Электронные центры окраски в кристаллах SrF₂-Na

© С.И. Качан, З.П. Чорний

Национальный университет "Львовская политехника", 79013 Львов, Украина E-mail: asio@org.lviv.net

(Поступила в Редакцию 28 января 2005 г.)

Показано, что при оптическом обесцвечивании M_A^+ -центров окраски при 80 К в кристаллах SrF₂–Na остов M_A^+ -центра принимает V_a^+ Me⁺ V_a^+ -конфигурацию, в которой все три точечных дефекта расположены по диагонали куба элементарной ячейки. Повторное облучение оптически обесцвечиванного кристалла X-лучами генерируст в нем F_D -центры: V_a^+ Me⁺ $V_a^+ + e^- \rightarrow V_a^0$ Me⁺ $V_a^+ \equiv F_D$. $F_D \rightarrow M_A^+$ -превращение в кристаллах SrF₂–Na происходит при T = 135 К в отличие от $F_A \rightarrow M_A^+$ -преобразований, которые проявляются при T > 200 К.

PACS: 61.80.-x, 71.55.Ht, 78.20.Ci

Изучение электронных центров окраски в кристаллах структуры флюорита необходимо для улучшения параметров существующих приборов, где рабочим телом выступают флюориты [1]. Эффект радиационной памяти кристалла — это способность решетки кристалла сохранять информацию о действии предшествующего ионизирующего излучения. Как правило, существование такой информации обусловлено сохранением порядка расположения в кристаллической решетке точечных радиационных дефектов, созданных предшествующим облучением. Такой эффект радиационной памяти наблюдается при условии, что ионные процессы в кристаллах заморожены. В настоящее время этот эффект выявлен нами в кристаллах MeFX [2] и SrCl₂–Tl [3]. В кристаллах флюоритов данный эффект обнаружен впервые.

1. Постановка задачи

Общеизвестно [4], что чистые кристаллы флюоритов при комнатных температурах являются радиационно стойкими объектами. Радиационную чувствительность флюоритов можно резко увеличить, если легировать их ионами щелочных металлов [4–6]. Ионы щелочных металлов входят в решетку кристаллов флюоритов в виде ионов замещения. Компенсацию избыточного заряда осуществляет анионная вакансия, расположенная в первой координационной сфере примесного иона. Компенсация носит локальный характер: в решетке кристалла создаются примесно-вакансионные диполи (ПВД) $Me^+V_a^+$ (рис. 1, *a*).

При облучении кристалла, который содержит ПВД, при условии, что облучение происходит при низких температурах, когда ионные процессы заморожены, в кристалле генерируются $(F_A - V_k)$ -комплементарные пары [7,8]

$$e^+ \to e^+_s \equiv V_k, \quad e^- + \mathrm{Me}^+ V^+_a \to \mathrm{Me}^+ V^0_a \equiv F_A.$$
 (1)

 F_A -центр (рис. 1, *b*) обладает эффективным отрицательным зарядом и при наличии в кристалле ионного переноса (T = 200 K) локализует на себе анионную вакансию, образуя M_{A}^{+} -центр (рис. 1, *c*):

$$V_a^+ + \mathrm{Me}^+ V_a^0 \to \mathrm{Me}^+ (V_a^+)_2^- \equiv M_A^+.$$
 (2)

Если кристалл, который содержит M_A^+ -центры, оптически обесцветить при 80 K, то в нем должны сохраняться остовы M_A -центра (Me⁺($V_a^+)_2^-$). Поскольку при 80 K ионные процессы в кристаллах SrF₂ заморожены (заморожены как пространственная миграция анионных вакансий, так и ротация ПВД), можно ожидать, что остов M_A -центра в обесцвеченном кристалле сохраняется. В данном случае при повторном облучении должны возникать M_A^+ -центры уже при 80 K

$$\left(\mathrm{Me}^{+}(V_{a}^{+})_{2}^{-}\right) + e^{-} = M_{A}^{+}.$$
 (3)

Благодаря термополевым перескокам или туннелированию остов M_A^+ -центра изменяет свою конфигурацию.

Нами в теоретической модели, которая учитывает точечную ионную аппроксимацию, проведены расчеты величины сил, действующих на вакансию как со стороны примесного иона, так и со стороны второй остовной вакансии, а также величины энергии связи вакансий в остове M_A^+ -центра. При этом величина силы взаимодействия вакансии с примесным ионом принята за единицу, т.е. энергия их связи $E_b = 1.0$ eV. Результаты данных расчетов схематически показаны на рис. 2 и 3.

