01;04 К теории зонда в сильноионизованной плазме высокого давления

© Ф.Г. Бакшт, А.Б. Рыбаков

Физико-технический институт им.А.Ф.Иоффе РАН, 194021 Санкт-Петербург, Россия

(Поступило в Редакцию 22 июля 1996 г.)

Излагается теория зонда в сильноионизованной плазме высокого давления. Рассматривается типичная для плазмы высокого давления ситуация, когда в основной части призондового слоя плазма находится в состоянии локального ионизационного равновесия с общей температурой для электронов и тяжелых частиц. Обсуждается возможность определения параметров невозмущенной плазмы путем анализа зондовой характеристики на участке ионного насыщения, переходном участке и при плавающем потенциале зонда. Расчеты выполнены на примере сильноионизованной плазмы ксенона при атмосферном давлении.

1. Работа зонда в плотной плазме при различных степенях ионизации анализировалась ранее теоретически и экспериментально в основном применительно к сравнительно невысоким давлениям, когда столкновения электронов с атомами и ионами не влияли на температуру электронов в призондовом слое. Среди работ, посвященных анализу зондовой диагностики в этих условиях, отметим работы [1-5]. В указанных работах рассматривается плотная плазма в том смысле, что длина свободного пробега частиц *l*, длина максвеллизации электронов L_M , а также длина ионизации атомов L_i были меньше характерного линейного размера зонда $l < L_M < L_i \leqslant R$. Рассмотрение проводилось как для слабоионизованной плазмы [1-3,5], так и для плазмы с промежуточной и полной ионизацией [2-4]. В теоретических работах, посвященных зондовой диагностике в этих условиях, часто предполагалось, что температура электронов Т_е постоянна в пределах призондового слоя (см., например, [1-3,5]). При этом температура T_e не определялась, а задавалась в качестве параметра расчета. Фактически это соответствует условиям, когда температура Т_е совпадает с электронной температурой в невозмущенной плазме.

В настоящей работе теоретически рассматривается иная, типичная для достаточно высоких давлений р ситуация, когда вследствие интенсивных столкновений между электронами и тяжелыми частицами в основной части призондовой области устанавливается единая температура электронов и тяжелых частиц. Эта температура, обозначаемая ниже как $T_e(r)$, однако, отличается от температуры невозмущенной плазмы T_{∞} . Во-превых, это связано с понижением температуры тяжелой компоненты T от T_{∞} до температуры поверхности зонда T_0 . Во-вторых, это вызвано понижением температуры электронов вследствие их движения к зонду в тормозящем электрическом поле и вследствие потерь энергии на ионизацию и на преодоление тормозящего потенциального барьера вблизи поверхности зонда. Рассмотрение будет проведено на примере плазмы сильноточной атмосферной дуги в инертном газе для условий, когда в основной части призондового слоя (при $r > L_i$) плазма полностью ионизована.

Численные расчеты были выполнены для сферического зонда с радиусом R = 0.25 mm в ксеноновой плазме атмосферного давления.

2. Для расчета призондовой области разобьем ее на несколько слоев в соответствии с ролью преобладющих в них эффектов [6]. Непосредственно к поверхности зонда примыкает ленгмюровский слой пространственного заряда, толщина которого L_0 порядка нескольких дебаевских радиусов. В этом слое сосредоточено основное падение потенциала φ_0 . Здесь устанавливается квазинейтральность. Далее на длине L_i устанавливается ионизационное равновесие, которое в рассматриваемых ниже условиях соответствует полной ионизации плазмы.

Следующей по порядку величины длиной является длина

$$L_T = \left(\frac{kT_e}{m_e}\,\tau_e\tau_i\right)^{1/2},\tag{1}$$

где τ_e и τ_i — характерные электронные и ионные времена между столкновениями [7].

На длине L_T температура тяжелой компоненты T релаксирует вследствие электрон-ионных столкновений к температуре T_e . Поскольку $L_T \sim T_e^3$, а L_i в нашем случае экспоненциально убывает с увеличением T_e , то при достаточно высокой температуре всегда $L_T \gg L_i$. Именно такая ситуация рассматривается ниже. Область применимости такого подхода иллюстрируется рис. 1, где приведены зависимости $L_i(T_e)$ и $L_T(T_e)$ для аргона и ксенона. При этом использованы значения коэффициентов ионизации, рассчитанные в [8], и значения подвижностей ионов в атомах, определенные в соответствии с [9].

