Анализ процесса огрубления твердых дисперсных систем

© В.И. Псарев, Л.А. Пархоменко

Запорожский национальный технический университет, 69063 Запорожье, Украина E-mail: dilap@zntu.edu.ua

(Поступила в Редакцию 1 февраля 2005 г. В окончательной редакции 12 апреля 2005 г.)

> Предложен метод компьютерного анализа кинетики огрубления дисперсных фаз за счет оствальдовской коагуляции микрочастиц и сопутствующих ей процессов. С его помощью может быть получена информация о протекании процессов в дисперсной системе по мере приближения ее к состоянию равновесия. Предварительно для этой цели устанавливаются сходство и различие экспериментального распределения микрочастиц по размерам с теоретическим путем сравнения характеристик распределений и соответствующих им моментов, а по результатам анализа соотношений между ними опредяются качество и достоверность идентификации кривых плотности распределения.

PACS: 61.43.Bn, 61.72.-y, 61.72.Bb, 61.72.Cc

Существенной характеристикой дисперсных систем (стареющих и дисперсно-упрочненных сплавов, островковых тонких пленок, совокупности микрочастиц, распределенных в объеме диэлектрика, феррита, сверхпроводника или даже стекла, и др.) является функция плотности распределения частиц по размерам, представляемая в виде гистограммы-образа. Подверженная трансформации при наличии в системе разного рода процессов, такая функция содержит важную информацию об их физической природе и особенностях внутриобъемного протекания.

Огрубление микрочастиц дисперсной фазы, распределенных в твердой среде, вызывается их оствальдовской коагуляцией и сопутствующими ей процессами, что оказывает существенное влияние на формирование микроструктурного состояния и свойств дисперсной системы. Установление возможной коррелирующей связи между признаками изменения экспериментальных распределений-гистограмм и внутрисистемными процессами, вызывающими их трансформацию, — задача, заслуживающая внимания как в теоретическом, так и в практическом плане. Подразумевается возможность получения полезной информации путем выявления сходства и различия между экспериментальной гистограммой и теоретической функцией распределения микрочастиц по размерам, полученной на основе определенных физических представлений.

В настоящей работе в свете поставленной задачи предложены аналитические разработки, предназначенные для анализа микроструктурного состояния твердой дисперсной системы и опытной проверки теоретических решений. Апробация методики выявления кинетических особенностей огрубления дисперсной фазы предусматривает идентификацию распределений микрочастиц по размерам с привлечением традиционных методов статистического анализа и средств ЭВМ, необходимых для проведения сложных расчетов.

1. Теоретические положения

Огрубление микрочастиц дисперсной фазы при нагревании сопровождается растворением одних и ростом других (более крупных) и в большой степени зависит от индивидуальных свойств этих частиц на межфазовой границе. Зависимость скорости роста-растворения дисперсных частиц от их размера, называемая уравнением движения, обобщенно учитывает эти особенности процесса и служит основой для получения теоретических функций распределения микрочастиц по размерам и других характеристик дисперсной системы. В научной литературе предложено несколько вариантов таких уравнений, но, как было показано [1], возможна их унификация.

Запишем такое уравнение в безразмерных величинах

$$v(u) = v_k(t) \left(\frac{dr_k}{dt}\right)^{-1} \frac{dr}{dt} = \frac{u-1}{\gamma(u)},\tag{1}$$

где $\frac{dr}{dt}$ — скорость изменения пространственного размера микрочастиц радиуса r; $v_k(t)$ — приведенная скорость изменения критического радиуса r_k со временем t; $u = r/r_k$ — варианта; $\gamma(u)$ — фактор, определяющий механизм процесса.

