04:07:10:12

Мощный HF лазер с накачкой нецепной химической реакцией, инициируемой пучком электронов

© Э.Н. Абдуллин, А.М. Ефремов, Б.М. Ковальчук, В.М. Орловский, А.Н. Панченко, Э.А. Соснин, В.Ф. Тарасенко, А.В. Феденев

Институт сильноточной электроники СО РАН, Томск

Поступило в Редакцию 4 декабря 1996 г.

Сообщается о создании мощного HF лазера с накачкой нецепной химической реакцией, инициируемой радиально сходящимся пучком электронов. В смеси с активного объема $\sim 30\,\mathrm{л}$ получена энергия излучения $\sim 115\,\mathrm{Дж}$ при эффективности относительно вложенной энергии $\sim 8\%$. Показано, что при одинаковых энерговкладах благодаря высокой плотности SF₆ суммарный скачок давления в смесях SF₆–H₂ (D₂) за счет инжекции электронного пучка и химической реакции в несколько раз меньше, чем в рабочих смесях эксиплексных лазеров. Последнее существенно облегчает создание широкоапертурных HF и DF лазеров с донором фтора SF₆, накачиваемых нецепной химической реакцией, инициируемой пучком электронов.

1. Химические лазеры, в первую очередь НГ лазер (длина волны излучения $\lambda \approx 2.6-3.2\,\mathrm{mkm}$), накачиваемые как цепными, так и нецепными реакциями, исследуются с 1965 года [1]. Наиболее важные результаты, полученные до 1982 года, обобщены в монографиях [2,3]. Для инициирования химических реакций применяются электронные пучки, разряды, оптическое излучение и другие способы. Наибольшие импульсные и удельные энергии излучения получены для НГ лазеров с накачкой цепными реакциями. Однако для многих практических приложений наиболее подходят химические НГ и DГ лазеры с накачкой нецепными реакциями, которые, хотя и имеют более низкие энергетические характеристики, более просты и безопасны при эксплуатации. В последнее время наблюдается значительное возрастание интереса к изучению химических лазеров [4–9], что обусловлено новыми возможностями использования лазеров с высокими энергетическими характеристиками в ИК области спектра.

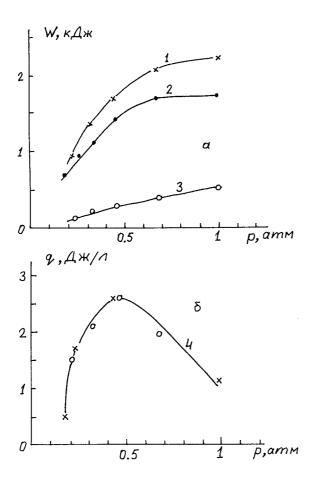
В данной работе приведены результаты экспериментальных исследований широкоапертурного лазера на смеси SF₆-H₂ с накачкой радиально схоядщимся электронным пучком, получена энергия излучения ~ 115 Дж при КПД от вложенной в газ энергии электронного пучка $\sim 8\%$.

2. В экспериментах использовался компактный лазер с активным объемом ~ 30 л, на котором ранее была получена энергия излучения $\sim 100\,\mathrm{Дж}$ на молекулах XeCl* ($\lambda = 308\,\mathrm{Hm}$) и KrF* ($\lambda = 249\,\mathrm{Hm}$) [10]. Ускоритель электронов с вакуумной изоляцией, формирующий радиально схоядщийся электронный пучок от четырех катодов из бархата, подробно описан в[11]. Все нижеприведенные результаты получены при зарядном напряжении девятиступенчатого генератора импульсных напряжений $80\,\mathrm{kB}$, напряжении на вакуумном диоде $\sim 400\,\mathrm{kB}$, токе пучка ~ 40 кА и длительности импульса тока пучка на полувысоте $\sim 500\,\mathrm{hc}$. В отличие от [10,11] в данной работе генератор импульсных напряжений располагался горизонтально, что позволило уменьшить высоту оптической оси до 80 см. Активный объем лазерной камеры имел длину $\sim 100\,\mathrm{cm}$ и диаметр $20\,\mathrm{cm}$. Рабочие смеси, состоящие из водорода и SF₆, готовились в лазерной камере. Использовалось несколько типов резонаторов. В качестве "глухих" зеркал применялись плоские и вогнутое сферическое А1 зеркала, а также плоское зеркало с золотоым покрытием; в качестве выходных — плоскопараллельные пластины из NaCl, KPC-5 KPC-6 с отражением в области ~ 3 мкм соответственно 9, 33 и 27%.

