05

Зависимость физических свойств кристаллов нитрида бора от их размеров

© Г.П. Богатырева, Е.Р. Зусманов, Н.В. Котова, В.М. Маевский, А.Б. Ройцин Институт физики полупроводников АН Украины, 252650 Киев, Украина

(Поступило в Редакцию 10 января 1996 г.)

Изучены физические свойства порошкообразных образцов высокопрочного кубического нитрида бора при размерах частиц от 2 до 200 мкм. Исследованы примесный (элементный) состав объема, состав поверхности, магнитные, электрофизические, радиоспектроскопические и адсорбционно-структурные характеристики, плотность и физико-химические свойства материала. Показана значительная зависимость физических свойств от размеров частиц порошка. Обсуждается природа наблюдавшихся эффектов.

1. В последние годы интенсивно исследуются свойства дисперсных сверхтвердых материалов, нашедших широкое применение в машиностроении. К числу таких веществ относится и кубический нитрид бора (КНБ). Достаточно сказать, что КНБ — наиболее термостойкий материал и, как правило, применяется там, где не может использоваться алмаз (при больших нагрузках и высоких температурах).

Кроме того, порошкообразные образцы в силу различных причин широко используются для изучения физических свойств монокристаллов, в частности для исследования их дефектной структуры [1,2]. При этом принято считать, что измельчение кристаллов не должно оказывать существенного влияния на их объемные свойства. Так, содержащиеся в монокристалле объемные центры (дефекты) не должны менять свою структуру и симметрию. Это условие является необходимым при использовании порошков для изучения объемных свойств кристаллов.

Вместе с тем имеются доказательства того, что в ряде случаев свойства измельченных образцов существенно отличаются от свойств образцов больших размеров. Так, в работах [3] было показано, что при измельчении щелочно-галоидных кристаллов с примесью марганца аксиальные центры на основе иона Mn²⁺ переходят в кубические: компенсирующая избыточный заряд иона Mn²⁺ вакансия отдаляется от последнего. Иной эффект наблюдался при измельчении образцов алмаза [4,5]: без существенного изменения параметров спектра электронного парамагнитного резонанса (ЭПР) изменялась его интенсивность. В работах [6-8] отмечалась зависимость интенсивности линий ЭПР "оборванных связей" на поверхности кремния от размеров зерен алмазной пудры, использовавшейся для полировки поверхности. И наконец, отметим работы, в которых обнаружена зависимость ширины линии ЭПР примесных ионов Cr^{3+} и Fe^{3+} в корунде от размеров образцов последнего [9].

Эти размерные эффекты показывают, что имеется влияние поверхности на свойства вещества и это влияние можно и необходимо учитывать при исследовании этих свойств. С другой стороны, изучение порошкообразных образцов позволяет исследовать структуру и свойства

самой поверхности. Данная работа посвящена изучению физических свойств порошкообразных образцов высокопрочного КНБ в зависимости от размеров их частиц. Были изучены примесный элементный состав, включая состав поверхности, адсорбционно-структурные, физикохимические, магнитные, электрофизические и радиоспектроскопические свойства.

2. В качестве образцов использовались шлифпорошки марки КР и микропорошки (КМ) с частицами разных размеров (табл. 1). Образцы изготовлялись в Институте сверхтвердых материалов НАН Украины из гексагональной модификации нитрида бора (ВN) при высоких давлениях и температуре. В качестве стимулятора процесса добавлялся магний. Примесный состав образцов определялся методом искровой масс-спектроскопии. Результаты этого исследования приведены в табл. 1. Состав поверхности был определен методом электронной оже-спектроскопии. Адсорбционно-структурные характеристики рассчитывались по методу Брунауэра, Эммета, Теллера (БЭТ) с использованием изотерм, полученных способом низкотемпературной адсорбции азота на приборе Акусорб [10].

В табл. 2 приведены удельная поверхность ($S_{\rm E3T}$), суммарный объем пор V_S и плотность вещества ρ . В этой же таблице приведены результаты измерения физикохимических, магнитных и электрофизических параметров: свободной энергии насыщения парами воды ΔG_S , удельной энергии насыщения парами воды ΔG_{Syg} , характеризующих степень гидрофильности, удельной магнитной восприимчивости χ , удельного сопротивления ρ' и тангенса угла диэлектрических потерь $\operatorname{tg} \delta$.