Если $\gamma(u) = u^S$ и $v_k(t) = (dr_k/dt)(r_k^S/A_S)$ (A_S характеризует тип массопереноса при разных значениях величины S = 1, 2, 3, ...), получим формулу, объединяющую несколько дискретных механизмов диффузионного массопереноса в дисперсной системе [2–6]. Аналогичное уравнение движения размеров для того же механизма укрупнения микрочастиц используется в работе [7] (см. формулу (37) в ней). Ее авторы полагают, что их "теория сущестенно уточняет широко известную теорию Лифшица–Слезова". Однако в результате они получают распределения с сильно отрицательной асимметрией (см. рис. 4 в [7]), что не соответствует опытным данным, опубликованным в научной литературе. Поскольку каждой микрочастице системы можно приписать свой

диффузионный режим, не лишено основания обобщающее предположение об изменении S в более широком интервале значений (от нуля до бесконечности).

Если $\gamma(u) = \varepsilon u^2 + u^{1-\alpha}$, $v_k(t) = (dr_k/dt)(r_k/aKV)$, $\varepsilon = Kr_k/D$ (где K — скорость прохождения атомов через межфазовую границу, D — коэффициент диффузии, V — удельный объем вещества дисперсной фазы, α — параметр структурного распределения микрочастиц), имеет место реакционно-контролируемый механизм [8,9]. При $\gamma(u) = u^2 + \varepsilon_1 u^{1-\alpha}$, $v_k(t) = (dr_k/dt)$ $\times (r_k^2/aDV)$ и $\varepsilon_1 = \varepsilon^{-1}$ реализуется диффузионноконтролируемый механизм процесса коагуляции микрочастиц [9].

Приведем выражение, полученное [8,9] для разных механизмов огрубления микрочастиц в дисперсной системе, из которого следует множество теоретических функций плотности распределения при заданном v(u) с положительной, нулевой и отрицательной асимметрией,

$$\varphi(u) = \frac{3v_k}{v_k u - v(u)} \exp\left[-3v_k \int \frac{du}{v_k u - v(u)}\right].$$
 (2)

Эти функции будут унимодальными при условии [8]

$$v_k = v_k(t) = \frac{\partial v(u)}{\partial u}\Big|_{u_g} = \frac{v(u)}{u}\Big|_{u_g}$$
(3)

 $(u_g = r_g/r_k$ — верхняя граница относительных размеров микрочастиц, r_g — их наибольший радиус (размах распределения)) и достигают максимума при значении $u_m = r_m/r_k$ (где r_m — величина модального радиуса), определяемом с помощью соотношения [8]

$$4v_k(t) = \frac{\partial v(u)}{\partial u}\Big|_{u_m}.$$
(4)

Положение точек перегиба $u_p = (r_{p_i}/r_k)$ на каждой из кривых плотности распределения можно определить из уравнения [10]

$$g^{2}(u) = \frac{\partial g(u)}{\partial u}\Big|_{u_{p}},$$
(5)

где $g(u) = (4v_k - \frac{\partial v(u)}{\partial u})/(v_k u - v(u)).$ Каждое из распределений множества (2) обладает

каждое из распределении множества (2) ооладает собственными смешанными моментами $M_{nm} = \int_{0}^{u_g} M'_{nm} du$ (где $M'_{nm} = u^n (u_g - u)^m \varphi(u)$) относительно u = 0. Между ними существует взаимосвязь, следующая из уравнения [11]

$$dM'_{nm} - g(u)M'_{nm}du = \left(\frac{n}{u} - \frac{m}{u_g - u}\right)M'_{nm}du, \quad (6)$$

где *n* и *m* — целые и дробные положительные числа. Ее можно записать в виде [11,12]

$$(n-3)v_kM_{nm} = nL_n + mL_m, \tag{7}$$

где $L_n = M_{n-1-\gamma(u),m} - M_{n-\gamma(u),m}, \quad L_m = M_{n+1-\gamma(u),m-1} - v_k M_{n+1,m-1} - M_{n-\gamma(u),m-1}.$ Соотношение (7) и опреде-

ляет степень идентичности теоретического и экспериментального распределений.

