Характеристики *F*-центров щелочно-галоидных кристаллов в основном и возбужденном состояниях

© А.Н. Вараксин, А.Б. Соболев, В.Г. Панов

Уральский государственный технический университет (УПИ), 620002 Екатеринбург, Россия

E-mail: panov@ural.ru

(Поступила в Редакцию 24 февраля 2005 г. В окончательной редакции 6 июня 2005 г.)

> С помощью метода молекулярной статики и подхода Гоурари–Адриана рассчитаны смещения ближайших к F-центру ионов решетки в щелочно-галоидных кристаллах со структурами NaCl и CsCl (всего двадцать кристаллов). Расчеты проведены для 1s- и 2p-состояний электрона F-центра с учетом угловой зависимости кулоновского потенциала, создаваемого электроном в 2p-состоянии. Выполнены расчеты энергий поглощения и излучения F-центра. Расчетные величины энергий качественно согласуются с экспериментом и воспроизводят экспериментально найденные тенденции изменения этих энергий при переходе от одного кристалла к другому.

> Работа выполнена при поддержке гранта Российского фонда фундаментальных исследований № 03-02-16463а.

PACS: 71.55.Ht, 61.72.Bb

В работе [1] были выполнены расчеты релаксации решетки, энергий поглощения и излучения F-центра в кристалле NaCl с использованием комбинации методов Гоурари и Адриана [2] для описания волновой функции электрона в F-центре и молекулярной статики [3,4] для описания деформации и поляризации решетки F-центром. Настоящая работа является продолжением [1]. В дополнение к расчетам, проведенным в [1], здесь выполнены расчеты характеристик F-центра в основном 1*s*-состоянии для всех щелочно-галоидных кристаллов (ЩГК) (структуры NaCl и CsCl), а также расчеты для 2*p*-состояния с волновой функцией, зависящей от углов (ранее [1] использовалась волновая функция, усредненная по углам).

В настоящее время активно исследуются две модели возбужденного состояния *F*-центра: модель Богана-Фитчена [5], в которой для описания первого возбужденного релаксированного состояния применяется смешанное 2*s*-2*p*-состояние, и модель Фаулера [6], в которой для описания этого состояния используется 2*p*-образная волновая функция. Как следует из экспериментальных данных [5,7-10], модель Богана-Фитчена адекватно описывает более широкий спектр наблюдаемых характеристик. Тем не менее в кристаллах KBr и KI анализ данных с помощью метода оптического детектирования магнитного резонанса определенно показывает наличие заметной составляющей типа 2р-состояния. В данной работе мы рассматриваем в качестве возбужденного состояния чистое 2*p*-состояние, поскольку именно это приближение использовалось во многих работах в качестве основного для оценки характера релаксации решетки (так как 2*p*-состояние имеет более низкую симметрию) [11–13]. Тем не менее в настоящее время мы продолжаем исследование данного вопроса с использованием в качестве волновой функции возбужденного состояния 2s-состояния.

Энергия кристалла с дефектом (*F*-центр в квантовом состоянии *f*) описывалась формулой

$$E_f = E_{\rm kin} + E_{\rm int} + E_L,$$

где E_{kin} — кинетическая энергия электрона в *F*-центре, E_{int} — энергия взаимодействия дефекта с решеткой, E_L — энергия решетки, искаженной присутствием дефекта. Для волновой функции электрона *F*-центра в 1*s*-состоянии вида

$$\psi_{1s} = \frac{1}{\sqrt{\pi}} \left(\frac{\lambda}{a_0} \right)^{3/2} \exp\left(-\frac{\lambda r}{a} \right),$$

где λ — вариационный параметр, *a* — постоянная решетки (здесь это кратчайшее расстояние между катионом и анионом), имеем

$$E_{
m kin} = rac{h}{2m} rac{\lambda^2}{a^2},$$
 $E_{
m int} = \sum q_i^c V_{1s}(r_i^c,\lambda) + q_i^s V_{1s}(r_i^s,\lambda)$

где q_i^c , q_i^s — заряды ядер и оболочек ионов кристаллической решетки, V_{1s} — кулоновский потенциал, создаваемый 1*s*-электроном *F*-центра в точке *r* кристаллической решетки (*e*-заряд электрона),

$$V_{1s} = \frac{e}{r} \bigg\{ 1 - \exp\left(-\frac{2\lambda r}{a}\right) \bigg[1 + \frac{\lambda r}{a} \bigg] \bigg\}.$$

