигналов детектора.

Выберем значение энергии α -частиц так, чтобы их пробег R укладывался до слоя с низким временем жизни (координаты W, см. фрагмент рис. 3). Выделим два случая в соотношении рабочей зоны d и W. В первом область поля также не достигает W, т.е. $d_1 < W$. Во втором, напротив, нарушенный слой захвачен рабочей зоной и $d_2 > W$.

В условиях d < W поступающие из области поля электроны в базе являются основными носителями. Поэтому в силу максвелловской релаксации равное число электронов будет выведено в n^+ -контакт. В итоге дефекты в слое σ на сигнале не скажутся.

В случае d > W электронам из трека α -частиц приходится дрейфовать через слой δ как пакету неравновесных носителей. При этом они будут подвергаться захвату, что должно проявиться прежде всего в размытии спектральной линии. Ее ширина весьма чувствительна

Рис. 3. Полуширина спектральной линии $p^+ - n$ -диода в зависимости от протяженности области поля. Диод облучен α -частицами дозой $1.7 \cdot 10^{10}$ см⁻² и используется как детектор одиночных α -частиц с энергией 4.5 МэВ (пробег R = 21 мкм). Фрагмент — геометрия опыта: W — положение слоя дефектов. Случаи $d_1 < W$ и $d_2 > W$ пояснены в тексте.

к неполному переносу заряда, так как определяется произведением величины захвата и фактором его неоднородности по объему [13].

На рис. 3 приведен ход полуширины линии (FWHM) в функции протяженности области поля. Длина трека используемых α -частиц составляла R = 21 мкм. Пока трек полностью не укладывается в области поля, линия широка, что связано с вкладом диффузионного переноса для части трека, выступающей в базу. С ростом d линия сужается и при $d \cong R$ наблюдаются минимальные значения. Далее, когда вовлекается в рабочую зону слой δ , происходит приблизительно двухкратное возрастание ширины линии.

Как следует из приведенных данных, неоднородность рекомбинационных свойств в геометрии слоя существенно влияет как при диффузионном, так и при дрейфовом переносе носителей. В этом случае при определении времени жизни носителей методикой инжекции-экстракции введение уже небольшого сравнительно с легирующей примесью количества дефектов нарушает корректность основной формулы.

Авторы выражают благодарность участникам научного семинара лаборатории "Неравновесных процессов в полупроводниках" ФТИ им. А.Ф. Иоффе за полезную дискуссию.

Список литературы

- [1] Носов Ю.Н. Физические основы работы полупроводникового диода в импульсном режиме. М.: Наука, 1968. С. 263.
- [2] Вавилов В.С., Горин Б.М., Данилин Н.С., Кив А.Е., Нуров Ю.Л., Шаховцов В.И. Радиационные методы в твердотельной электронике. М.: Радио и связь, 1990. С. 263.
- [3] Емцев В.В., Машовец Т.В. Примеси и точечные дефекты в полупроводниках. М.: Радио и связь, 1981. С. 248.
- [4] Ion Implantation Science and Technology / Ed. by J.F. Ziegler (Acad. Press, 1984).
- [5] Берман Л.С., Иванов А.М., Строкан Н.Б. // Письма в ЖТФ. 1993. Т. 19.
 В. 20. С. 24–28.
- [6] Берман Л.С., Маляренко А.М., Ременюк А.Д., Суханов В.Л., Толстобров М.Г. // ФТП. 1988. Т. 22. В. 5. С. 844–848.
- [7] Иванов А.М., Ильяшенко И.Н., Строкан Н.Б., Шмидт Б. // ФТП. 1995.
 Т. 29. В. 3. С. 543–552.
- [8] Byczkowski M., Madigan J.R. // J. Appl. Phys. 1957. V. 28. P. 878.
- [9] Вербицкая Е.М., Еремин В.К., Иванов А.М., Строкан Н.Б. // ФТП. 1993.
 Т. 27. В. 2. С. 205–213.
- [10] Schmidt B., Eremin V., Ivanov A., Strokan N., Verbitskaya E., and Li Z. // J. Appl. Phys. 1994. V. 76. P. 4072–4076.
- [11] Кузнецов Н.В., Филатов В.Н., Виноградова В.Г. // ФТП. 1987. Т. 21. В. 3. С. 609–614.
- [12] Вавилов В.С., Киселев В.Ф., Мукашев Б.Н. Дефекты в кремнии и на его поверхности М.: Наука, 1990. С. 212.
- [13] Makovsky L.L., Strokan N.B., Tisnek N.I. // IEEE Trans. Nucl. Ser. 1968. V. 15. N. 3. P. 304–309.