Внешняя, наибольшая по протяженности область, в которой плазма характеризуется единой температурой $T_e(r)$ ($T_e(r) \leq T_{\infty}$), будет ниже называться областью растекания. Ее характерный размер порядка R. Ниже рассматриваются условия, когда выполняются следующие соотношения между характерными длинами $L_0 \ll l_i \ll L_i \ll L_T \ll R$. Эти соотношения позволяют анализировать процессы, происходящие в указанных областях, раздельно, учитывая наличие более узких слоев в эффективных граничных условиях, и рассматривать внутренние слои (при $r \lesssim L_T$) как плоские.

Рис. 1. Характерные длины в призондовой области ксеноновой (1, 1', 3) и аргоновой (2, 2') плазмы. $1, 2 - L_i; 1', 2' - L_T; 3 - L_{rec}^{(2)}$.

3. Основные расчетные уравнения имеют следующий вид. Для плотности электронного и ионного тока на поверхность зонда имеем

$$j_{e0} = \frac{e}{4} n_e^{(2)} \bar{v}_e(T_{ew}) \exp\left(-\frac{\varphi_0 + \Delta\varphi_i}{kT_{ew}}\right), \qquad (2)$$

$$j_{i0} = \Psi(\infty, T_{ew}/T_0) u_{ia}^{(1)} k (T_0 + T_{ew}) n_e^{(2)}, \qquad (3)$$

где индексами 1 и 2 отмечены границы слоя ионизации с ленгмюровским слоем и со слоем релаксации температур соответственно, $\Delta \varphi_i$ — падение потенциала в слое ионизации, T_{ew} — температура электронов в области ионизации, T_0 — температура поверхности зонда, n_e — концентрация электронов (равная в области ионизации концентрации однозарядных ионов).

Функция $\Psi(\beta, \tau)$ приведена в [2,6], $\beta = n_e^{(2)}/N_a^{(2)}$, где $N_a^{(2)}$ — концентрация нейтральных атомов на внешней границе области ионизации (при $r \sim L_i$). Непосредственно за внешней границей области ионизации дрейфовую скорость ионов следует положить равной нулю. Здесь электронный ток $\mathbf{j}_e = -en_e \mathbf{V}_e$ совпадает с полным током **j**. Последний удовлетворяет обобщенному закону Ома

$$\mathbf{j} = \sigma \left(\frac{\nabla P_e}{e n_e} - \nabla \varphi + k_e^{(T)} \frac{k \nabla T_e}{e} \right), \tag{4}$$

где $p_e = n_e k T_e$ — электронное давление, σ — электропроводность, φ — потенциал, $k_e^{(T)} = 0.71$ — термодиффузионный фактор электронов [7].

Полный ток удовлетворяет уравнению непрерывности

$$\nabla \mathbf{j} = \mathbf{0}.\tag{5}$$

Поток энергии электронов записывается в виде

$$\mathbf{q}_e = -\left(\frac{5}{2} + k_e^{(T)}\right) kT_e \,\frac{\mathbf{j}}{e} - \varkappa_e \nabla T_e. \tag{6}$$

2 Журнал технической физики, 1997, том 67, № 12

Поток энергии \mathbf{q}_e удовлетворяет уравнению непрерывности

$$\nabla (\mathbf{q}_e + \varphi \cdot \mathbf{j}) = 0. \tag{7}$$

Уравнения (4)–(7) используются для определения параметров плазмы в призондовом слое за внешней границей области ионизации, т.е. в слое релаксации температур и в области растекания (в слое релаксации температур дополнительно используется уравнение, описывающее баланс энергии тяжелой компоненты). К этим уравнениям добавляются уравнения (П.3)–(П.5) (см. Приложение), выражающие баланс давлений, квазинейтральность плазмы и условие ионизационного равновесия. Последнее существенно в той области плазмы, где одновременно существуют однократные и двукратные ионы. Эта область описывается более сложной системой уравнений, так как здесь ионные компоненты перестают быть неподвижными (см. Приложение).