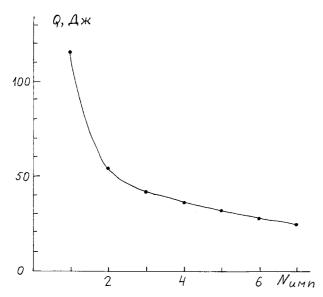
Величина энергии ΔW , переданная в газ от электронного пучка и от химической реакции, определялась по возрастанию давления в лазерной камере после инжекции пучка [10,11]. Для регистрации скачка давления ΔP использовался механотрон 6МДХ-3Б. Значения ΔW рассчитывались с помощью соотношения

$$\Delta W = 0.36 \cdot \rho \cdot C \cdot V \cdot \Delta P. \tag{1}$$

Здесь ρ — плотность газа при температуре 273 °K и давлении 760 мм рт. ст., C — теплоемкость при постоянном объеме, V — объем газа. Для SF_6 $\rho=6.5$ г/л, теплоемкость при постоянном давлении $C_1 = 0.659 \, \text{Дж/г} \cdot \text{град}$ [12]. Полагая $C_1/C \approx 1.33$, получим из (1)


$$\Delta W = 1.15V \cdot \Delta P,\tag{2}$$

где размерности $[\Delta W]$ в Дж, [V] в л, $[\Delta P]$ в мм рт. ст.


Для определения энергии излучения использовались два калориметра ИМО-2, устанавливаемых в различных точках выходного лазерного пучка, и калориметры ТПИ-2М. С помощью последних определялось распределение энергии по сечению выходного пучка при исследовании генерации XeCl и KrF лазеров [10]. Обычно энергия излучения для смеси SF₆: $H_2=8:1$, которая была оптимальной, измерялась при первом включении ускорителя одновременно двумя калориметрами ИМО-2, что позволяло определить распределение энергии излучения по сечению выходного пучка.

3. Основые результаты иллюстрируют рис. 1 и 2. На рис. 1, a приведены зависимости вложенной в газ энергии, которая определялась по скачку давления, в рабочей смеси SF_6 — H_2 и в чистом SF_6 при увеличении давления до 1 атм. В SF_6 , начиная с давления ~ 0.6 атм (кривая 2), вложенная в газ энергия перестает увеличиваться, а в смеси SF_6 — H_2 (кривая I) при одинаковых давлениях вложенная энергия больше и продолжает увеличиваться с ростом давления. Разность энергий (3) между кривыми I и I соответствует энергии, выделившейся за счет химической реакции. Видно, что эта энергия практически линейно возрастает с увеличением давления рабочей смеси и составляет при давлении I 0.45 атм I 20% от энергии, вложенной электронным пучком.

На рис. 1, 6 приведена зависимость удельной энергии лазерного излучения в смеси SF_6 : $H_2=8:1$ от давления. Резонатор, который был оптимальным для данного эксперимента, состоял из плоского "глухого" зеркала с золотым покрытием и плоскопараллельной пластинки из КРС-5, а энергия излучения измерялась на оси лазерной камеры. Ставилась задача получить наибольшую удельную энергию излучения на оси лазерной камеры. Из рис. 1, 6 видно, что наибольшая удельная энергия излучения на оси лазерной камеры реализуется при давлении смеси 0,45 атм. В этих условиях максимальная удельная энергия лазерного излучения регистрировалась на расстоянии 1-3 см от фольги и составляла $\sim 5\,\text{Дж/л}$, а полная энергия излучения равнялась $\sim 115\,\text{Дж}$. При увеличении давления рабочей смеси от 0.45 атм до 1 атм увеличиваются энергия, вложенная в газ от химической реакции (в ~ 2 раза), и энергия, вложенная за счет пучка электронов (на $\sim 20\%$), а также полная энергия излучения и удельная энергия излучения в прифольговой области. Однако при этом распределение энергии излучения по выходному пучку лазера становится более неоднородным и для различных областей активного объема (пристеночной и осевой) надо было использовать выходные

Рис. 1. Зависимости вложенной в газ энергии (a) и удельной энергии излучения на оси лазерной камеры (b) от давления смеси $SF_6: H_2 = 8: 1 \ (1,3,4)$ или $SF_6(2): I$ — суммарный энерговклад пучка электронов и химической реакции; 2 — энерговклад от пучка электронов; 3 — энерговклад от химической реакции.

Рис. 2. Зависимость энергии лазерного излучения от номера импульса на одной порции смеси SF_6 : $H_2=8:1$ при давлении 0.45 атм.

зеркала с сильно отличающимися коэффициентами отражения. Оценки показывают, что при давлении рабочей смеси ~ 1 атм и неравномерном распределении энергии излучения по выходному пучку лазера полная энергия лазера должна составлять $\sim 200\,\mathrm{Дж}$.

На рис. 2 приведена зависимость энергии излучения на одной порции рабочей смеси от номера импульса. Максимальные энергии излучения и эффективности, как и следовало ожидать, реализуются в первом импульсе. При последующих включениях ускорителя, начиная с третьего импульса, уменьшение энергии лазерного излучения от импульса к импульсу не превышет 20%.