Для описания энергии решетки E_L использовалось приближение парных взаимодействий ионов в рамках оболочечной модели иона, как это обычно делается в методе молекулярной статики [14]. Для расчета E_L (а также E_{int}) с учетом релаксации решетки приме-

Кристалл	а	λ	E_{1s} , eV	$E_{\rm kin},{ m eV}$	ξ1	ξ2	ξ3
LiF	1.996	1.49	-8.540	1.059	0.0415	-0.0163	-0.0194
LiCl	2.539	1.71	-6.993	0.865	0.0224	-0.0172	-0.0169
LiBr	2.713	1.78	-6.411	0.819	0.0148	-0.0181	-0.0165
LiI	2.952	1.84	-5.835	0.739	0.0107	-0.0201	-0.0184
NaF	2.295	1.71	-7.397	1.057	-0.0030	-0.0075	-0.0066
NaCl	2.789	1.87	-6.218	0.856	-0.0092	-0.0103	-0.0071
NaBr	2.954	1.92	-5.756	0.804	-0.0149	-0.0111	-0.0068
NaI	3.194	1.99	-5.231	0.739	-0.0206	-0.0124	-0.0071
KF	2.648	1.87	-6.840	0.949	-0.0373	-0.0062	$-0.0053 \\ -0.0041 \\ -0.0035 \\ -0.0032$
KCl	3.116	2.00	-5.689	0.784	-0.0328	-0.0065	
KBr	3.262	2.04	-5.326	0.744	-0.0388	-0.0069	
KI	3.489	2.10	-4.872	0.689	-0.0437	-0.0076	
RbF	2.789	1.96	-6.783	0.940	-0.0749	-0.0095	-0.0057
RbCl	3.259	2.05	-5.571	0.753	-0.0491	-0.0065	-0.0037
RbBr	3.410	2.08	-5.177	0.708	-0.0497	-0.0063	-0.0032
RbI	3.629	2.14	-4.755	0.662	-0.0540	-0.0067	-0.0028
CsF CsCl CsBr CsI	2.975 4.068 4.235 4.500	2.09 2.32 2.37 2.43	-7.045 -5.208 -4.801 -4.356	0.939 0.619 0.596 0.555	$\begin{array}{c} -0.1400 \\ -0.0230 \\ -0.0213 \\ -0.0154 \end{array}$	-0.0187 -0.0097 -0.0123 -0.0178	$\begin{array}{c} -0.0069 \\ -0.0040 \\ -0.0027 \\ -0.0005 \end{array}$

Таблица 1. Характеристики F-центров ЩГК в основном 1s-состоянии

нялись параметры парных взаимодействий Сангстера– Атвуда [15] и компьютерная программа MOLSTAT [3,4]. Вариационный параметр λ находился из условия минимума энергии кристалла с дефектом относительно изменения λ ; при каждом конкретном λ ищется, как обычно, минимум энергии кристалла относительно изменений координат ионов под действием дефекта (релаксация и поляризация решетки).

Результаты расчетов для 1*s*-состояния представлены в табл. 1. В ней приведены постоянная решетки *a*, оптимальное (соответствующее минимуму E_f) значение вариационного параметра λ , полная энергия системы "кристалл + дефект" E_f , кинетическая энергия электрона *F*-центра, а также смещения ξ ионов ближайших трех координационных сфер, окружающих *F*-центр. Величина смещения иона дана в долях постоянной решетки *a*, знак смещения определяется относительно направления радиус-вектора из *F*-центра к иону (положительное ξ означает смещение иона наружу от *F*-центра, отрицательное — внутрь к *F*-центру). Для 1*s*-состояния *F*-центра смещения всех ионов оказались радиальными.

Из табл. 1 следует, что смещения ионов первой координационной сферы для разных кристаллов различны: относительно велики и положительны для LiF (более 4% от величины a, наружу — от F-центра), велики и отрицательны для KI, галогенидов рубидия (5–7% от a, внутрь — к F-центру) и CsF (14% от a), относительно малы (порядка 1% и менее) для кристаллов в середине табл. 1 (начиная от LiBr и заканчивая NaBr). Смещения ионов второй и третьей координационных сфер достаточно малы (менее 2%, чаще менее 1%) и направлены внутрь (к F-центру). Та же схема расчета использована для 2*p*-состояния *F*-центра с волновой функцией вида

$$\psi_{2p} = \frac{1}{\sqrt{\pi}} \left(\frac{\lambda}{a}\right)^{5/2} r \exp\left(-\frac{\lambda r}{a}\right) \cos\theta$$