В качестве граничных условий к дифференциальным уравнениям (4)–(7) используются выражения для плотности тока **j** и плотность потока энергии \mathbf{q}_e на внешней границе области ионизации (при $r \sim L_i$)

$$j_r = j_{e0} - j_{i0},$$
 (8)

$$q_{er} = -j_{i0} \left(\frac{E_1}{e} + \varphi_0 + \frac{2kT_{ew}}{e} + \langle \delta \varphi \rangle \right) - j_r \left(\varphi_0 + \Delta \varphi_i + \frac{2kT_{ew}}{e} \right)$$
(9)

и асимптотические граничные условия при $r
ightarrow \infty$

$$T_e = T_\infty, \qquad \varphi = 0.$$
 (10)

В правой части (9) слагаемое, пропорциональное j_{i0} , учитывает потери энергии электронов на ионизацию $(E_1 -$ энергия ионизации атома) и потери энергии на преодоление потенциального барьера (в ленгмюровском слое и в области ионизации) теми электронами, которые рождаются в области ионизации; $\langle \delta \varphi \rangle$ — средняя разность потенциалов, которую преодолевает рождающийся электрон в пределах области ионизации. Второе слагаемое в правой части (9), пропорциональное j_r , учитывает потери энергии на преодоление потенциального барьера $\varphi_0 + \Delta \varphi_i$ теми электронами, которые подводятся к зонду из области растекания. Потенциал зонда относительно невозмущенной плазмы определяется выражением

$$V = -\left(\varphi_0 + \Delta\varphi_i + \Delta\varphi_T + \Delta\varphi_\infty\right). \tag{11}$$

Здесь $\Delta \varphi_i = (kT_{ew}/e) \ln(n_e^{(2)}/n_e^{(1)})$, концентрация $n_e^{(1)}$ определяется из условия Бома [6], $\Delta \varphi_T$ и $\Delta \varphi_{\infty}$ изменения потенциала в слое релаксации температур и в области растекания соответственно. Величины φ_0 , $\Delta \varphi_i$, $\Delta \varphi_T$ и $\Delta \varphi_{\infty}$ определены так, что они положительны, если электрическое поле в соответствующей области задерживает электроны, идущие к зонду. В рассматриваемых ниже условиях φ_0 , $\Delta \varphi_i$ и $\Delta \varphi_{\infty}$ положительны.

Рис. 2. Зависимость плавающего потенциала зонда от температуры равновесной плазмы.

В некоторых режимах работы зонда, однако, $\Delta \varphi_T < 0$. Это связано с тем, что в слое релаксации температур при удалении от зонда концентрация плазмы уменьшается почти вдвое (поскольку $T_e \gg T_0$), что приводит к большому диффузионному потоку электронов в направлении от зонда. Поэтому если $V \ge V_f$ (V_f — плавающий потенциал), т.е. результирующий поток электронов равен нулю или направлен к зонду, то $\Delta \varphi_T < 0$. В частности, при $V = V_f \ \Delta \varphi_T \simeq -(kT_{ew}/e) \ln 2$.

4. Как уже отмечалось в разделе 2, принятая иерархия характерных длин имеет место лишь при достаточно высокой температуре электронов на границе с зондом T_{ew}, а следовательно, и при достаточно высокой температуре невозмущенной плазмы T_{∞} . Как показывает расчет, при этом невозмущенная плазма состоит только из электронов и двукратных ионов. Отметим, что интервал температур, в пределах которого происходит переход от однократной ионизации к двукратной, сосредоточен в области, толщина которой Δr на порядок (в аргоне) или более¹ (в ксеноне) превышает длину рекомбинации двукратных ионов $L_{\rm rec}^{(2)} = \sqrt{D_{21}\tau_{\rm rec}^{(2)}}$. Здесь $D_{21} = kT/\alpha_{12}M_{12}n_1$ — коэффициент ион-ионного трения (см. (П.10)), M_{12} — приведенная масса ионов, $au_{
m rec}^{(2)} = \left(\alpha_{
m rec}^{(2)} n_e^2 \right)^{-1}$ — время рекомбинации двукратных ионов с электронами, $\alpha_{\rm rec}^{(2)}$ — соответствующий коэффициент рекомбинации [10]. Длина $L_{\rm rec}^{(2)}$ для ксенона отложена на рис. 1 как функция температуры. Указанное выше соотношение между длинами $L_{\rm rec}^{(2)}$ и Δr позволяет использовать условие (П.5) локлаьного термодинамического равновесия (ЛТР) при определении компонентного состава плазмы.