Важная особенность рабочей смеси HF и DF химических лазеров, накачиваемых нецепной химической реакцией, инициируемой пучком электронов в смесях с SF₆, это — сравнительно малый скачок давления в газе при инжекции электронного пучка и протекании химической реакции. Так, при давлении смеси SF₆ : $H_2=8:1\sim 1$ атм скачок давления составил всего 0.046 атм. Тогда как, например, для аргона

(буферный газ у большинства эксиплексных и эксимерных лазеров с накачкой пучком электронов; плотность газа $\rho=1.78\,\mathrm{г/n}$; теплоемкость $C=0.519\,\mathrm{Дж/r}\cdot\mathrm{град}$ [12]) давление в лазерной камере существенно увеличивается и может приводить к разрыву разделительной фольги. Полагая, что в аргоне $C_1/C\approx 1.67$, получим из (1) для данного лазера

$$\Delta W = 0.2V \cdot \Delta P. \tag{3}$$

То есть скачок давления при одинаковых энерговкладах в аргоне будет почти в шесть раз больше, чем в SF_6 .

4. Таким образом, в данной работе проведены исследования широкоапертурного HF лазера с накачкой нецепной химической реакцией, инициируемой радиально сходящимся пучком электронов. При не более чем двухкратной разнице плотности энергии излучения в сечении выходного пучка лазера получена энергия в импульсе ~ 15 Дж при КПД от вложенной энергии ~ 8%. Показано, что благодаря высокой плотности SF₆ суммарный скачок давления за счет инжекции электронного пучка и химической реакции в несколько раз меньше, чем в рабочих смесях эксиплексных лазеров. Последнее существенно облегчает создание широкоапертурных HF и DF лазеров с донором фтора SF₆, накачиваемых нецепной химической реакцией, инициируемой пучком электронов. Можно прогнозировать, что при использовании широкоапертурного лазера с активным объемом 600 л и накачкой радиально сходящимся электронным пучком [11,13], созданного в Институте сильноточной электроники СО РАН, будет получена энергия излучения в ИК области спектра на смесях $SF_2-H_2(D_2)$ более 1 кДж.

Список литературы

- [1] Kasper J.V., Pimentel G.G. // Phys. Rev. Lett. 1965. V. 14. N 10. P. 352–354.
- [2] Химические лазеры / Под ред. Р. Гросса и Дж. Ботта. М.: Мир, 1980. 832 с.
- [3] *Бакшин А.С., Игошин В.И., Ораевский А.Н., Щеглов В.А.* Химические лазеры. М.: Наука, 1982. 400 с.
- [4] Barmshenko B.D., Elior A., Lebiush E., Rosenueaks S. // of Appl. Physics. 1994. V. 75. N 12. P. 7653–7665.
- [5] Галаев И.И., Конкин С.В., Латышев А.Д., Мороз М.В., Ребонэ В.К., Ротынян М.А., Томашевич Н.Н., Третьяков Р.Е., Федоров И.А. // Квантовая электроника. 1996. Т. 23. № 3. С. 217–221.

- [6] Gastaud M., Bouesc J., Autric M. // Tecnical Digest "11 International Symposium on Gas Flow and Chemical Lasers" and "High Power Laser Conference" (GCL/HPL'96). Edinburg, 1996. P. 62.
- [7] Борисов В.П., Бурцев В.В., Великанов С.В., Довгий А.Я., Подавалов А.М., Синьков С.Н., Фролов Ю.Н., Шереметьев Ю.Н., Щуров В.В. // Квантовая электроника. 1996. Т. 23. № 2. С. 119–121.
- [8] Башкин А.С., Борейко А.С., Лебачев В.В., Мошков В.П., Федоров И.А. // Квантовая электроника. 1996. Т. 23. № 5. С. 428–432.
- [9] Александров Б.П., Степанов А.А., Щеглов В.А. // Квантовая электроника. 1996. Т. 23. С. 490–494.
- [10] Абдуллин Э.Н., Бугаев С.П., Ефремов А.М., Зорин В.Б., Ковальчук Б.М., Кремнев В.В., Логинов С.В., Месяц Г.А., Толкачев В.С., Щанин П.Н. // ПТЭ. 1993. № 5. С. 138–142.
- [11] Абдуллин Э.Н., Горбачев В.И., Ефремов А.М., Ковальчук Б.М., Логинов С.В., Скакун В.С., Тарасенко В.Ф., Толкачев В.С., Феденев А.В., Фомин Е.А., Щанин П.Н. // Квантовая электроника. 1993. Т. 20. № 7. С. 652–655.
- [12] *Таблицы* физических величин. Справочник / Под ред. И.К. Кикоина. М.: Атомиздат, 1976. 1008 с.
- [13] *Ковальчук Б.М., Тарасенко В.Ф., Феденев А.В.* // Квантовая электроника. 1996. Т. 23. № 6. С. 504–506.