2. Расчетные формулы и их применение

Характеристики теоретических распределений, согласно соотношениям (3)–(5), существенно зависят от фактора $\gamma(u)$ в уравнении (1). С учетом этого обстоятельства получим для них соответствующие выражения.

Из соотношения (3) можно определить значения u_g и v_k с помощью следующих формул:

$$\gamma - \gamma' u(u-1)\big|_{u_v} = 0, \tag{8}$$

$$v_k = (\gamma + \gamma' u)^{-1} \big|_{u_g} = (u^2 \gamma')^{-1} \big|_{u_g}, \qquad (9)$$

где γ' — первая производная по *u* от $\gamma = \gamma(u)$. Соответственно из соотношений (4) и (5) следует

$$4v_k\gamma^2 - \gamma + \gamma'(u-1)\big|_{u_m} = 0, \qquad (10)$$

(11)

$$20v_k^2\gamma^4 - 13v_k\gamma^2 z + 2z^2$$
$$- \left[\gamma\gamma''(u-1) + 2\gamma'z\right](v_ku\gamma - u + 1)\Big|_{u_p} = 0$$

где $z = \gamma - \gamma'(u-1)$.

В табл. 1 приведены численные значения характеристик теоретических функций распределения микрочастиц по их относительным размерам при разных значениях параметра S фактора $\gamma(u) = u^S$ в уравнении (1). Характерно, что не возникает каких-либо противоречий при условии непрерывного изменения величины S в интервале от нуля до бесконечности.

По отношению к экспериментальному ансамблю размеров $\{r_o, r_g\}$ критический радиус r_k может занимать разные положения. Если $r_k = r_0$, все микрочастицы ан-

Таблица 1. Характеристики однопараметрических функций плотности распределения микрочастиц по размерам при разных значениях величины $\gamma(u) = u^{S}$ в уравнении (1)

S	u_g	v_k	u_m	u_{p_1}	u_{p_2}	ν
0	8	1	0	_	0	∞
0.1	11	0.7153	0.0762	_	0.3344	144.295
0.5	3	0.3849	0.6633	_	1.2065	4.523
0.8	2.25	0.2904	0.9110	0.1239	1.3298	2.470
				0.3803		
1	2	0.25	1	0.6084	1.3458	2
2	1.5	0.1481	1.1346	0.9721	1.290	1.322
10	1.1	0.0350	1.0762	1.0634	1.0887	1.022
∞	1	0	1	1	1	1
∞	1	0	1	1	1	1

Примечание. Параметр $v = u_g/u_m$ характеризует степень асимметрии кривых плотности распределения, u_{p_1} — точка перегиба на кривой распределения в интервале от 0 до u_m , u_{p_2} — от u_m до u_g .

244

Таблица 2. Характеристики двухпараметрических функций плотности распределения микрочастиц по размерам при различных значениях величины $\gamma(u)$ в уравнении (1)

α	$\varepsilon, \varepsilon_1$	ug	u_k	u_m	u_{p_1}	u_{p_2}	ν	
$\gamma(u) = \varepsilon u^2 + u^{1-\alpha}, 0 \le \alpha \le 1, 0 \le \varepsilon \le 1$								
0	0	2	0.25	1	0.6084	1.3458	2	
0.5	0	3	0.3849	0.6633	_	1.2055	4.523	
0.9	0	11	0.7153	0.0762	_	0.3344	144.29	
1	0	∞	1	0	_	0	∞	
0.3	0.1	2.039	0.2471	0.9500	0.1765	1.3497	2.147	
					0.4415			
1	1	1.678	0.1059	1.0814	0.8229	1.3478	1.5514	
$\gamma(u)=u^2+arepsilon_1 u^{1-lpha}, 0\leq lpha \leq 1, 0\leq arepsilon_1 \leq 1$								
0	0	1.5	0.1481	1.1346	0.9721	1.290	1.322	
0	0.2	1.531	0.1309	1.1302	0.9527	1.300	1.354	
1	0.2	1.542	0.1364	1.1283	0.9447	1.306	1.367	
0.2	1	1.636	0.0935	1.1059	0.0546	1.328	1.479	
					0.8718			
0.4	1	1.651	0.0967	1.0999	0.8551	1.333	1.501	