При расчете призондового слоя плазмы в области, где одновременно существуют однократные и двукратные ионы, кинетические коэффициенты электронов τ , $k_e^{(T)}$

и \varkappa_e в уравнениях (4), (6) определялись как функции среднего заряда иона $\langle z \rangle$ путем линейной интерполяции между значениями при z = 1 и 2

$$\sigma(\langle z \rangle) = \sigma(1) + \left[\sigma(2) - \sigma(1)\right] \left[\langle z \rangle - 1\right].$$

Отметим, что в интервале температур, где в ЛТР плазме одновременно существуют однократные и двукратные ионы, наряду с электронной теплопроводностью \varkappa_e имеет место также ионизационно-рекомбинационная теплопроводность \varkappa_{ion} , связанная с переносом энергии ионизации при $\mathbf{j} = 0$. Аналогичный механизм теплопроводности существен, в частности, в слабоионизованной плазме инертных газов [11]. В приложении сформулирована система уравнений, описывающая полностью ионизованную плазму, находящуюся в состоянии ЛТР и содержащую однократные и двукратные ионы; получено выражение для \varkappa_{ion} и показано, что в рассматриваемых условиях вклад ионизационного механизма теплопроводности несуществен.

Рис. 3. Зависимости ионного тока на зонд от потенциала зонда. T_{∞} , eV: 1 - 2.7, 2 - 2.9, 3 - 3.1.

Рис. 4. Зависимости электронного тока на зонд от потенциала зонда. T_{∞} — та же, что на рис. 3.

Журнал технической физики, 1997, том 67, № 12

¹ В плазме ксенона при атмосферном давлении двукратные ионы Xe⁺⁺ начинают вносить заметный вклад в концентрацию при $T_e \simeq 1.8 \,\mathrm{eV}$. При этом $L_{\mathrm{rec}}^{(2)} \simeq 2 \cdot 10^{-4} \,\mathrm{cm}$, $\Delta r \simeq 5 \cdot 10^{-3} \,\mathrm{cm}$.

Рис. 5. Зависимости электронной температуры в области ионизации и температуры, определенной по наклону зондовой характеристики, от температуры равновесной плазмы. $1 - T_{ew}$, $2 - T_f$.

Рис. 6. Зависимость ионного тока насыщения на зонд от температуры невозмущенной плазмы.

5. Проанализируем кратко результаты расчетов, которые, как уже указывалось, выполнены на примере плазмы ксенона. На рис. 2 приведена зависимость плавающего потенциала V_f зонда от температуры невозмущенной плазмы T_{∞} . Эта зависимость позволяет по измеренному значению плавающего потенциала определить потенциал пространства. На рис. 3 приведены зависимости плотности ионного тока j_{i0} , текущего на зонд, от потенциала зонда V. Видно, что в рассматриваемом интервале значений потенциала зонда ионный ток существенно уменьшается при переходе от участка ионного насыщения к плавающему потенциалу и далее. Минимум ионного тока достигается при потенциале зонда, заметно превышающем Vf. Непостоянство ионного тока необходимо учитывать при анализе зондовых характеристик в этой области. На рис. 4 приведены зависимости плотности электронного тока на зонд j_{e0} от потенциала На рис. 5 приведены значения электронной температуры в области ионизации T_{ew} и электронной температуры T_f , определенной по наклону зондовой характеристики в режиме плавающего потенциала $(V = V_f)$. Видно, что определенная таким образом температура T_f заметно отличается от T_{∞} . Конечно, для целей диагностики можно использовать связь между T_f и T_{∞} , представленную на рис. 5. Однако более удобно определять температуру плазмы T_{∞} , измеряя ионный ток насыщения $j_{i0}^{(s)}$ и используя расчетную зависимость $j_{i0}^{(s)}(T_{\infty})$, представленную на рис. 6.