3. Наряду с отмеченными выше методами в качестве структурно-чувствительного метода был использован и метод электронного парамагнитного резонанса, который позволяет изучать на микроуровне структуру дефектов в объеме и на поверхности [11]. В частности, наблюдая за изменениями спектров ЭПР при различных внешних воздействиях на образец (температура, газы, облучение и т.д.), можно делать выводы о модели поверхностных дефектов и об изменениях в их структуре в результате такого воздействия. Подобные исследования проводились, например, на кремнии с целью установления природы

Обозначение	Наименование образца, размеры его частиц, мкм	Примесный состав, отн.%					Сост	Состав поверхности, ат.%			
образца		Si	Fe	Mg	Al	Ca	Ti	В	N	C	O
а	КР 200/160 (партия 1)	0.09	0.02	0.8	0.01	0.05	0.01	20.5	16.8	42.9	19.8
b	KP 100/80	0.10	0.02	0.56	0.01	0.04	0.01	27.6	19.5	41.6	11.2
c	KM 20/14	0.07	0.01	0.23	0.01	0.05	0.01	37.9	25.7	30.9	5.5
d	KM 7/5	0.09	0.01	0.26	0.01	0.05	0.01	31.5	25.5	36.3	6.8
e	KM 5/3	0.03	0.01	0.23	0.01	0.05	0.01	47.3	29.5	17.1	6.1
f	KM 3/2	0.02	0.04	0.11	0.01	0.04	0.01	47.0	30.9	15.8	6.3
g	КР 200/160 (партия 2)	0.09	0.02	0.8	0.01	0.05	0.01	20.5	16.8	42.9	19.8
h^*	"g", измельченный	_	_	_	_	_	_	_	_	_	_

Таблица 1. Примесный состав и состав поверхности порошков КНБ

Таблица 2. Адсорбционно-структурные, физико-химические, магнитные и электрофизические характеристики порошков КНБ

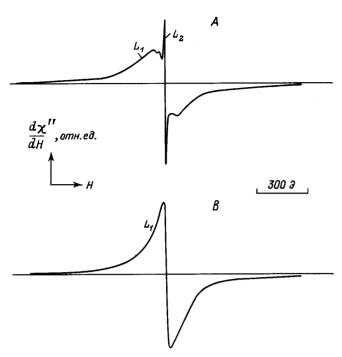
Образец	ρ, _{Γ/CM} ³	$S_{\text{БЭТ}},$ M^2/Γ	V_S , 10^{-5} мл/г	$\Delta G_{S},$ мДж/моль \cdot г	$-\Delta G_{\it S}$, уд, мДж/моль м 2	$10^{-8} \mathrm{m}^3/\mathrm{kg}$	ρ', 10 ¹³ Ом	$tg \delta,$ 10^{-4}
а	3.52	0.014	47.21	-2.96	197.33	8.2	6.6	1066
b	3.51	0.018	49.23	-3.13	173.89	3.3	2.2	1307
c	3.50	0.167	62.99	-0.65	3.89	0.9	3.6	443
d	3.49	1.127	645.1	-6.42	5.7	2.5	2.8	224
e	3.53	1.431	435.6	-9.64	9.64	2.5	3.3	341
f	3.54	1.816	728.6	-4.7	4.7	1.9	2.6	363
g	3.52	0.014	47.21	-2.96	197.33	8.2	6.6	1066
h	_	_	_	_	_	_	_	_