Кулоновский потенциал *F*-центра в этом состоянии вычислялся с помощью разложения кулоновского ядра в ряд по сферическим функциям [16] и имеет следующий вид:

$$\begin{split} V_{2p} &= \frac{e}{r} \left[1 - \exp(-2br) \left(1 + 2br + 2(br)^2 + \frac{4}{3}(br)^3 + \frac{2}{3}(br)^4 \right) \\ &+ \frac{3}{2} \frac{3\cos^2\theta - 1}{(br)^2} \left(1 + 2br + 2(br)^2 + \frac{4}{3}(br)^3 + \frac{2}{3}(br)^4 \\ &+ \frac{4}{15}(br)^5 + \frac{4}{45}(br)^6 \right) \right] + eb \exp(-2br) \left[\frac{1}{2} \left(1 + 2br + 2(br)^2 + \frac{4}{3}(br)^3 \right) + \frac{b^2r^2(3\cos^2\theta - 1)}{15}(1 + 2br) \right], \end{split}$$

где $b = \lambda/a$.

Потенциал V_{2p} имеет вид петли, вытянутой в направлении от центра вакансии, образующей *F*-центр, к ближайшим катионам. Поэтому два катиона (назовем их аксиальными), расположенные на этом направлении, имеют смещения, отличные от остальных — радиальных (эффект Яна–Теллера).

Результаты для 2*p*-состояния представлены в табл. 2, 3; обозначения совпадают с использованными ранее.

Кристалл	λ	E_{2p} , eV	$E_{\rm kin},{ m eV}$
LiF	1.02	-6.777 -5.390	0.497
LiCl	1.14		0.384
LiBr	1.21	-4.853	0.379
LiI	1.36	-4.393	0.404
NaF	1.18	-5.357	0.503
NaCl	1.99	-4.458	0.970
NaBr	2.31	-4.112	1.165
KF	1.82	-4.915	0.900
CsCl	2.78	-4.0934	0.889
CsBr	2.84	-3.7497	0.856
CsI	2.9	-3.4074	0.791

Таблица 2. Характеристики ЩГК с *F*-центром в 2*p*-состоянии

Для кристаллов, не приведенных в табл. 2, создание *F*-центра в 2*p*-состоянии вызывало неустойчивость ионов ближайшего окружения: ближайшие к *F*-центру катионы, расположенные вдоль оси петли волновой функции, так сильно смещались к *F*-центру, что кристаллическая структура ближайшего окружения разрушалась. Это свидетельствует о том, что модель парных взаимодействий ионов, принятая в настоящей работе, оказалась неадекватной моделируемой ситуации для данных кристаллов.

В табл. З приведены данные о релаксации решетки около F-центра в 2p-состоянии. Для галогенидов лития смещения аксиальных и радиальных катионов первой координационной сферы практически одинаковы и достаточно велики (9–10% от a, наружу — от F-центра); для LiF значения ξ_1 даже превосходят получаемые для анионной вакансии. При переходе от галогенидов лития к галогенидам натрия наблюдается изменение направления смещения аксиальных ионов: для галогенидов лития смещения направлены от F-центра, а для галогенидов натрия сильное смещение от F-центра у кристалла

NaF сменяется сильным смещением к *F*-центру для NaBr; для NaI это приводит к разрушению кристалла. При этом смещения радиальных ионов первой сферы в галогенидах натрия практически не меняются при переходе от NaF к NaBr.

429

Подробное описание картины смещений предполагает указание не только общего направления смещения, как в табл. 3 (внутрь или наружу), но и точное указание направления смещения, что вряд ли можно сделать в таблице. Например, для галогенидов натрия смещения ионов второй координационной сферы практически одинаковы по величине, но составляют с радиус-вектором углы 153, 107 и 102° для кристаллов NaF, NaCl и NaBr соответственно. Более того, детальный анализ смещений по отдельным ионам показывает, что они различны и в пределах одной координационной сферы. Так, для кристалла NaF из двенадцати ионов второй сферы (все анионы) четыре смещаются строго к F-центру на 0.0254 постоянной решетки и восемь на 0.029 под углом 153°. Очевидно, что такое разнообразие углов и смещений не могло возникнуть при симметризованном рассмотрении.

Если для кристаллов типа NaCl направление [100] оси волновой функции в состоянии 2p, по-видимому, не вызывает сомнений, то для кристаллов со структурой CsCl этот вопрос требует более детального рассмотрения. Из соображений симметрии можно предположить, что наиболее предпочтительным должны считаться направления [111] и [100]. Оценка величины энергии E_{2p} для этих направлений свидетельствует в пользу направления [100] (табл. 4).