Аналогичный подход может быть использован при теоретическом рассмотрении работы зонда в сильноионизованной плазме высокого давления применительно к другим газам.

Работа выполнена при поддержке гранта Международного научного фонда и Российского Правительства (гранты № R5D000 и № R5D300).

Приложение

Ионизационная теплопроводность в полностью ионизованной плазме с двумя сортами ионов

Используем систему гидродинамических уравнений, описывающих ЛТР плазму, состоящую из электронов и двух сортов положительных ионов с зарядами z_1 и $z_2 = z_1 + 1$. Предполагая, что все частицы имеют максвелловские функции распределения по скоростям, наложенные на соответствующие дрейфовые скорости, получаем следующую систему уравнений:

$$-\nabla p_1 - z_1 e n_1 \nabla \varphi - \mathbf{R}_{12} + \mathbf{R}_{e1} = 0, \qquad (\Pi.1)$$

$$-\nabla p_2 - z_2 e n_2 \nabla \varphi + \mathbf{R}_{12} + \mathbf{R}_{e2} = 0, \qquad (\Pi.2)$$

$$p_e + p_1 + p_2 = p, \tag{\Pi.3}$$

$$n_e = z_1 n_1 + z_2 n_2, \tag{\Pi.4}$$

$$\frac{n_e n_2}{n_1} = K_{21}(p, T_e), \tag{\Pi.5}$$

$$n_1 \mathbf{V}_1 + n_2 \mathbf{V}_2 = \mathbf{0}, \tag{\Pi.6}$$

$$\mathbf{j} = e \Big(z_1 n_1 \mathbf{V}_1 + z_2 n_2 \mathbf{V}_2 - n_e \mathbf{V}_e \Big). \tag{\Pi.7}$$

Здесь n_i , p_i и V_i — концентрации, парциальные давления и дрейфовые скорости ионов (i = 1, 2); p — полное

давление плазмы; (p = const), $K_{21}(p, T)$ — константа равновесия; V_e — дрейфовая скорость электронов,

$$\mathbf{R}_{12} = \alpha_{12} M_{12} n_1 n_2 \big(\mathbf{V}_1 - \mathbf{V}_2 \big), \qquad (\Pi.8)$$

$$\mathbf{R}_{ei} = \alpha_{ei} m_e n_e n_i \left(\mathbf{V}_e - \mathbf{V}_i \right) \tag{\Pi.9}$$

- силы ион-ионного и электрон-ионного трения.

Отметим, что в принятой в этом разделе модели отсутствуют термосилы. Коэффициент ион-ионного трения равен [7]

$$\alpha_{12} = \frac{4\sqrt{2\pi}\,\Lambda(z_1e)^2(z_2e)^2}{3\sqrt{M_{12}}\,(kT)^{3/2}}.\tag{\Pi.10}$$

Коэффициент электрон-ионного трения, например α_{e1} , получается из (П.10) заменой $M_{12} \rightarrow m_e, z_2 = 1$.

Для вычисления ионизационной теплопроводности $\varkappa_{ion}(T)$ полагаем в (П.7) **ј** = 0. Поток тепла, связанный с переносом энергии ионизации, равен

$$\mathbf{q}_{\text{ion}} = \Delta E \cdot n_2 \mathbf{V}_2, \qquad (\Pi.11)$$

где ΔE — энергия ионизации иона с зарядом z_1 .

При j = 0 (П.11) может быть представлено в виде

$$\mathbf{q}_{\text{ion}} \equiv -\varkappa_{\text{ion}}(T)\nabla T. \qquad (\Pi.12)$$

Поскольку при **j** = 0 $R_{ei}/R_{12} \sim \sqrt{m_e/M}$, далее пренебрегаем \mathbf{R}_{ei} в (П.1), (П.2). Исключая \mathbf{V}_1 , \mathbf{V}_2 и $\nabla \varphi$ из (П.1), (П.2) и (П.6), получаем

$$\mathbf{q}_{\text{ion}} = \frac{\Delta E(-z_1 n_1 \nabla p_2 + z_2 n_2 \nabla p_1)}{\alpha_{12} M_{12} (n_1 + n_2) (z_1 n_1 + z_2 n_2)}.$$
 (II.13)