Таблица 3. Параметры линий L_1 и L_2 спектров ЭПР

Образец	$\Delta H_1, \Im$	$\Delta H_2, \Im$	$I_1(S_1)$, отн. ед.	I_2 , отн. ед.	<i>g</i> ₁	<i>g</i> ₂
а	108 ± 15	5.6 ± 0.5	0.33(0.76)	0.66	2.0026 ± 0.0015	2.0030 ± 0.0005
b	114 ± 5	5.6 ± 0.5	0.36(0.74)	0.39	2.0040 ± 0.0015	2.0032 ± 0.0005
c	45 ± 5	_	0.72(0.92)	_	2.0061 ± 0.0008	_
d	41 ± 5	_	1.00(0.95)	_	2.0062 ± 0.0008	_
e	40 ± 5	_	0.91(0.68)	_	2.0062 ± 0.0008	_
f	42 ± 5	_	0.58(0.44)	_	2.0057 ± 0.0008	_
g	116 ± 15	5.6 ± 0.5	0.31(1.00)	0.61	2.0040 ± 0.0015	2.0029 ± 0.0005
h	41 ± 5	6.5 ± 0.5	0.38(0.72)	0.68	2.0052 ± 0.0015	2.0038 ± 0.0005

 Π р и м е ч а н и е . Значения I_1 и I_2 соответствуют пиковым интенсивностям линий, а значения S_1 в скобках — их интегральным интенсивностям.

дефекта (с g-фактором, равным 2.0055), именуемого "оборванная связь". Идентификация объемных дефектов по ряду причин [11] значительно проще, чем поверхностных.


Измерения проводились на радиоспектрометре ЭПР трехсантиметрового диапазона РЭ-1306 при комнатной температуре. Весь спектр ЭПР в общем случае является суперпозицией трех типов линий. Линия L_1 с g-фактором около 2 и шириной $\Delta H = 35-130$ Э. Линия L_2 — узкая линия ($\Delta H = 5-7$ Э) с $g \approx 2$. Линия L_3 наблюдалась в широкой области резонансных магнитных полей (от 0 до 6000 Э) и имеет ΔH порядка нескольких тысяч эрстед. Некоторые из линий L_1 , L_3 имеют многокомпонентную структуру. Протяженность линий L_1 и L_2 в спектре

ЭПР (сотни эрстед) невелика по сравнению с областью, занимаемой в нем линией L_3 (тысячи эрстед), а пиковые интенсивности линий L_1 и L_2 примерно на порядок больше пиковой интенсивности линии L_3 . Поэтому соответствующие им спектры представлены ниже раздельно и с разными масштабами по осям координат.

Спектры ЭПР шлиф- и микропорошков имеют качественные отличия, в то время как вид спектра для порошков в пределах каждого типа при разных размерах частиц аналогичен и отличается лишь шириной и интенсивностью. Так, спектры от шлифпорошков содержат линии L_1 и L_2 , причем L_1 имеет слабо выраженную структуру. В случае микропорошков линия L_2 не наблюдается, а линия L_1 бесструктурна. Типичный вид спектра для шлифпорошков приведен на рис. 1,A (образец a), а для

^{*}Процентный состав содержащихся в нем частиц разных размеров: $d \approx 200$ мкм — 24%, $d \approx 100$ мкм — 24%, $d \approx 60$ мкм — 48%, $d \approx 20$ мкм — 4%

¹ Расстояние между максимумами крутизны,

Рис. 1. Типичный вид линий L_1 и L_2 спектров ЭПР кубического нитрида бора.

микропорошков — на рис. 1, B (образец c) (обозначения образцов см. в табл. 1). Параметры линий L_1 и L_2 для шлиф- и микропорошков сведены в табл. 3. Форма линии L_1 близка к лоренцевой; при уменьшении размеров частиц порошка ее легче аппроксимировать суммой двух лоренцианов с разными значениями ширины. На рис. 2 представлена зависимость параметров линии L_1 от размеров образцов d; при этом в качестве d выбиралось среднеарифметическое значение границ размеров частиц (так, в случае KP 200/160 $d=180\,\mathrm{Mkm}$). И наконец, на рис. 3 приведены линии L_3 , параметры которых систематизированы в табл. 4.

4. Переходя к обсуждению результатов, прежде всего отметим, что ранее методом ЭПР исследовались как гексагональный BN [12], так и кубический [13–19]. Приведенные в [13–19] спектры ЭПР либо их основные параметры (g-фактор, ΔH) в целом близки к приведенным нами для линий L_1 и L_2 (табл. 3). Имеющиеся отличия, в ряде случаев существенные (например, отличие ΔH для L_1 в 3 раза), по-видимому, связаны с различием в размерах порошинок, данные о которых обычно не приводятся. Для наблюдавшейся нами линии L_3 мы не нашли в литературе аналогов в спектрах любой из модификаций BN.