самбля являются растущими. Поскольку при теоретических расчетах нижняя граница размеров r_0 принимается равной нулю, верхняя граница относительных размеров $u_g = r_g/r_k = \infty$. Если же $r_g = r_k$, то $u_g = 1$ и все микрочастицы будут находиться в положении растворяющихся. И только при условии $r_0 < r_k < r_g$ наступает процесс оствальдовской коагуляции дисперсных частиц, который сопровождается ростом более крупных из них ($r_k < r < r_g$) за счет растворения мелких ($r < r_k$) при непрерывном изменении r_k со временем.

При S = 0 ($u_g = \infty$ и $v_k = 1$), подставив (1) в (2), получим $\varphi(u) = C \exp(-3u)$. Описываемая этой функцией дисперсная система склонна к диффузионной коагуляции, так как $v_k > 0$.

Для разных значений *S* можно получить известные виды теоретических распределений: при S = 1 — распределение Вагнера [3]; при S = 2 — распределение Лифшица-Слезова [2]; при S = 3 распределение описывает систему микрочастиц, расположенных по границам зерен матричной фазы [4-6], и т.д. При этом они в интервале от 0 до u_m характеризуются одной точкой перегиба, двумя или полным их отсутствием и единственной точкой перегиба в интервале от u_m до u_g .

Изменение дисперсности микрочастиц в процессе коагуляции должно приводить к частотному перераспределению их размеров, сопровождаемому трансформацией распределений. При этом по мере приближения дисперсной системы к состоянию равновесия параметр S должен увеличиваться. Для больших S (условно $S = \infty$) полидисперсная система вырождается в монодисперсную, не склонную к коагуляционному процессу $(v_k = 0)$.

В табл. 2 приведены численные значения характеристик двухпараметрических функций распределения микрочастиц по размерам, соответствующим двум механизмам их укрупнения в дисперсной системе. Случай $\alpha = \varepsilon = 0$ соответствует функции распределения Вагнера [3], обладающей двумя точками перегиба. То же самое имеет место и для распределения Лифшица–Слезова [2] при $\varepsilon_1 = 0$ и $0 \le \alpha \le 1$.

Наиболее пригодными для отображения кинетики огрубления дисперсных фаз и выявления внутриобъемных структурных изменений в дисперсной системе являются распределения, соответствующие реакционно-контролируемому механизму. Они характеризуются положительной, нулевой и отрицательной асимметрией. Аналогичная ситуация имеет место и при $\gamma(u) = u^S$, если $\varepsilon = 0$ и $S = 1 - \alpha$ (см. [1]). При движении дисперсной системы к состоянию равновесия увеличению величины *S* равносильно уменьшение параметра α .

В случае диффузионно-контролируемого механизма коагуляции распределения имеют отрицательную асимметрию (коэффициент асимметрии $S_k = \mu_3/\sigma^3 < 0$, где μ_3 — центральный момент третьего порядка, σ — стандартная дисперсия).

3. Экспериментальное подтверждение

В табл. 3 приведены результаты идентификации экспериментальных распределений микрочастиц Al_3Mg_2 по размерам, полученные после отпуска сплава 80 mass.% Al; 20 mass.% Mg при разных температурах [13].

При расчетах с помощью ЭВМ размерные значения массива данных распределений переводились в безразмерные с использованием формулы $f(r, t)r_k^4 = N_r r_k^4 (\Delta r)^{-1} = \varphi(u)$, где Δr — шаг разбивки интервала размеров от нуля до r_g ; N_r — число микрочастиц радиуса r в единице объема сплава; r_k — соответствующее данному распределению значение критического радиуса в ансамбле размеров.

