Влияние γ -облучения на структурные и тепловые свойства кристалла $[N(C_2H_5)_4]_2$ ZnBr₄ в области фазового перехода первого рода

© А.У. Шелег, А.М. Наумовец, Т.И. Декола, Н.П. Теханович

Институт физики твердого тела и полупроводников Национальной академии наук Белоруссии, 220072 Минск, Белоруссия

E-mail: sheleg@ifttp.bas-net.by

(Поступила в Редакцию 22 февраля 2005 г.

В окончательной редакции 23 июня 2005 г.)

Рентгенографическим методом измерены параметры элементарной ячейки *a* и *c* на необлученных образцах кристалла $[N(C_2H_5)_4]_2 ZnBr_4$ в области температур 90–300 К и на облученных γ -квантами дозами 10⁶ и 5 · 10⁶ R образцах в интервале температур 270–300 К. По полученным данным определены коэффициенты теплового расширения α_a и α_c . Показано, что с увеличением температуры параметр *a* растет, а параметр *c* уменьшается. На кривых температурных зависимостей a(T) и c(T) в области фазового перехода (ФП) при T = 285 К обнаружены аномалии в виде скачков, а на кривых $\alpha_a(T)$ и $\alpha_c(T)$ — в виде максимума и минимума соответственно. Адиабатическим методом на необлученных и облученных образцах кристалла $[N(C_2H_5)_4]_2 ZnBr_4$ проведены измерения теплоемкости. На кривой $C_p(T)$ при T = 285 К обнаружен максимум. Показано, что как по рентгенографическим данным, так и по данным измерений теплоемкости после облучения кристалла γ -квантами температура ФП уменьшается.

PACS: 64.70.Kb, 61.80.Ed, 65.40.-b

1. Введение

Кристалл $[N(C_2H_5)_4]_2$ ZnBr₄ принадлежит к большому семейству кристаллов типа A_2BX_4 , характерной особенностью которых является наличие у большинства из них последовательности температурных фазовых переходов (ФП). Кроме неорганических кристаллов типа K₂ZnCl₄, Rb₂ZnBr₄, Rb₂ZnCl₄ и др. к этому семейству относится и целый ряд кристаллов, у которых металлический катион А замещается органическими комплексами типа $[NH_2(CH_3)_2]$, $[NH_2(C_2H_5)_2]$, $[N(C_2H_5)_4]$ и т.п. У кристаллов такого типа между молекулярными катионами и металлогалогенными комплексами образуются водородные связи, которые очень чувствительны к различного рода внешним воздействиям. Поэтому при изменении температуры в этих кристаллах часто происходит не только разупорядочение отдельных комплексов, но и радикальная структурная перестройка кристаллической решетки. Одним из таких кристаллов и является тетраэтиламмонийтетрабромид цинка [N(C₂H₅)₄]₂ZnBr₄. Следует отметить, что кристаллы, обладающие тетраметиламмониевой группой, такие как $[N(CH_3)_A]_2 B X_A$ (B = Zn, Fe, Co, Cd, Cu, Mn; X = Cl, Br), достаточно хорошо изучены, в то время как исследование кристаллов с тетраэтиламмониевой группой находится в начальной стадии. Извесно [1], что в кристалле $[N(C_2H_5)_A]_2ZnBr_A$ при $T_1 = 282.6 \,\mathrm{K}$ наблюдается $\Phi \Pi$ первого рода, а при $T_2 = 344 \,\mathrm{K} \,-\, \Phi \Pi$ второго рода. Кроме того, установлено, что ниже температуры $T_1 \approx 282.6 \,\mathrm{K}$ в нем возникает сегнетоэластическая фаза. Исследования спектров поглощения [2] подтвердили существование в кристалле $[N(C_2H_5)_4]_2$ ZnBr₄ ФП первого и второго рода при $T_1 = 281.5 \text{ K}$ и $T_2 = 350 \text{ K}$ соответственно.

Следует отметить, что сведения о рентгенографических исследованиях данного кристалла в литературе отсутствуют.

С учетом этого обстоятельства, а также для уточнения температуры ФП при $T_1 = 281.5$ К и выяснения влияния на него дефектов кристаллической решетки в настоящей работе проведены исследования кристаллографических параметров и теплоемкости кристаллов $[N(C_2H_5)_4]_2$ ZnBr₄ в зависимости от температуры и дозы γ -облучения. В связи с ограниченными экспериментальными возможностями фазовый переход при $T_2 = 350$ К не исследовался.