Наиболее характерными дефектами в гексагональном BN являются так называемые одно- и трехборовые центры, в которых неспаренный электрон сверхтонко взаимодействует либо с одним, либо с тремя ядрами атомов бора (10 B, 11 B). Установлена пока лишь модель трехборо-

вого центра — положительно заряженная вакансия азота, захватившая электрон (аналог F-центров в щелочногалоидных кристаллах). По аналогии с этой моделью для кубического BN был предложен [15] четырехборовый центр: положительно заряженная вакансия азота, находящаяся в тетраэдрическом окружении 4 атомов бора, захватившая электрон. Этот центр, как предполагается, ответствен за линии, аналогичные нашей узкой линии L_2 . И хотя сверхтонкая структура ее не разрешается (в отличие от центров в гексагональном ВN), модель убедительна тем, что и в кубическом BN азот несет на себе отрицательный заряд [20]. По-видимому, окончательно модель может быть установлена экспериментами по двойному электронно-ядерному резонансу [21]. Модель центра, ответственного за широкую линию (аналог L_1), пока неизвестна. Предполагается лишь, что она может быть связана со сложными дефектами (группами F-центров в комбинации с различными примесями), природа которых зависит от способа получения образцов и последующего воздействия на них различных внешних факторов.

Линии L_3 в BN обнаружены нами впервые. Но подобные линии наблюдались раньше при изучении синтетических алмазов [22,23]. Они были отнесены к ферромагнитным включениям, добавляемым в исходную смесь в качестве среды кристаллизации при синтезе алмазов. Учитывая внешнее сходство спектров, показанных на рис. 3, со спектрами, представленными в [22,23], способ приготовления образцов BN и анализ их элементного состава (табл. 1), можно заключить, что наблюдавшиеся нами линии L_3 связаны с металлическими включениями.

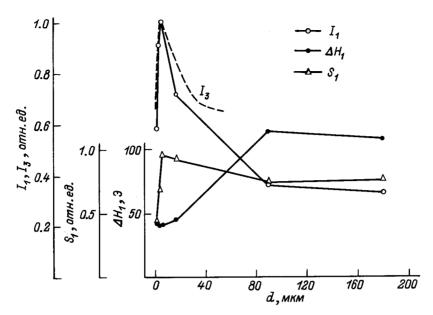
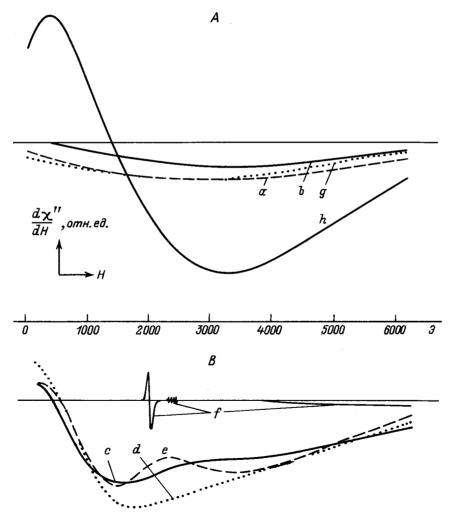

Из рис. 1–3 и табл. 3,4 видно, что спектры ЭПР от образцов разных размеров в общем случае сильно отличаются друг от друга. Так, интенсивность линий L_1 имеет максимум вблизи $d \approx 6$ мкм, в то время как ширина ее, оставаясь почти постоянной при малых значениях d, резко возрастает с ростом d. Сильно отличаются и спектры ЭПР ферромагнитных включений от образцов разных размеров (рис. 3). Здесь можно выделить три группы линий: от образцов a, b и g; от

Таблица 4. Параметры линий L_3 спектров ЭПР


Образец	H_0, \mathfrak{B}	g_{eff}	ΔH , \ni	Примечание
а	_	_	2700*	
b	650	10.4	3400*	
c	500	13.5	1750*	Имеется структура
d	600	11.2	1500*	» »
e	630	10.7	1800	
f	2120	3.18	60	Имеется еще четырех-
	4000	1.685	6500*	компонентная линия
				вблизи $H = 2430 \Im$
g	_	_	2650*	
$\stackrel{\circ}{h}$	1500	4.49	2600	

 Π р и м е ч а н и е . H_0 — значение магнитного поля при нулевой интенсивности производной от линии поглощения; значения ΔH , отмеченные знаком звездочкой, соответствуют положению нижнего экстремума.