Кроме того, на значение параметра λ оказывает существенное влияние также более плотная упаковка ионов в кристаллах с более высоким молекулярным весом. Как видно из табл. 2, величина λ монотонно возрастает с увеличением молекулярного веса кристалла. Все это приводит к тому, что объем, занимаемый в кристаллической решетке зарядовым облаком *F*-центра в состоянии 2*p*, будет тем больше, чем меньше молекулярный

	ξ	1	ξ2		ξ3		ξ4	
Кристалл	Аксиальные ионы	Радиальные ионы	Внутрь	Наружу	Внутрь	Наружу	Внутрь	Наружу
LiF LiCl LiBr	0.100 0.096 0.094	0.097 0.098 0.098	$-0.03 \\ -0.03 \\ -0.03$		-0.01 -0.01	0.014 _ _		0.014 0.019 0.02
LiI	0.091	0.103	-0.03	—	-0.02	-	-	0.02
NaF NaCl NaBr	$0.077 \\ 0.008 \\ -0.057$	0.073 0.074 0.074	$-0.03 \\ -0.02 \\ -0.02$		$-0.02 \\ -0.02$	0.012 - -	_ _ _	0.016 0.02 0.02
KF	0.014	0.051	-0.02	—	-0.01	-	—	0.008
CsCl CsBr CsI	0.0 0.0 0.0	44 43 40	$-0.06 \\ -0.06 \\ -0.065$	0.042 0.039 0.034	$-0.009 \\ -0.008 \\ -0.006$	0.009 0.009 0.009	$-0.007 \\ -0.007 \\ -0.006$	0.01 0.01 0.01

Таблица 3. Релаксация ионов решетки, ближайших к *F*-центру в 2*p*-состоянии

Направление оси	CsCl	CsBr	CsI
[100] [111]	-4.093 (2.78) -3.243 (3.33)	-3.75 (2.84) -2.998 (3.39)	-3.407 (2.9) -2.767 (3.42)

Таблица 4. Величина энергии *F*-центра и значение параметра λ (в скобках) при друх ориентациях волновой функции

Таблиц	a 5.	Заряд	<i>F</i> -центра	в пределах	координационных	сфер
--------	------	-------	------------------	------------	-----------------	------

Кристалл	Первая сфера	Две сферы	Три сферы	Четыре сферы
LiF	0.056	0.165	0.281	0.387
LiCl	0.081	0.224	0.361	0.479
LiBr	0.098	0.26	0.409	0.531
LiI	0.14	0.341	0.507	0.633
CsCl	0.526	0.652	0.892	0.952
CsBr	0.545	0.67	0.902	0.958
CsI	0.563	0.687	0.911	0.963

вес кристалла. Это можно увидеть также по тому, какова доля заряда *F*-центра, приходящаяся на объем соответствующей координационной сферы. Так, для галогенидов лития и цезия эти величины представлены в табл. 5.

Таким образом, для группы кристаллов лития в некотором приближении эти данные можно представить с помощью рис. 1 (на самом деле размер петли еще больше).

Для кристаллов группы цезия электрон расположен гораздо более компактно и более чем наполовину заключен в пределах первой координационной сферы (рис. 2).

Более значительная редукция группы симметрии в случае направления оси *F*-центра по линии [111] приводит к более сложной картине релаксации ионов в его ближайшем окружении (табл. 6). Так, расположение ионов даже первой координационной сферы относительно этой оси оказывается различным (кроме, разумеется, аксиальных ионов). Полное описание этих смещений в рамках таблицы вряд ли возможно, поэтому для кристаллов CsCl, CsBr, CsI для ионов первой координационной сферы приведены величины смещений аксиальных ионов и максимальные смещения внутрь и наружу для остальных ионов. Для ионов других координационных сфер дается только диапазон величин смещения от максимального отрицательного (смещение внутрь) до максимального положительного (смещение наружу). При этом слова "внутрь" и "наружу" определяют только общее направление смещения относительно радиусвектора без указания угла.

В табл. 7 и 8 приведены рассчитанные нами энергии поглощения и излучения *F*-центров. Расчет энергий основывался на принципе Франка–Кондона, согласно которому переход из основного состояния (1*s*) в возбужденное (поглощение) происходит при сохранении

Рис. 1. Волновая функция *F*-центра в состоянии 2*p* для галогенидов лития.