Путем варьирования величины r_k при заданных r_m и r_g (из экспериментальной гистограммы) по ранее описанной методике [14] были определены параметры распределений α и ε . Далее при n = 3 из соотношения (7) следует равенство $|3L_3| = |mL_m|$, которое является критерием достоверности найденных численных значений параметров. Наряду с ним использовался и следующий: при n = 3 и m = 0 из того же соотношения следует $M_{2-\gamma(u)} = M_{3-\gamma(u)}$, их численные значения приведены в табл. З. Видно, что на ранних стадиях отпуска сплава согласие функциональных моментов хуже, чем на более поздних. Такой результат можно было ожидать: процесс оствальдовской коагуляции микрочастиц Al₃Mg₂ на ранних стадиях в значительной степени осложнен сопуствующими процессами, которые не учитывались при теоретических расчетах.

Трансформация экспериментальных распределений [13] сопровождается уменьшением со временем

<i>t</i> , h	α	$\varepsilon \cdot 10^2$	u_g	v_k	u_m	u_{p_1}	u_{p_2}	$r_k \cdot 10^4$, cm
400°C, $\overline{m} = 0.49 \pm 0.04 \mathrm{g \cdot cm^{-3}}$								
5	0.836	0.053	6.2221	0.6126	0.1659	—	0.5730	1.73
25	0.729	3.08	2.8396	0.4113	0.4557	_	1.1153	4.84
50	0.587	3.58	2.5794	0.3566	0.6622	_	1.2471	5.14
75	0.355	1.53	2.4086	0.3158	0.8310	—	1.3069	5.29
150	0.096	0.998	2.0778	0.2620	0.9695	0.049	1.3434	5.78
						0.533		
430°C, $\overline{m} = 0.38 \pm 0.04 \mathrm{g \cdot cm^{-3}}$								
5	0.573	2.03	2.7546	0.3757	0.6371	_	1.2150	3.72
70	0.156	1.30	2.1376	0.2718	0.9454	0.085	1.3398	5.52
						0.471		
100	0.153	0.09	2.1771	0.2791	0.9367	0.085	1.3365	6.32
						0.453		
<i>t</i> , h	$r_s \cdot 10^4$, cm	S_k	$S_k(m)$	$-S_k(k)$	g, %	<i>M</i> ₃	M_f	M_f'
400°C, $\overline{m} = 0.49 \pm 0.04 \mathrm{g \cdot cm^{-3}}$								
5	0.913	5.534	3.521	0.0125	6.43	0.687	0.6061	0.4205
25	3.152	1.188	2.017	0.923	16.09	0.635	0.5777	0.5572
50	3.729	1.178	1.632	0.767	20.01	0.729	0.6508	0.6439
75	4.241	0.781	0.528	0.721	20.10	0.844	0.7621	0.7620
150	5.051	0.332	-0.449	0.768	26.67	0.944	0.8585	0.8590
430°C, $\overline{m} = 0.38 \pm 0.04 \mathrm{g \cdot cm^{-3}}$								
5	2.674	1.223	1.757	0.738	20.83	0.742	0.6693	0.6495
70	4.749	0.418	-0.346	0.733	30.01	0.927	0.8409	0.8402
100	5.850	0.526	-0.171	0.643	27.96	0.920	0.8440	0.8454
		•		•		•		

Таблица 3. Характеристики распределений микрочастиц Al₃Mg₂ по размерам после отпуска сплава 80 mass.% Al, 20 mass.% Mg при разных температурах

Примечание. $M_f = M_{2-\gamma(u)}, M'_f = M_{3-\gamma(u)}$ — функциональные моменты гистограммы, \overline{m} — масса дисперсной фазы.