2. Методика эксперимента

Кристаллы $[N(C_2H_5)_4]_2ZnBr_4$ выращивались из водных растворов солей $N(C_2H_5)_4Br_2$ и ZnBr_2, взятых в стехиометрическом соотношении, методом медленного испарения при комнатной температуре. В течение ≈ 30 дней вырастили оптически однородные кристаллы размером $\approx 5 \times 7 \times 8$ mm. Полученные кристаллы имели хорошо развитую кристаллографическую огранку, и по ее характеру (сравнивая с кристаллами уже известной кристаллической структуры) их можно отнести к тетрагональной сингонии. Выращенные кристаллы имели форму усеченного октаэдра с кристаллографическими плоскостями (001), (011), (101), выходящими на поверхность.

Рентгенографические исследования параметров элементарной ячейки проводились на рентгеновском дифрактометре ДРОН-3 в интервале температур 90–300 К с помощью FeK_a-излучения. Образцами служили монокристаллические пластинки $[N(C_2H_5)_4]_2ZnBr_4$ размером 5 × 4 × 2 mm, поверхности которых совпадали с кристаллографическими плоскостями (001) и (110). Плоскость (100) выводилась на поверхность образца рентгенографическим методом с точностью 7–10'. Исследование облученных образцов кристаллов $[N(C_2H_5)_4]_2ZnBr_4$ проводилось в интервале температур 270–300 K, т.е. в окрестности ФП при T = 285 K. Образцы облучались при комнатной температуре на γ -установке от источника Co⁶⁰ с мощностью дозы облучения ~ 80 R/s.

Измерение температурных зависимостей параметров элементарной ячейки и определение значений коэффициентов теплового расширения (КТР) по ним проводились по методике, описанной в [3].

Определенные нами параметры элементарной ячейки кристалла $[N(C_2H_5)_4]_2$ ZnBr₄ при комнатной температуре имели следующие значения: $a = 8.937 \pm 0.005$ Å, $c = 15.961 \pm 0.004$ Å.

Измерения интегральной интенсивности рефлекса (006) проводились в области температур 270–290 К на необлученном образце. Измерения осуществлялись при постоянном временном интервале набора импульсов за 10 s в угловом интервале $\Delta \theta = 1.5^{\circ}$, фон вычитался.

Теплоемкость измерялась с помощью вакуумного адиабатического калориметра при дискретной подаче тепла на образец (m = 6.74 g) через интервалы 1–1.5 К. Скорость нагрева образца была 0.03-0.08 К/min. В области ФП измерения проводились через температурные интервалы 0.2-0.5 К. Температура образца контролировалась платиновым термометром сопротивления. Погрешность измерения теплоемкости, оцененная по образцовой мере из кварца КВ, не превышала 0.3%.

Результаты исследований и их обсуждение

На рис. 1, 2 приведены температурные зависимости параметров элементарной ячейки а и с, а также температурные зависимости КТР α_a и α_c необлученного кристалла [N(C₂H₅)₄]₂ZnBr₄ в области температур 90-300 К. Из этих рисунков видно, что параметр элементарной ячейки а с ростом температуры плавно увеличивается, в то время как параметр элементарной ячейки с уменьшается с ростом температуры. В области $\Phi\Pi$ при $T \approx 285 \,\mathrm{K}$ на кривых a(T) и c(T) наблюдаются аномалии в виде скачков. Интересно отметить, что величины скачков при $T \approx 285 \,\mathrm{K}$ на температурных зависимостях параметров элементарной ячейки а и с достаточно большие. Однако если параметр а скачком увеличивается на величину $\Delta a \approx 0.094$ Å, то параметр *c* уменьшается на $\Delta c \approx 0.079$ Å. В результате объем элементарной ячейки при этом ФП изменяется не так значительно: его изменение равно $\Delta V \approx 21 \text{ Å}^3$, поэтому кристаллы при таких больших линейных изменениях не разрушаются.

Температурные зависимости КТР вдоль основных кристаллографических осей *а* и *с* кристалла

Рис. 1. Температурные зависимости параметра a элементарной ячейки (1 — экспериментальные точки, 2 — аппроксимация экспериментальных данных) и КТР α_a (3).

Рис. 2. Температурные зависимости параметра c элементарной ячейки (1 — экспериментальные точки, 2 — аппроксимация экспериментальных данных) и КТР α_c (3).