В случае ПВД (рис. 2, *a*) силы равномерно распределены по трем кристаллографическим направлениям и вакансия с одинаковой вероятностью осуществляет перескоки по восьми эквивалентным позициям аниона, не отрываясь от примесного иона.

Отход вакансии от примесного иона маловероятен и в остове самого M_A^+ -центра (рис. 2, *b*-*d*). Величины сил и их направление (рис. 2) и величина энергии взаимодействия (рис. 3) указывают на то, что анионная вакансия последовательно осуществляет перескоки 1 \rightarrow 2, $2' \rightarrow$ 3. Вследствие указанных перескоков $Me^+(V_a^+)_2^-$ конфигурация, в которой вакансии расположены вдоль [100] кристаллографических направлений (рис. 2, *b*), изменяется и переходит в $V_a^+Me^+V_a^+$ -конфигурацию, в которой все три точечных дефекта расположены на диагонали куба элементарной ячейки и наблюдается минимум энергии (рис. 2, *d*).

Рис. 1. Модели точечных дефектов в кристаллах SrF₂-Na.

Если кристалл, в котором образовались V_a^+ Me⁺ V_a^+ комплексы, повторно облучить, то в нем наряду с *F*-центрами должны создаваться и *F*_D-центры (рис. 1, *d*)

$$V_a^+ \mathrm{Me}^+ V_a^+ + e^- \to V_0^+ \mathrm{Me}^+ V_a^+ + e^- \equiv F_D.$$
 (4)

 F_D -центр формально можно рассматривать как $F_A(1)$ центр, т. е. F_A -центр, во второй координационной сфере которого расположена еще анионная вакансия. Можно ожидать, что наличие анионной вакансии во второй координационной сфере не оказывает большого влияния на оптические параметры центров окраски, F_A - и F_D -полосы спектрально или совпадают, или перекрываются. Поэтому оптическими методами обнаружить F_D -центры почти невозможно. Однако термоиндуцированные преобразования данных центров ($F_A \rightarrow M_A^+$ - и $F_D \rightarrow M_A^+$ -преобразования) должны существенно различаться по температуре.

 $F_A \to M_A^+$ -преобразования, которые описывает реакция (2), протекают при температуре выше 200 К (при условии существования пространственной миграции анионных вакансий). Для $F_D \to M_A^+$ -преобразований достаточно ротационного движения вакансии: такие преобразования по температуре должны совпадать с температурой ориентации ПВД или M_A^+ -центра [6]. Поэтому следует ожидать, что при нагревании предварительно обесцвеченных и повторно облученных кристаллов образование M_A^+ -центров будет протекать в две стадии. Проверка этого и составляет предмет данных исследований.

2. Объекты исследований и методика эксперимента

В качестве объектов исследований нами выбраны хорошо изученные кристаллы SrF_2 –Na [4]. Кристаллы выращивались видоизмененным методом Бриджмена в аргоновой атмосфере. Измеряемые образцы представляли собой выколотые в кристаллографической плоскости (111) пластинки размером $10 \times 10 \times 1$ mm. Источником облучения служила установка УРС-55A (U = 55 kV, I = 12 mA).

Конструкция криостата измерительной ячейки, методика измерения спектров поглощения и исследование изменения их оптической плотности были аналогичными описанным в предшествующих работах [6,9].

3. Результаты исследований и их обсуждение

На рис. 4 (кривая 1) приведен спектр наведенного поглощения кристаллов SrF_2 –Na, облученных при 80 K. Мощные полосы с максимумами при 450 и 525 nm, как известно из литературы [4], обусловлены поглощением F_A -центров. Полоса в области 335 nm идентифицируется как полоса поглощения V_k -центров [4,8].

Таким образом, при низкотемпературном облучении в кристалле генерируются ($F_A - V_k$)-комплементарные пары. Слабоинтенсивная полоса в области 700 nm совпадает с полосой поглощения M_A^+ -центров [10], вклад которой в суммарное поглощение при низких температурах незначителен. Если кристалл прогреть до комнатной температуры, спектр испытывает существенные изменения: F_A -полосы исчезают и в спектре поглощения доминируют M_A^+ -полосы поглощения (полосы 433 и 700 nm; кривая 2 на рис. 4).