Рис. 2. Волновая фукнция *F*-центра в состоянии 2*p* для ЩГК со структурой CsCl.

	ξı		ξ2		ξ3		ξ4		
Кристалл	Аксиальные	Радиалы	ные ионы	Binympi	Homoray	Bingmai	Hammar	Binympi	Hampia
ИС	ИОНЫ	Внутрь	Наружу	Бнутрь	паружу	Бнутрв	паружу	внутрь	паружу
CsCl	0.039	-0.092	0.048	-0.06	0.045	-0.03	0.022	-0.02	0.016
CsBr	0.037	-0.098	0.048	-0.06	0.042	-0.02	0.022	-0.02	0.015
CsI	0.035	-0.09	0.045	-0.05	0.037	-0.02	0.022	-0.02	0.015

Таблица 6. Релаксация ионов решетки, ближайших к F-центру в 2p-состоянии [111] (CsX)

конфигурации решетки основного состояния (состояние $2p^*$), аналогичный подход применим и при расчете энергий излучения.

По данным табл. 7 расчетные значения энергий поглощения E_a в основном оказались меньше экспериментальных, однако тенденция изменения E_a при переходе от кристалла к кристаллу описываются правильно (например, уменьшение E_a в ряду галогенидов одного щелочного металла).

Расчетные значения энергий излучения (табл. 8) в основном также получились меньше экспериментальных. Для галогенидов цезия хорошо просматривается тенденция уменьшения расчетных и экспериментальных E_i при переходе от CsCl к CsI; для остальных галогенидов тенденции неясны из-за малого числа данных (для галогенидов лития нет экспериментальных данных. для галогенидов калия и рубидия — расчетных). Отметим,

Таблица 7. Энергии E_a поглощения *F*-центров в ЩГК (переход $1s \rightarrow 2p^*$)

Крио		E_a, eV					
крис-	$\lambda(2p^*)$	Расчет с учетом	Экспери-	Расчет без учета			
талл		релаксации	мент [9]	релаксации			
LiF	1.21	2.49	5.10	3.39			
LiCl	1.96	2.17	3.30	2.45			
LiBr	2.10	2.05	2.77	2.25			
LiI	2.23	1.85	3.42	1.99			
NaF	1.97	2.67	3.72	2.83			
NaCl	2.29	2.14	2.77	2.16			
NaBr	2.39	2.01	2.35	1.99			
NaI	2.5	1.82	2.06	1.77			
KF	2.29	2.37	2.85	2.32			
KCl	2.52	1.919	2.31	1.84			
KBr	2.59	1.825	2.06	1.72			
KI	2.69	1.677	1.87	1.55			
RbF	2.45	2.324	2.43	2.16			
RbCl	2.6	1.835	2.05	1.72			
RbBr	2.66	1.729	1.86	1.61			
RbI	2.76	1.601	1.71	1.46			
CsF	2.66	2.286	1.89	1.97			
CsCl	3.02	1.57	2.17	1.55			
CsBr	3.03	1.47	1.93	1.46			
CsI	3.10	1.34	1.65	1.33			

что табл. 7 содержит данные для всех ЩГК, а табл. 8 — только для тех кристаллов, у которых существует релаксированное 2p-состояние (это кристаллы из табл. 3). Это является следствием применения принципа Франка–Кондона, для реализации которого необходимы релаксированное 1s-состояние при расчете энергии поглощения и релаксированное 2p-состояние при расчете энергии излучения, последнее при нашем подходе существует не для всех кристаллов.

Таблица 8. Энергия E_i излучения *F*-центров в ЩГК (переход $2p \rightarrow 1s^*$)

		E_i , eV			
Кристалл	$\lambda(1s^*)$	Расчет	Экспери- мент [9]		
LiF	0.99	0.90	_		
LiCl	1.21	0.79	_		
LiBr	1.28	0.79	_		
LiI	1.38	0.80	—		
NaF	1.27	1.12	1.66		
NaCl	1.65	1.41	0.98		
NaBr	1.79	1.37	—		
KF	1.57	1.45	1.66		
CsCl	2.14	0.70	1.26		
CsBr	2.17	0.64	0.91		
CsI	2.22	0.58	0.74		

Значительный вклад в энергии *F*-центров, особенно в энергии поглощения и излучения, вносит релаксация решетки. В последнем столбце табл. 7 приведены данные по энергиям поглощения без учета релаксации решетки. Видно, что общая тенденция изменения энергии поглощения по кристаллам сохраняется для ряда значений в обоих случаях и повторяет поведение ряда экспериментальных значений энергии поглощения. По-видимому, это свидетельствует о наличии дополнительного фактора, определяющего поведение *F*-центра при поглощении энергии.

