01;04

Расчет параметров электронного ансамбля в гелии при однородных электрических полях методом Монте-Карло

С А.А. Абрамов, А.И. Мащенко, М.Ф. Сэм, Г.Н. Толмачев

Институт общей физики РАН, 117942 Москва, Россия

(Поступило в Редакцию 28 июля 1995 г.)

В данной работе проведены компьютерные эксперименты по моделированию движения ансамбля электронов в гелии при однородных электрических полях от 30 до 200 В/см/Тор. В разрядном промежутке найдена зона, где нормированная на единицу функция распределения электронов и усредненные по ней параметры перестают зависеть от координаты. Для этой зоны рассчитаны основные параметры электронного ансамбля (средняя энергия, скорость дрейфа, частоты процессов и др.).

Целью данной работы являлось проведение компьютерных экспериментов по моделированию движения ансамбля электронов в гелии в однородных электрических полях. В основе расчетов лежала следующая модель: в газоразрядной трубке между анодом и катодом находится газ (гелий) с заданным давлением *p*, электрическое поле *E* во всем газоразрядном промежутке однородно и направлено перпендикулярно плоскостям поверхности электродов, с катода с заданной функцией распределения эмиттируются электроны, которые под действием электрического поля дрейфуют к аноду, испытывая три вида соударений с атомами газа: упругие, возбуждающие, ионизирующие. За счет процессов ионизации возникают электронные лавины. Определяется поведение основных кинетических и столкновительных характеристик электронного ансамбля в широком диапазоне электрических полей.

Для моделирования столкновительного дрейфа электронов в электрическом поле сформировалось три подхода: прямое решение кинетического уравнения Больцмана с различными приближениями функции распределения электронов по энергии (ФРЭЭ) [1], метод частиц в ячейках, дающий функцию Грина для перехода электронов в различные ячейки фазового пространства [2,3], и метод статистического моделирования Монте-Карло, свободный от приближений ФРЭЭ [4]. Последний метод позволяет рассчитывать любые усредненные по ансамблю параметры и обладает высокой контролируемой точностью.

В данной работе в качестве метода расчета кинетических характеристик был выбран метод Монте-Карло. Основа метода — моделирование движения отдельных электронов лавины в газе в электрическом поле. Учет столкновений проводился при помощи техники нулевых сечений, взятой из [4]. Сечения возбуждения и ионизации (включая дифференциальные сечения ионизации) взяты из [5], упругие сечения из [6]. Аппроксимация для дифферениального сечения упругого удара с атомами гелия взята из [4]

$$\sigma(\varepsilon, \phi) = \exp\left(-k\sqrt{\varepsilon}\sin(\phi/2)\right),$$

где ε — энергия налетающего электрона, ϕ — угол рассеяния.

Коэффициент k для этой формулы, не указанный авторами, был выбран нами равным 0.5, что хорошо согласовывалось с экспериментальными данными для дифференциальных упругих сечений [6], начиная с энергий порядка потенциала ионизации. Расчет при таком k давал значения дрейфовой скорости электронов, максимально близкий к эксперименту. С увеличением k растет анизотропия рассеяния, что приводит к значительному увеличению дрейфовой скорости электронов, поскольку упругий удар является основным столкновительным процессом электронов в гелии для рассматриваемого ниже диапазона параметра E/p. Распределение электронов, покидающих катод, по энергии и углу взято из [4].

Рис. 1. Зависимость средней энергии от координаты при различных полях. 1—30, 2—170 В/см.

Рис. 2. Зависимость скорости дрейфа (1) и ионизационного коэффициента (2) от поля. Точки — экспериментальные значения.

Число эмиттируемых электронов выбирается таким, чтобы обеспечить необходимую статистику для расчета параметров электронного ансамбля в различных сечениях газоразрядного промежутка с необходимой вычислительной точностью (не хуже 1%). Моделирование проводится для каждого электрона лавины, пока он не достигнет анода или в результате обратного рассеяния не попадет на катод.

Таблица 1. Компоненты скорости и энергии в зависимости от поля

E/p	v_\parallel	v_d	v_{\perp}	v	ε_{\parallel}	ε
30	0.97	0.25	1.48	1.90	4.1	11.8
40	1.05	0.34	1.56	2.02	4.8	13.5
50	1.12	0.42	1.64	2.14	5.6	15.2
60	1.21	0.52	1.72	2.27	6.5	17.1
70	1.27	0.60	1.79	2.37	7.3	19.9
80	1.36	0.69	1.86	2.49	8.3	21.1
90	1.43	0.78	1.92	2.59	9.3	23.0
100	1.51	0.86	1.99	2.70	10.4	25.2
110	1.57	0.95	2.05	2.80	11.6	27.3
120	1.69	1.07	2.12	2.94	13.1	30.2
130	1.76	1.14	2.18	3.03	14.3	32.4
140	1.85	1.26	2.24	3.15	15.9	35.1
150	1.94	1.34	2.28	3.25	17.4	37.6
160	2.02	1.43	2.36	3.37	19.0	40.6
170	2.13	1.56	2.42	3.50	21.3	44.2
180	2.25	1.68	2.45	3.61	23.5	47.1
190	2.30	1.75	2.51	3.70	24.9	50.0
200	2.40	1.85	2.58	3.83	26.9	53.4

Примечание. Размерность скорости — $10^8 \,\mathrm{cm/c}$, энергии — эВ; v_{\parallel} — продольная компонента модуля скорости; v_d — скорость дрейфа; v_{\perp} — радиальная компонента модуля скорости; v — средняя скорость; ε — средняя энергия; ε_{\parallel} — радиальная компонента энергии.