Итак, при прогреве в кристалле происходит превращение F_A -центров в M_A^+ -центры окраски. Изменение оптической плотности в M_A^+ -полосах поглощения (в полосе 700 nm) отображено на рис. 5 (кривая I). Как видно, $F_A \rightarrow M_A^+$ -преобразование происходит при температурах выше 220 K и заканчивается при комнатной температуре. Если теперь кристалл охладить до 80 K и подсветить в поле 433 nm, можно его практически полностью обесцветить (кривая J на рис. 4).

Повторное изодозное облучение практически восстанавливает тот же спектр поглощения, который мы получили при первом облучении (ср. кривые 1 и 4). Незначительные различия в спектре поглощения обусловлены влиянием полосы 433 nm, которая осталась в кристалле после его обесцвечивания (кривая 3).

Итак, на основании только оптических измерений нельзя утверждать, что в кристалле после повторно-

Рис. 3. Схема потенциального барьера для перескока анионной вакансии в ПВД (a) и остове M_A^+ -центра (b, c).

Рис. 4. Спектры поглощения кристаллов SrF₂–Na. 1 — после облучения при T = 80 K, 2 — после импульсного прогрева кристалла до T = 270 K, 3 — для оптически обесцвеченного кристалла, 4 — после повторного облучения при T = 80 K.

го облучения возникли F_D -центры, однако об их наличии однозначно свидетельствует кривая нарастания M_A^+ -центров, которую мы получили после повторного облучения (кривая 2 на рис. 5). Как видно из этой кривой, нарастание M_A^+ -центров происходит в две ста-

Рис. 2. Расчетные значения величины сил, действующих на анионную вакансию, и энергия связи анионной вакансии с примесным ионом или диполем.

Рис. 5. Термостимулированное нарастание оптической плотности в полосе $\lambda = 700$ nm M_A -центров в кристаллах SrF₂–Na. *I* — после облучения при *T* = 80 K, *2* — после оптического обесцвечивания кристалла и повторного облучения (при *T* = 80 K).

дии. Первая стадия совпадает по температуре с максимумом дипольной релаксации (на рис. 5 положение данного максимума показано стрелкой). Вторая стадия нарастания происходит при температурах выше 220 К и протекает так же, как и при первом облучении образца.

Из приведенных на рис. 5 данных следует, что на первой стадии облучения получается одна треть от общей концентрации M_A^+ -центров. Это свидетельствует о том, что концентрации F_D - и F_A -центров соотносятся как 1:2. Такой высокий вклад F_D -центров в суммарную окраску кристалла обусловлен тем, что остов M_A -центра обладает избыточным положительным зарядом относительно решетки и поэтому более эффективно захватывает носители тока по сравнению с ПВД [11].

Таким образом, в настоящей работе впервые на кристаллах флюоритов зафиксирован факт наличия в кристаллах F_D -центров и раскрыт механизм радиационной памяти в этих кристаллах, что можно обнаружить путем исследований термоиндуцированных преобразований электронных центров окраски.

Список литературы

- [1] В.А. Архангельская. Тр. ГОИ 52, 34 (1983).
- [2] A.S. Krochuk, O.R. Onufriv, Z.P. Chornyi. Phys. Stat. Sol. (b) 154, 1, K 9 (1989).
- [3] А.С. Крочук, З.П. Чорний, Г.О. Щур, В.М. Салапак, М.В. Говор. УФЖ 44, 11, 1428 (1999).
- [4] W. Hayes, A.M. Stoneham. Crystals with Fluorite Structure. Clarendon Press, Oxford (1974). P. 448.
- [5] Н.В. Говор, А.С. Крочук, З.П. Чорний. ФТТ 35, 12, 3308 (1993).
- [6] Z.P. Chornij, I.M. Kravchuk, S.I. Kaschan, G.O. Shchur, V.M. Salpak. Phys. Stat. Sol. (b) K 223, 757 (2001).
- [7] В.М. Лисицин, В.Ф. Штанько. Опт. и спектр. 42, 4, 760 (1977).

- [8] А.С. Щеулин, Н.Е. Королев, А.Е. Ангервакс. Опт. и спектр. 86, 6, 785 (1999).
- [9] З.П. Чорний, С.И. Качан, И.Б. Пирко, В.М. Салапак. Вестн. НУ "Львовская политехника" 427, 109 (2001).
- [10] В.А. Архангельская, А.С. Щеулин. Опт. и спектр. 70, 6, 1242 (1996).
- [11] H.W. Hartog. Rad. Eff. Def. Sol. 139, 2, 125 (1996).