 $[N(C_2H_5)_4]_2ZnBr_4$ приведены на рис. 1 и 2 соответственно. Как видно из этих рисунков, значения КТР α_a в области температур 90–285 К практически не изменяются с ростом температуры, в то время как значения КТР α_c уменьшаются. В точке ФП при $T \approx 285$ К на кривой $\alpha_a(T)$ наблюдается резкий максимум, а на кривой $\alpha_c(T)$ — минимум. Следует отметить, что КТР α_c во всей исследованной области температур имеет отрицательные значения, а α_a — положительные, причем $|\alpha_a| > |\alpha_c|$.

На рис. З приведены полученные температурные зависимости параметров элементарной ячейки *a* и *c* кристаллов $[N(C_2H_5)_4]_2ZnBr_4$, облученных дозами 10⁶ и 5 · 10⁶ R в области температур 270–300 К. Видно, что с ростом дозы облучения аномалии на кривых a(T) и c(T) сдвигаются в область более низких температур на $\Delta T \approx 2.5$ и ≈ 4 K соответственно, при этом величины

скачков в области ФП при $T \approx 285 \,\mathrm{K}$ практически не изменяются.

Зависимость интегральной интенсивности брэгговского рефлекса (006) от температуры в области 270–300 К приведена на рис. 4. Как видно из этого рисунка, в областях температур 270–285 и 285–300 К интегральная интенсивность не испытывает заметных изменений, а в области ФП при $T \approx 285$ К наблюдается значительное скачкообразное ее увеличение с ростом температуры. Резкое изменение интегральной интенсивности в области ФП свидетельствует об изменении структурной амплитуды, что связано с существенной перестройкой

Рис. 3. Температурные зависимости параметров *a* и *c* элементарной ячейки в области фазового перехода до и после облучения γ -квантами. *1* — экспериментальные точки для необлученных кристаллов, *2* — аппроксимация экспериментальных данных, *3*, *4* — экспериментальные точки для кристаллов, облученных дозами 10^6 и 5 · 10^6 R соответственно.

Рис. 4. Температурная зависимость интенсивности рефлекса (006) в области фазового перехода. *1* — экспериментальные точки, *2* — аппроксимация экспериментальных данных.

Рис. 5. Температурная зависимость теплоемкости. *1, 2* — экспериментальные точки для необлученных и облученных дозой 10⁶ R кристаллов соответственно.

кристаллической структуры кристалла при этой температуре.

Кроме рентгенографических исследований в температурной области существования ФП (270–300 K) проведены измерения теплоемкости. На рис. 5 приведены температурные зависимости теплоемкости C_p необлученного и облученного γ -квантами дозой 10⁶ R кристаллов [N(C₂H₅)₄]₂ZnBr₄. При $T_1 = 285$ K на кривой $C_p(T)$ наблюдается аномалия в виде четкого симметричного максимума, характерная для ФП первого рода. При облучении исследуемого образца [N(C₂H₅)₄]₂ZnBr₄ дозой 10⁶ R аномалия, соответствующая температуре ФП, сдвигается на 2.5 K в область более низких температур и уменьшается по величине.

Изменения энтропии перехода при $T_1 = 285$ K, определенные нами, равны $\Delta S = 262.3$ и 81.3 J/(K · mol) для необлученного и облученного образцов соответственно.

Следует отметить, что исследования теплоемкости облученных и необлученных образцов кристалла $[N(C_2H_5)_4]_2$ ZnBr₄ подтверждают результаты, полученные рентгенографическим методом.

В результате облучения кристаллов γ -квантами увеличивается степень дефектности кристаллической решетки и происходит разрыв водородных связей. Данное обстоятельство приводит к тому, что упорядочение органических комплексов и перестройка кристаллической структуры происходят при более низкой температуре, чем для необлученных кристаллов.

Таким образом, подтверждено, что $\Phi\Pi$ в исследованном кристалле при T = 285 К является переходом первого рода. При облучении кристалла γ -квантами $\Phi\Pi$ смещается в область более низких температур с ростом дозы облучения.

Список литературы

- [1] О.Г. Влох, И.И. Половинко, В.И. Мокрый, С.А. Свелеба. Кристаллография **36**, *1*, 227 (1991).
- [2] О.Г. Влох, В.И. Мокрый, И.И. Половинко, С.А. Свелеба. ЖПС 54, 2, 328 (1991).
- [3] А.У. Шелег, А.М. Наумовец. ФТТ 46, 7, 1280 (2004).