Здесь $n_i(T)$ и $p_i(T)$ — равновесные концентрации и парциальные давления, которые определяются из (П.3)-(П.5) как функции локальной температуры $T (T = T_e)$. Из (П.12) и (П.13) получаем

$$\varkappa_{\text{ion}}(T) = \frac{k\Delta E n_1(T) n_2(T) \left[z_1(1 + \hat{n}_2(T)) - z_2(1 + \hat{n}_1(T)) \right]}{\alpha_{12} M_{12} \left[n_1(T) + n_2(T) \right] \left[z_1 n_1(T) + z_2 n_2(T) \right]},$$
(II.14)

где $\hat{n}_i(T) \equiv d \ln n_i(T)/d \ln T$.

При $n_2 \ll n_1$ и $n_1 \ll n_2$, т.е. на краях температурного интервала, в котором существенна ионизационная теплопроводность, получаем соответственно (ср. с [11])

$$\varkappa_{\rm ion} \sim D_{21} n_2 k (\Delta E/kT)^2,$$

$$\varkappa_{\rm ion} \sim D_{12} n_1 k (\Delta E/kT)^2. \tag{\Pi.15}$$

Максимальное значение $\varkappa_{ion}(T)$ достигается при $n_1 \sim n_2 \sim n_e$. Здесь

$$\varkappa_{\rm ion} \sim D_{21} n_2 k (\Delta E/kT),$$
(II.16)

T.e. $\varkappa_{\rm ion}/\varkappa_e \sim (\Delta E/kT)(m_e/M)^{1/2}$.

Таким образом, в рассматриваемых условиях ионизационная теплопроводность мала.

Ситуация, однако, меняется в сильных магнитных полях, поперечных к потоку тепла, когда электроны замагничены и электронная теплопроводность малоэффективна.2

Список литературы

- [1] Ульянов К.Н. // ЖТФ. 1970. Т. 40. Вып. 4. С. 790-798.
- [2] Бакшт Ф.Г. // ЖТФ. 1973. Т. 43. Вып. 1. С. 214–217.
- [3] Бакшт Ф.Г., Дюжев Г.А., Митрофанов Н.К. и др. // ЖТФ. 1973. Т. 43. Вып. 12. С. 2574-2583.
- Бакшт Ф.Г., Дюжев Г.А., Школьник С.М., Юрьев В.Г. // [4] ЖТФ. 1973. Т. 43. Вып. 12. С. 2574-2583.
- Ульянов К.Н. // ТВТ. 1978. Т. 16. № 3. С. 492–496.
- Бакшт Ф.Г., Юрьев В.Г. // ЖТФ. 1979. Т. 49. Вып. 5. [6] C. 905–944.
- [7] Брагинский С.И. // Вопросы теории плазмы / Под ред.М.А. Леонтовича. М.: Атомиздат, 1983. 287 с.
- [8] Бакшт Ф.Г., Иванов В.Г. // ЖТФ. 1978. Т. 48. Вып. 4. C. 688-699.
- [9] Мак-Даниэль И., Мэзон Э. // Диффузия и подвижность ионов в газах. М.: Мир, 1976. 422 с.
- [10] Гуревич А.В., Питаевский Л.П. // ЖЭТФ. 1964. Т. 46. C. 1281–1284.
- [11] Елецкий А.В., Палкина Л.А., Смирнов Б.М. Явления переноса в слабоионизованной плазме. М.: Атомиздат, 1975. 333 c.
- [12] Бакшт Ф.Г., Дюжев Г.А., Циркель Б.И. и др. // ЖТФ. 1977. Т. 47. Вып. 8. С. 1630-1641.

20

² Ионизационная теплопроводность существенна, в частности, при диагностике ЛТР плазмы с замагниченными электронами с помощью длинного ($L_p/(R_p\omega\tau_p)\gg 1$) зонда, когда особенности зондовой характеристики во многом зависят от величины эффективной электронной теплопроводности в поперечном магнитном поле [12]. Здесь Lp и R_p — длина и радиус зонда, ω и τ_p — циклотронная частота и время релаксации импульса электронов.