 $[\]overline{\ \ \ \ \ ^{2}}$ Ссылки на другие работы, посвященные этой модификации BN, см. [12]

Рис. 2. Зависимость параметров линии L_1 от размеров частиц порошка кубического нитрида бора (обозначения параметров см. в табл. 2).

Рис. 3. Линии L_3 спектров ЭПР кубического нитрида бора: A — шлифпорошки, B — микропорошки (обозначения образцов см. в табл. 1).

образцов c,d,e,h; от образца f. Внутри каждой группы, определяемой размерами частиц, спектры качественно схожи. Параметры же линий L_2 слабо зависят от размеров образцов. Тот факт, что линии L_2 практически не наблюдаются при малых размерах частиц, по-видимому, связан с тем, что они "тонут" в линиях L_1 , интенсивности которых резко возрастают с уменьшением размеров частиц. Отсюда можно сделать вывод, что линии L_2 связаны с парамагнитными центрами, расположенными в основном в объеме, в то время как линии L_1 и L_3 — с центрами, расположенными вблизи поверхности.

Данные ЭПР коррелируют с данными других методик. Так, большие значения тангенса угла диэлектрических потерь свидетельствуют о значительной дефектности кристаллов. В спектрах ЭПР это соответствует большим ширинам и меньшим значениям интенсивностей линий. Отметим при этом, что максимум интенсивности линии L_1 совпадает с минимумом $\operatorname{tg} \delta$. Большие величины удельной поверхности ВN при малых значениях d благоприятствуют увеличению количества свободных связей, что приводит к росту числа неспаренных электронов и, как следствие этого, к возрастанию интенсивности линии L_1 , наблюдаемому при уменьшении d. К этому же эффекту в ЭПР приводит увеличение числа и объема пор.

На рис. 2 наряду с параметрами линии L_1 приведен график I_3 , отражающий зависимость интенсивности линии ЭПР парамагнитных центров типа "оборванная связь" на поверхности кремния от размеров зерен алмазной пудры, использовавшейся для полировки поверхности Si с целью создания на ней этих центров. График I_3 получен в работе [6] и подтвержден в [8]. Максимумы кривых I_1 и I_3 совмещены нами по оси ординат для наглядности. Видно, что характер кривых I_1 и I_3 одинаков. При этом их экстремумы находятся при одном и том же значении $d \approx 6$ мкм, что указывает на общность явления. В общих чертах его можно трактовать так. С уменьшением размеров частиц общая поверхность растет и вместе с ней увеличивается сигнал ЭПР. Но при размерах (несколько мкм), соответствующих приповерхностной области [24], из-за роста площади соприкосновения частиц, приводящего к уменьшению открытой поверхности, и частичного нарушения ее структуры, парамагнитные центры исчезают, что приводит к уменьшению сигнала ЭПР.

Работа выполнена при содействии Государственного комитета Украины по науке и технологиям.

Список литературы

- [1] Жидомиров Г.М., Лебедев Я.С., Добряков С.Н. и др. Интерпретация сложных спектров ЭПР. М.: Наука, 1975. 216 с.
- [2] Власова М.В., Каказей Н.Г. ЭПР в механически разрушенных твердых телах. Киев: Наукова думка, 1979. 200 с.
- [3] Маевский В.М., Витриховский Н.И., Зусманов Е.Р. и др. // УФЖ. 1993. Т. 38. № 3. С. 442–443. Письма в ЖТФ. 1993. Т. 19. Вып. 8. С. 46–49. ЖТФ. 1994. Т. 64. Вып. 5. С. 107–109.