Расчеты параметров электронных лавин проводились для диапазона полей от 30 до 200 В/см с шагом 10 В/см при давлении 1 Тор. Предполагается подобие по параметру E/p. Характерное время расчета на компьютере $486 dx^2/66$ около 1 мин на $3 \cdot 10^5$ статистических электронов в разрядном промежутке. Для указанного диапазона полей оказывается, что, начиная с некоторого расстояния от катода (это место мы будем называть в дальнейшем точка установления равновесия), нормированная на единицу функция распределения электронов по энергиям и углам и усредненные по ней параметры (энергия, скорость, частоты процессов и др.) перестают зависеть от расстояния до катода. Можно выделить два типа установления равновесного значения параметров: в случае малых полей $(E/p < 60 \,\mathrm{B/cm/Top})$ имеет место пилообразное затухание, а при больших полях $(E/p > 60 \,\mathrm{B/cm/Top})$ параметры монотонно нарастают до предельного значения. На рис. 1 приведены оба случая поведения для средней энергии электронов. Другие параметры ведут себя аналогичным образом. Электронная плотность экспоненциально растет с увеличением координаты. В дальнейшем, говоря о кинетических параметрах, будем подразумевать их равновесные значения, а область, в которой параметры установились, будем называть зоной равновесия. Следует заметить, что координата точки установления равновесия зависит от ФРЭЭ эмиттируемых электронов, но параметры электронного ансамбля, вычисленных в зоне равновесия, не зависят от этого фактора.

E/p	$ u_{el}$	$ u_{ex}$	$ u_{io}$	α
30	24.6	.22	.07	.28
40	24.8	.33	.15	.43
50	24.8	.45	.24	.56
60	25.1	.57	.36	.69
70	25.0	.68	.49	.82
80	25.0	.80	.64	.92
90	24.9	.90	.78	.99
100	24.9	1.01	.94	1.09
110	24.8	1.09	1.10	1.15
120	24.8	1.23	1.30	1.21
130	24.7	1.30	1.44	1.26
140	24.6	1.39	1.62	1.29
150	24.5	1.48	1.78	1.32
160	24.5	1.57	1.96	1.36
170	24.4	1.66	2.16	1.38
180	24.3	1.73	2.32	1.38
190	24.2	1.78	2.45	1.40
200	24.0	1.88	2.65	1.42

Таблица 2. Частоты процессов и ионизационный коэффициент

П р и м е ч а н и е. Размерность частот — 10^8 Гц, ν_{el} — частота упругого процесса, ν_{ex} — частота возбуждения, ν_{io} — частота ионизации, α — ионизационный коэффициент (1/см).

В табл. 1,2 приведены значения основных параметров ансамбля электронов (усредненных в промежутке от 2 до 4 см, который примерно соответствует зоне равновесия для всего диапазона полей) в зависимости от параметра E/p.

Для сравнения некоторых полученных результатов с уже имеющимися данными были выбраны параметры v_d и α . Как видно из рис. 2, скорость дрейфа ведет себя пропорционально полю, что согласуется с экспериментальными данными, взятыми из [7]. Там же приведена зависимость $\alpha(E/p)$ в сравнении с [8].

Таким образом, расчет методом Монте-Карло дает устойчивые значения параметров электронного ансамбля, хорошо согласующиеся с экспериментом. Совпадение расчетных данных с экспериментом позволяет говорить о том, что для корректного моделирования ансамбля электронов в гелии в рассматриваемом диапазоне полей достаточно учитывать три типа элементарных процессов взаимодействия электронов с атомами газа: упругие, возбуж дающие и ионизирующие. Полученные данные могут быть применены при верификации приближений при решении уравнения Больцмана другими методами.

Список литературы

- Francey J.L., Jones D.A. // J. Phys. D. 1976. Vol. 9. P. 457–464.
- [2] Sommerer T.J., Hitchon W.N., Lawler J.E. // Phys. Rev. A. 1989. Vol. 39. N 12. P. 6356–6366.
- [3] Манкелевич Ю.А., Рахимов А.Т., Суетин Н.В. // Физика плазмы. 1991. Т. 17. № 8. С. 1017–1022.
- [4] Boeuf J.P., Marode E.A. // J. Phys. D. 1982. Vol. 15.
 P. 2169–2187.
- [5] Алхазов Г.Д. // ЖТФ. 1970. Т. 50. Вын. 1. С. 97–107.
- [6] Labahn R.W., Callaway J. // Phys. Rev. A. 1970. Vol. 2.
 N 2. P. 366–369.
- [7] Физические величины. Справочник. М.: Энергоатомиздат, 1991. 431 с.
- [8] Грановский В.Л. Электрический ток в газе. Установившийся ток. М.: Наука, 1971. С. 543.