Кроме того, без учета релаксации решетки рачетные значения энергий поглощения и излучения совпадают $(E_a = E_i)$. С учетом релаксации расчетные значения энергии излучения E_i оказываются значительно меньше

(до 2.5 раз) энергий поглощнеия E_a ; такое же соотношение энергий E_a и E_i наблюдается в эксперименте.

Оценим вклад угловой зависимости волновой функции 2p-состояния в энергию излучения F-центра. Для этого нами были проведены расчеты с использованием волновой функции 2p-состояния, усредненной по углам, когда смещения ионов решетки за счет F-центра получаются симметричными. При усреднении по углам энергии поглощения оказались больше: например, для кристалла NaCl учет угловой зависимости волновой функции 2p-состояния привел к понижению энергии излучения от 1.67 до 1.41 eV, что ближе к экспериментальному значению 0.98 eV.

Выводы

1) Для ЩГК со структурами NaCl и CsCl рассчитаны характеристики *F*-центров в 1*s*- и 2*p*-состояниях с учетом угловой зависимости волновой функции электрона в 2*p*-состоянии.

2) Показано, что смещения ионов ближайшего окружения F-центра в 1s-состоянии могут быть достаточно велики (до 14% от величины a для кристалла CsF) и направлены как к F-центру (галогениды лития), так и от него.

3) Для 2*р*-состояния обнаружена неустойчивость некоторых кристаллов (KCl, KBr, KI галогениды рубидия) при образовании *F*-центра: при поиске оптимального значения вариационного параметра λ (из условия минимума полной энергии кристалла с дефектом) оно оказывается столь высоким, что смещения аксиальных катионов первой координационной сферы превышают 50% от *a*, в результате чего ближайшее окружение *F*-центра теряет устойчивость и кристаллическая структура разрушается. Таким образом, для этих кристаллов модель Гоурари–Адриана, применяемая нами для описания волновой функции электрона *F*-центра, вступает в противоречие с оболочечной моделью парных взаимодействий между ионами самого кристалла, и расчет релаксированного 2*p*-состояния провести невозможно.

4) Продемонстрирована определяющая роль релаксации решетки при расчетах энергий поглощения и излучения *F*-центра. Показано, что учет угловой зависимости волновой функции электрона в 2*p*-состоянии уменьшает расчетное значение энергии излучения примерно на 15% и приближает его к экспериментальным значениям.

Список литературы

- [1] А.Б. Соболев, А.Н. Вараксин. ФТТ 36, 2, 275 (1994).
- [2] B.S. Gourary, F.J. Adrian. Phys. Rev. 105, 4, 1180 (1957).
- [3] Ю.Н. Колмогоров, А.Н. Вараксин. ЖСХ 32, 4, 162 (1991).
- [4] А.Н. Вараксин. Взаимодействие и миграция точечных структурных дефектов в диэлектриках на основе щелочногалоидных кристаллов (компьютерное моделирование). УрО РАН, Екатеринбург (1997). 128 с.
- [5] L.D. Bogan, D.B. Fitchen. Phys. Rev. B 1, 4122 (1970).

- [6] Physics of Color Centers / Ed. W.B. Fowler. Academic Press, London (1968).
- [7] R.E. Hetric, W.D. Compton. Phys. Rev. 155, 649 (1967).
- [8] N. Akiyama, H. Okhura. Phys. Rev. B 53, 16, 10632 (1996).
- [9] D.Y. Smith, G. Spinolo. Phys. Rev. 140, A 2121 (1965).
- [10] G. Baldacchini, U.M. Grassano, A. Tanga. Phys. Rev. B 19, 1283 (1979).
- [11] R.F. Wood, U. Öpik. Phys. Rev. 179, 1, 783 (1969).
- [12] C. Ruiz Mejia. Cryst. Latt. Def. Amorph. Mat. 13, 137 (1986).
- [13] A.M. Stoneham. Contemp. Phys. 20, 5, 535 (1979).
- [14] M.J. Norgett. Harwell Report AERE-7650 (1974). 49 p.
- [15] M.J.L. Sangster, R.M. Atwood. J. Phys. C 11, 8, 1541 (1978).
- [16] Д.А. Варшалович, А.Н. Москалёв, В.К. Херсонский. Квантовая теория углового момента. Наука, Л. (1975). 430 с.