численного значения параметра α и вместе с ним u_g , v_k и S_k , а также увеличением значений u_m и u_{p_2} , что свидетельствует о приближении дисперсной системы к состоянию равновесия. При этом происходит непрерывное увеличение со временем критического r_k и среднего радиуса r_S микрочастиц Al₃Mg₂. Незначительный рост со временем отпуска сплава испытывает величина $M_3 = \int_0^{r_g} f(r,t)r^3dr = \int_0^{u_g} u^3\varphi(u)du$, так как пересыщение твердого раствора на основе алюминия уменьшается, а выделяющая часть вещества оседает на растущих микрочастицах их интервала $\{r_k, r_g\}$.

В этой же таблице наряду с внешним коэффициентом асимметрии распределений S_k приведены и внутренние $S_k(m)$ и $S_k(k)$ — относительно r_m и r_k соответственно (см. [14]). По мере огрубления дисперсной фазы внешняя асимметрия распределений остается положительной ($S_k > 0$), хотя со временем заметно уменьшается. Коэффициент $S_k(k)$ в процессе отпуска сплава сохраняет отрицательный знак, что указывает на присутствие в нем большого количества растворяющихся микрочастиц Al₃Mg₂. Время растворения последних, по-видимому, растягивается за счет внутрисистемной подпитки.

Доля растущих дисперсных частиц в сплаве g (в %; метод ее определения описан в работе [15]) со временем отпуска увеличивается, и дисперсная система в большей мере становится коагулирующей. Иными словами, средний критический радиус r_k со временем коагуляции микрочастиц все больше удаляется от r_g . Следовательно, началу коагуляционного процесса частиц соответствует $r_k = r_g$, т.е. завершение распада пересыщенного твердого раствора матричной фазы. В этот момент времени кристаллизационный и коагуляционный критические размеры микрочастиц совпадают. Это значит, что в сплаве вся дисперсная фаза может растворяться и в ней возможна (при наличии сильно искаженной кристаллической структуры матричной фазы) миграционная коалесценция дисперсных частиц [16].

Применение предлагаемого метода может быть распространено на самые разнообразные твердые дисперсные системы. В процессе нагревания или другой термической обработки эволюция дисперсной фазы приобретает форму саморазвития совокупности полидисперсных частиц, о чем можно судить по данным анализа характера трансформации их распределений по размерам со временем.

Список литературы

- [1] В.И. Псарев. Металлы 5, 87 (2003).
- [2] И.М. Лифшиц, В.В. Слезов. ЖЭТФ 35, 2/8, 479 (1958).
- [3] C. Wagner. Z. Electrochem. 65, 7/8, 581 (1961).
- [4] M. Kahlweit. Adv. Col. Interf. Sci. 5, 1, 1 (1975).
- [5] R.D. Vengrenovith. Acta Met. 30, 6, 1079 (1082).
- [6] В.В. Кондратьев, Ю.М. Устюгов. ФММ 76, 5, 40 (1993).
- [7] С.А. Кукушкин, А.В. Осипов. ЖЭТФ 113, 6, 2193 (1998).
- [8] В.И. Псарев. Изв. вузов. Физика 33, 12, 53 (1990).
- [9] В.И. Псарев, Л.А. Пархоменко, А.Ф. Куликов. Металлы 5, 154 (1994).
- [10] В.И. Псарев. Металлы 6, 105 (1999).
- [11] В.И. Псарев. Изв. вузов. Физика 40, 4, 92 (1997).
- [12] В.И. Псарев, А.Ф. Куликов, Л.А. Пархоменко. Металлы 4, 117 (2001).
- [13] В.И. Псарев, А.С. Барсегян, А.Ф. Куликов. Изв. вузов. Физика 36, 2, 8 (1993).
- [14] В.И. Псарев. Изв. вузов. Цв. металлургия 3, 28 (2001).
- [15] В.И. Псарев, Л.А. Пархоменко, А.Ф. Куликов. Металлы 3, 142 (1996).
- [16] В.И. Псарев. Изв. вузов. Физика 18, 10, 118 (1975).