- [4] Smith M.J.A., Angel B.R. // Phil. Mag. 1967. Vol. 15. N 136. P. 783–796.
- [5] Loubser J.H.N. // Sol. St. Commun. 1977. Vol. 22. N 12. P. 767–770.
- [6] Taloni A., Rogers W.J. // Surf. Sci. 1970. Vol. 19. N 2. P. 371– 379
- [7] Герасименко Н.Н., Двуреченский А.В., Смирнов Л.С. // ФТП. 1972. Т. 6. Вып. 5. С. 987–989.
- [8] Lemke B.P., Haneman D. // Phys. Rev. B. 1978. Vol. 17. N 4. P. 1893–1907.
- [9] De Biasi R.S., Rodrigues D.C.S. // J. Mater. Sci. 1981. Vol. 16.
 N 4. P. 968–972. J. Mater. Sci. Lett. 1983. Vol. 2. N 5. P. 210–212.
- [10] Алешин В.Г., Смехнов А.А., Богатырева Г.П., Крук В.Б. Химия поверхности алмаза. Киев: Наукова думка, 1990. 200 с
- [11] Ройцин А.Б., Маевский В.М. // УФН. 1989. Т. 159. Вып. 2.
 С. 297—333. Радиоспектроскопия поверхности твердых тел.
 Киев.: Наукова думка, 1992. 268 с.
- [12] *Кабышев А.В., Кецкало В.М., Суров Ю.П.* и др. // Порошковая металлургия. 1992. № 8. С. 27–31.
- [13] *Нешпор В.С., Самсонов Г.В., Фельдгун Л.И.* и др. // Изв. АН СССР. Сер. Неорган. материалы. 1971. Т. 7. № 1. С. 173–174.
- [14] *Власова М.В., Каказей Н.Г., Саввакин Г.И.* // Изв. АН СССР. Сер. Неорган. материалы. 1980. Т. 16. № 12. С. 2160–2163.
- [15] *Шульман Л.А., Тихоненко К.А., Герасименко В.К.* // Влияние высокого давления на структуры и свойства материалов. Киев: ИСМ АН УССР, 1983. С. 29–34. УФЖ. 1985. Т. 30. № 4. С. 578–582.
- [16] Шипило В.Б., Рудь А.Е., Леушкина Г.В. и др. // Изв. АН СССР. Сер. Неорган. материалы. 1987. Т. 23. № 12. С. 1993–1997. Физ. и техн. высокого давления. 1988. Вып. 28. С. 29–31.
- [17] Solozhenko V.L., Chernyshev V.V., Fetisov G.V. et al. // J. Phys. Chem. Sol. 1990. Vol. 51. N 8. P. 1011–1012.
- [18] *Шипило В.Б., Рудь А.Е., Аниченко Н.Г.* и др. // Изв. АН СССР. Сер. Неорган. материалы. 1990. Т. 26. № 8. С. 1643—1646. Физ. и техн. высокого давления. 1990. Вып. 33. С. 43—45
- [19] Богатырева Г.П., Котова Н.В., Гвяздовская В.Л. и др. // Докл. АН Украины. Сер. Мат., естеств., техн. науки. 1994. № 10. С. 116–120.
- [20] Coulson C.A., Redei L.B., Stocker D. // Proc. Roy. Soc. Ser. A. 1962. Vol. 270. N 1342. P. 357–372.
- [21] Глинчук М.Д., Грачев В.Г., Дейген М.В. и др. Электрические эффекты в радиоспектроскопии. М.: Наука, 1981. 332 с.
- [22] *Богатырева Г.П., Владимирова Л.Ю., Зусманов Е.Р.* и др. // Поверхность. 1995. № 1. С. 95–101; там же. № 5. С. 7–13.
- [23] Богатырева Г.П., Базалий Г.А., Зусманов Е.Р. и др. // ЖТФ. 1995. Т. 65. Вып. 2. С. 55–62.
- [24] *Маевский В.М., Витриховский Н.И., Моздор Е.В.* и др. // Поверхность. 1989. № 1. С. 128–134.